Información Importante

La Universidad Santo Tomás, informa que el(los) autor(es) ha(n) autorizado a usuarios internos y externos de la institución a consultar el contenido de este documento a través del Catálogo en línea del CRAI-Biblioteca y el Repositorio Institucional en la página Web de la CRAI-Biblioteca, así como en las redes de información del país y del exterior con las cuales tenga convenio la Universidad.

Se permite la consulta a los usuarios interesados en el contenido de este documento, para todos los usos que tengan finalidad académica, nunca para usos comerciales, siempre y cuando mediante la correspondiente cita bibliográfica se le dé crédito al trabajo de grado y a su autor.

De conformidad con lo establecido en el Artículo 30 de la Ley 23 de 1982 y el artículo 11 de la Decisión Andina 351 de 1993, la Universidad Santo Tomás informa que “los derechos morales sobre documento son propiedad de los autores, los cuales son irrenunciables, imprescriptibles, inembargables e inalienables.”

Centro de Recursos para el Aprendizaje y la Investigación, CRAI-Biblioteca

Universidad Santo Tomás, Bucaramanga
REPRODUCIBILIDAD DEL AUTOREFRACTÓMETRO PLUSOPTIX A12C EN NIÑOS DE 24 A 71 MESES DE EDAD DEL COLEGIO INFANTIL MAGIC KIDS Y COLEGIO COOPERATIVO MIS PRIMEROS TRAZOS

Trabajo de grado para optar al Título de Optómetra

María Alejandra Calderón Vera, Diana Carolina Navarro Caicedo
Yury Paola Muñoz Chávez y Yerli Katherine García Hernández

Directoras
Clara Inés Beltrán Camacho
Optómetra y especialista en Seguridad Social

Co-directoras
Martha Lucía Silva Mora, Diana Cristina Palencia Flórez
Magister en epidemiología

Universidad Santo Tomás, Bucaramanga
División de Ciencias de la Salud
Facultad de Optometría
2017
Contenido

<table>
<thead>
<tr>
<th>Pág.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resumen</td>
</tr>
<tr>
<td>Abstract</td>
</tr>
<tr>
<td>1. Introducción</td>
</tr>
<tr>
<td>1.1 Objetivo general</td>
</tr>
<tr>
<td>1.1.1 Objetivos Específicos</td>
</tr>
<tr>
<td>2. Marco teórico</td>
</tr>
<tr>
<td>2.1 Marco Legal</td>
</tr>
<tr>
<td>2.2 Método de evaluación en niños</td>
</tr>
<tr>
<td>2.2.1 Retinoscopia dinámica monocular de Merchán</td>
</tr>
<tr>
<td>2.2.2 Retinoscopia bajo cicloplejia</td>
</tr>
<tr>
<td>2.2.3 Retinoscopías dinámicas</td>
</tr>
<tr>
<td>2.3 Autorefractómetro</td>
</tr>
<tr>
<td>2.4 Reproducibilidad de mediciones</td>
</tr>
<tr>
<td>3 Método</td>
</tr>
<tr>
<td>3.1 Selección y descripción de los participantes</td>
</tr>
<tr>
<td>3.2 Estadística y tratamiento de datos</td>
</tr>
<tr>
<td>3.2.1 Plan de análisis</td>
</tr>
<tr>
<td>3.2.2 Análisis crítico del protocolo</td>
</tr>
<tr>
<td>3.3 Información técnica</td>
</tr>
</tbody>
</table>
3.3.1 Procedimiento de la investigación ..35
3.4 Implicaciones bioéticas ...37

4 Resultados ..39
5. Discusión ..48
6. Conclusiones y recomendaciones ..51

Referencias bibliográficas ..54

Apéndices ..58

Apéndice A. Formatos de recolección de la información ..58
Apéndice B. Formato de referencias de la muestra ...61
Apéndice C. Consentimiento informado ..63
Apéndice D. Carta a la institución del Colegio Infantil Magic Kids67
Apéndice E. Carta a la Institución Colegio Cooperativo Mis primeros trazos69
Apéndice F. Carta para el préstamo del autorefractómetro Plusoptix A12C71
Lista de tablas

Tabla 1. Variables analizadas en el estudio .. 32
Tabla 2.a. Plan de análisis univariado .. 33
Tabla 3. Plan de análisis bivariado .. 34
Tabla 4.a. Análisis de variables cuantitativas ... 41
Tabla 5. Distribución del astigmatismo ... 43
Tabla 6. Prueba de U-Mann Whitney ... 46
Tabla 7. CCI toma 1 y toma 2 del autorefractómetro .. 47
Tabla 8. CCI del defecto refractivo y género (mujeres) ... 48
Tabla 9. CCI del defecto refractivo y género (hombres) ... 48
AUTOREFRACTÓMETRO PEDIÁTRICO

Lista de figuras

Figura 1. Compensación de la retinoscopía dinámica monocular de Merchán según la edad. (7) 14
Figura 2. Distancia a la que se utiliza el autorefractómetro Plusoptix A12C (10) 22
Figura 3. Forma de uso (11).. 23
Figura 4. Pantalla de visualización. (10)... 23
Figura 5. Reproducibilidad .. 25
Figura 6. Flujograma de participantes. .. 40
Figura 7. Descripción de las esferas de la refracción con el autorefractómetro en las dos tomas. 43
Figura 8. Descripción del cilindro de la refracción con el autorefractómetro en las dos tomas. .. 44
Figura 9. Descripción del eje de la refracción con el autorefractómetro en las dos tomas.......... 44
Figura 10. Descripción de la diferencia en esferas y astigmatismo de la refracción con autorefractómetro en las dos tomas... 45
Figura 11. Distribución del valor p. .. 46
Figura 12. Correlación de las dos tomas con el autorefractómetro... 47
Apéndices

Apéndice A. Formatos de recolección de la información ... 58
Apéndice B. Formato de referencias de la muestra ... 61
Apéndice C. Consentimiento informado .. 63
Apéndice D. Carta a la institución del Colegio Infantil Magic Kids ... 67
Apéndice E. Carta a la Institución Colegio Cooperativo Mis primeros trazos 69
Apéndice F. Carta para el préstamo del autorefractómetro Plusoptix A12C .. 71
Resumen

El uso de tecnología como herramienta para realizar el examen visual, como lo son los autorefractómetros, pueden facilitar la toma de datos en cuanto a rapidez y menos distractibilidad del paciente. En el mercado existe el autorefractómetro Plusoptix A12C, especial para la población pediátrica, pero no cuenta con estudios de reproducibilidad. Por esta razón se realizó este estudio para establecer la reproducibilidad de este equipo.

El tipo de estudio fue cuantitativo de diseño longitudinal y se realizó una investigación a base de pruebas diagnósticas. Se incluyeron niños (as) de 24 a 71 meses del Colegio Infantil Magic Kids y Colegio Cooperativo Mis Primeros Trazos con previo consentimiento informado de sus padres.

Se obtuvo como muestra final 69 participantes (138 ojos) entre los 24 y 67 meses de edad, con una mediana para la edad de 42 meses, de los cuales el 51% pertenecían al género femenino. El Plusoptix A12C mostró un coeficiente de correlación intraclase casi perfecto (>0,8) para la esfera de los hombres y el cilindro y el eje de ambos géneros. En cuanto a la esfera de las mujeres el CCI fue substancial (0,69).

Teniendo en cuenta las características referidas en los criterios de selección del estudio, se puede señalar que el autorefractómetro pediátrico Plusoptix A12C proporciona un dato refractivo confiable con un coeficiente de correlación intraclase substancial (mayor a 0,89 en todos los casos) en niños y niñas entre los 24 y 67 meses de edad bajo condiciones no ciclopléjicas.

 Palabras claves: retinoscopía, autorefractómetro, niños, reproducibilidad.
Abstract

The use of the technology as a tool to perform the visual examination, such as the autorefractometers, can facilitate the collection of data in terms of speed and less distractibility of the patient. In the market there is the autorefractometer Plusoptix A12C, special for the pediatric population, but it does not have studies of reproducibility. For this reason, this study was carried out to establish the reproducibility of this equipment.

The type of study was quantitative of longitudinal design and an investigation was made based on diagnostic tests. Children between 24 and 71 months of Colegio Infantil Magic Kids and Colegio Cooperativo Mis Primeros Trazos were included with prior informed consent of their parents.

The final sample consisted of 69 participants (138 eyes) between 24 and 67 months of age, with a median age of 42 months, of which 51% belonged to the female gender. The Plusoptix A12C showed an almost perfect intraclass correlation coefficient (> 0.8) for the men's sphere and the cylinder and axis of both genders. In the area of women the CCI was substantial (0.69).

Taking into account the characteristics referred to in the study selection criteria, it can be noted that the pediatric autorefractor Plusoptix A12C provides reliable refractive data with a substantial intraclass correlation coefficient (greater than 0.89 in all cases) in boys and girls between 24 and 67 months of age under non-cycloplegic conditions.

Key words: retinoscopy, autorefractometer, children, reproducibility.
1. Introducción

En los pacientes pediátricos establecer la magnitud de un defecto refractivo, entre otros factores, en la consulta optométrica es un problema, pues la poca colaboración del paciente y la variabilidad del error refractivo por cambios en el punto de fijación, la distractibilidad típica del niño hacen que los datos que se obtienen durante la consulta sean poco confiables. Si no se pueden definir estos datos se dificulta saber si el niño se encuentra dentro de los límites aceptables para un defecto refractivo según su edad y también genera duda por parte del examinador al momento de dar o no una corrección óptica.(1)

Uno de los retos a enfrentar es realizar el examen a niños, pues la responsabilidad es muchísimo mayor teniendo en cuenta que si no se da una prescripción óptica en el tiempo que se necesita o en la cantidad adecuada, puede llevar a un mal desarrollo de la agudeza visual o problemas motores difíciles de resolver o en algunos casos irreversibles. El reto se incrementa ante la dificultad por la falta de colaboración de los niños, el no entendimiento de los test y el poco tiempo de concentración que ellos presentan.

Dar correcciones oportunas para evitar la ambliopización, buscando respetar el proceso de emetropización, crea la necesidad de acceder al progreso científico permitiendo así el desarrollo de instrumentos tecnológicos capaces de medir diversos parámetros de manera no invasiva con tan solo una maniobra. Un ejemplo de éstos es el autorefractómetro PLUSOPTIX A12C de TECNOPTIX, el cual se basa en el enfoque óptimo que se logra cuando una señal pico se recibe desde un sensor de luz. Este autorefractómetro, hasta el momento no cuenta con estudios para determinar su reproducción y lamentablemente no es muy conocido. Es por esto que realizar
un estudio sobre la reproducibilidad de este equipo es de gran importancia para contar con este
tipo de tecnología en la consulta diaria y poder apoyarse en sus resultados teniendo confianza en
su reproducibilidad, ayudando a establecer el estado refractivo, sin cambiar la refracción
realizada por el optómetro tomándola como una ayuda complementaria a esa refracción.
También realizar refracción bajo cicloplejia sólo a pacientes que lo ameriten teniendo seguridad
de no haber pasado falsos negativos.

Por ello, se propuso este estudio con el fin de conocer la exactitud del autorefractómetro para
dar respuestas cercanas al valor real del estrado refractivo del paciente y poder utilizar de una
forma confiable esta herramienta. También con el fin de dar respuesta a la siguiente pregunta:
¿Qué tan reproducibles fueron los resultados obtenidos con el autorefractómetro pediátrico
Plusoptix A12C de Tecnopix en niños de 24 a 71 meses de edad del Colegio Infantil Magic Kids
y Colegio Cooperativo Mis Primeros Trazos? Si se logra establecer una alta reproducibilidad de
este autorefractómetro, se beneficiaría haciendo uso de éste como una herramienta base en la
consulta optométrica; para descartar alteraciones refractivas y también como un tamizaje visual
al momento de realizar actividades con una gran cantidad de niños, para poder decidir a quién
remitir a una consulta de optometría integral.

1.1 Objetivo general

Determinar la reproducibilidad interobservador del autorefractómetro pediátrico PLUSOPTIX
A12C de TECNOPIX en niños de 24 a 71 meses de edad del Colegio Infantil Magic Kids y
Colegio Cooperativo Mis Primeros Trazos.
1.1.1 Objetivos Específicos

- Describir características sociodemográficas de la población en estudio.
- Describir características clínicas de la refracción con el autorefractómetro PLUSOPTIX A12C de Tecnoptix.

2. Marco teórico

La refracción ocular normal es aquella situación en la que los haces de luz que inciden paralelos sobre la córnea, se refractan y convergen en la retina, lo que ocurre cuando un ojo es emétreo. Los defectos refractivos o ametropías son la causa más frecuente de disminución de la agudeza visual, a consecuencia del desenfoque del sistema óptico del ojo, por lo que los rayos luminosos provenientes del infinito al atravesar los medios refractivos, enfocan por delante o por detrás de la retina, formando así una imagen borrosa. Las ametropías se clasifican en esféricas “miopía e hipermetropía” y cilíndrica “astigmatismo”. Los métodos de evolución que diagnostican el estado refractivo son: la retinoscopía estática que se define como una técnica objetiva para la investigación, diagnóstico y valoración de los defectos oculares de refracción. El término refracción objetiva se utiliza cuando el error refractivo del ojo se determina sin la participación activa del paciente, a quien se le pide mantener su fijación sobre un objeto lejano por un período corto de tiempo (2).

La refracción subjetiva se basa en las respuestas dadas por el propio paciente para obtener la corrección óptica con la cual él vea mejor y se encuentre más cómodo, a pesar de que en algunos casos la cooperación del sujeto no es la adecuada por edad u otro motivo. La refracción bajo
cicloplejia mide el error refractivo del paciente en ausencia de la acomodación paralizando el músculo ciliar mediante el uso de ciclopléjico. La retinoscopía dinámica se realiza en visión próxima con presencia del estímulo acomodativo (3).

2.1 Marco Legal

El marco legal que rigió este proyecto de grado es:

Ley 372 de 1997 de la República de Colombia. (4)

“Por el cual se reglamenta la profesión de optometría en Colombia y se dictan otras disposiciones”.

“Artículo 4 de las actividades
e) “La aplicación de las técnicas necesarias para el diagnóstico, pronóstico, tratamiento y rehabilitación de las anomalías de la salud visual”.

Teniendo en cuenta la reglamentación de la profesión de optometría en el artículo 4, de las actividades, se dicta el papel que desarrolla un optómetro en el diagnóstico de alteraciones visuales. Para el desarrollo del presente trabajo se promovió la aplicación del autorefractómetro pediátrico con el cual se hace detección de alteraciones visuales.

Ley 44 de 1993 de la República de Colombia. (5)

“Normatividad de propiedad intelectual, por la cual se modifica y adiciona la Ley 23 de 1982 y se modifica la Ley 29 de 1944”.

En la presente investigación se reconoció la propiedad intelectual de los autores referenciados a lo largo del trabajo.

Ley 23 de 1982 de la República de Colombia. (6)
“Sobre derechos de autor, Los autores de obras literarias, científicas y artísticas gozarán de protección para sus obras en la forma prescrita por la presente Ley y, en cuanto fuere compatible con ella, por el derecho común. También protege esta Ley a los intérpretes o ejecutantes, a los productores de programas y a los organismos de radiodifusión, en sus derechos conexos a los del autor”.

El reconocimiento de los derechos de autor se vio reflejado en la investigación por medio de citaciones y su debida referencia de autores.

2.2 Método de evaluación en niños (7)

Los métodos de evaluación del estado refractivo en niños son:

2.2.1 Retinoscopía dinámica monocular de Merchán

Fue creada en el año 1966 por Gabriel Merchán Mendoza, doctor en optometría Pennsylvania College of Optometry, debido a que en aquel entonces el optómetro no contaba con la posibilidad de utilizar ciclopléjicos o midriáticos en su consulta ya que las técnicas de la retinoscopía dinámica de Tait y Sheard presentaban muchos problemas por la interferencia de la convergencia durante el test, inconveniente que el doctor Merchán superó eliminando la binocularidad, es decir realizando la retinoscopía de forma monocular.

Para realizar la retinoscopía dinámica monocular, el paciente debe fijar monocularmente las figuras o letras situadas sobre el plano del retinoscopio situado a 40 cm. El examinador debe observar sombras directas para iniciar (introducir lentes negativos o menos positivos según el caso). Seguidamente introduce lentes gradualmente neutralizando el reflejo hasta encontrar la
última sombra directa que a la vez es la más rápida. A este valor se le denomina dinámico groso. Haciendo la compensación se obtiene el resultado neto que representa la refracción para visión lejana [ver figura 1]. (8)

Técnica dinámica monocular o de Merchán

Los principios de esta técnica son los mismos de la dinámica binocular; se trata de controlar la actividad del cristalino manteniendo la fijación sobre un punto localizado en distancia próxima.

Se elimina la relación entre acomodación y convergencia, descartando la convergencia ocluyendo un ojo. El instrumento se ubica a 40 cm, este debe tener colocado la tarjeta para el retinoscopio que sirve como punto de fijación. No es una técnica de emborronamiento, se comienza con suficiente poder negativo hasta encontrar movimiento directo o en todos los meridianos.

<table>
<thead>
<tr>
<th>Edad (años)</th>
<th>Compensación (Dpt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< de 39</td>
<td>1.25</td>
</tr>
<tr>
<td>40-44</td>
<td>1.50</td>
</tr>
<tr>
<td>45-48</td>
<td>1.75</td>
</tr>
<tr>
<td>49-52</td>
<td>2.00</td>
</tr>
<tr>
<td>53-56</td>
<td>2.25</td>
</tr>
<tr>
<td>57-60</td>
<td>2.50</td>
</tr>
<tr>
<td>61-64</td>
<td>2.75</td>
</tr>
<tr>
<td>> de 65</td>
<td>3.00</td>
</tr>
</tbody>
</table>

Figura 1. Compensación de la retinoscopía dinámica monocular de Merchán según la edad. (8)

En esta técnica a todo paciente mayor de 40 años se compensa. Los pasos a seguir son:
• Examinar el ojo derecho con el retinoscopio en la mano derecha al ojo derecho. El izquierdo está ocluido.
• El retinoscopio está a 40 cm.
• Colocar en la montura de prueba la esfera de +1.25 dpt como lente de compensación, sino se trabaja con este valor se resta del poder final -1.25 dpt y observando el movimiento hasta llegar a una zona neutral.
• Proceder de igual manera para el ojo izquierdo, ocluyendo el derecho primero.
• Registrar en este momento las lecturas como dinámica monocular bruto o "grosso"; la compensación que se hace es de -1.25 dpt. Esta compensación representa el retardo acomodativo llamado "Lag" que es de carácter fisiológico producida por la profundidad del foco del ojo. Esta técnica no es aplicable con pacientes mayores de 40 años.

Esta técnica puede variar en 0,25 dpt, en pacientes muy jóvenes de 3 hasta 8 años, es frecuente observar que la retinoscopía estática nos da una hiper corrección negativa en tanto que la retinoscopía dinámica de Merchán nos da una corrección con un resultado más preciso (8).

2.2.2 Retinoscopía bajo cicloplejia

Propósito de la retinoscopía bajo cicloplejia

Medir el error refractivo del paciente en ausencia de la acomodación paralizando el músculo ciliar mediante el uso de ciclopléjico.

Indicaciones

Este test es particularmente útil en el caso de hipermetropías latentes, estrabismos acomodativos o espasmos de acomodación. Las refracciones con ciclopléjico se realizan...
normalmente para examinar niños; algunos autores recomiendan hacerlo en todos los niños menores de 3 años. El optómetro que utilice ciclopléjico debe ser consciente de las contraindicaciones y efectos secundarios que éste puede producir.

Normas de la retinoscopía bajo cicloplejia

- Si durante las técnicas refractivas comunes no se relaja la acomodación, se encontrará más positivo en el componente esférico con ciclopléjico.

- Normalmente el cilindro encontrado sin ciclopléjico durante la retinoscopía es inexacto debido al alto grado de actividad acomodativa que hay en muchos niños.

Complicaciones de la cicloplejia

Por ser los ciclopléjicos medicamentos alcaloides tienen un cierto grado de toxicidad, por lo que siempre que sea posible más en un niño de corta edad, tomar toda clase de precauciones para evitar una intoxicación, por su instilación.

Ventajas de la cicloplejia

- El uso de la cicloplejia nos permite llegar a un examen más objetivo por la ausencia de acomodación y parálisis del músculo ciliar lo que en muchas ocasiones es difícil obtenerla sea por la edad como en niños, los cuales acomodan rápidamente; en analfabetos, niños especiales y con retardo mental, etc.

- Permite realizar un examen más exhaustivo del fondo de ojo.

Desventajas de la cicloplejia

- En muchos casos la retinoscopía puede hacerse dificultosa por las aberraciones de la pupila dilatada.
• Impide distinguir con facilidad las sombras. Se requiere utilizar la zona central pupilar para obtener el movimiento de los reflejos para llegar a la determinación de la Rx.
• No es aconsejable dar la corrección total del valor dióptrico obtenido, porque es posible que el paciente no acepte esta corrección cuando su sistema óptico esté en condiciones normales.
• Los valores de refracción pueden variar entre 0.50 a 1.50 dpt en cada ojo que está relacionada con la acomodación residual (9).

2.2.3 Retinoscopías dinámicas (7)

Es la técnica relacionada con la visión próxima para determinar el estado refractivo del ojo por medio de la retinoscopía especialmente diseñado.

Existen varios tipos dentro de esta técnica como la de Bell, Tait, Cross y la de Merchán.

Tait

En esta se encuentra una zona neutral y no un punto neutro como sucede en la retinoscopía estática. Para esto se necesita de:

• Un retinoscopio especialmente diseñado para retinoscopía dinámica, que tenga puntos de fijación, tales como letras o figuras, en el mismo instrumento.
• El instrumento deberá colocarse a 40cm.
• Deberá comenzarse con suficiente poder positivo en ambos ojos para obtener movimientos contrarios con lentes de (+6.00 o +8.00).
• El paciente deberá fijar el instrumento con ambos ojos. Para examinar el ojo derecho del paciente el examinador se sitúa en el lado derecho y mira con el ojo derecho.
• Se comienza a reducir el poder positivo hasta encontrar el primer punto neutro en el ojo derecho. Para evitar en cualquier momento la diferencia de lentes entre los dos ojos, se deberá reducir el poder positivo del ojo izquierdo parcialmente con el objeto de facilitar la visión binocular del paciente, evitándose la diplopía.

• Realizar el mismo procedimiento en el ojo izquierdo. Hasta encontrar el primer punto neutro.

• Se revisa el primer punto neutro del ojo derecho.

• Se revisa el primer punto neutro del ojo izquierdo.

Según esta técnica no debe entrar se en esta zona de neutralidad, sino que se mantiene en el último contra movimiento que es a la vez el contra movimiento más rápido. Se registra el resultado dinámico bruto; seguidamente se hace una compensación más o menos arbitraria de 1.5 dpt para obtener el resultado dinámico neto aproximado. Se detiene en este momento para tomar la foria de lejos pero no la de cerca obteniendo la foria fisiológica. Se pasa seguidamente a la tabla de Tait que dirá, según la foria fisiológica el valor total de la compensación que se debe hacer; esto dará el dinámico neto.

Los resultados obtenidos por Tait son bastante buenos en algunos casos; en la mayoría de ellos se sigue obteniendo una hiperorrección positiva, que sigue desalentando al optómetro a usar la dinámica. Se puede ver a simple vista que los pacientes más necesitados de la dinámica de Tait, son aquellos en quienes ésta tiene menos valor. Estos pacientes brevemente son niños de no tan corta edad, pero con dificultad de mantener la fijación sobre un mismo punto, pacientes con dificultad en visión binocular; pacientes con visión monocular únicamente; pacientes con mentalidad retardada o pacientes de poca inteligencia. Quedan únicamente, pues, aquellos
pacientes a quienes les es mucho más fácil efectuar una técnica estática con mejores resultados y en forma sencilla.

Retinoscopia de Bell

El propósito es medir la magnitud lineal del lag acomodativo usado un punto de fijación móvil y un retinoscopio. Este procedimiento permite al optómetro observar directamente las respuestas características del paciente ante cambios en el estímulo de acomodación binoculares y como predicción de diferentes formas de terapia. Un retinoscopio; un punto de fijación para la retinoscopia de Bell (campana) la práctica actual sugiere el uso de una estera cromada reflectante o transparente clara donde el punto de fijación no es la esfera sino la imagen reflejada o transmitida; y una regla métrica permiten realizar la técnica precisa.

Debe existir una iluminación normal, el paciente lleva su corrección habitual o inducida de cerca. Se realiza bajo condiciones binoculares. El paciente apoya en su mejilla un extremo de la regla mientras el optómetro apoya el otro extremo sobre su hombro u oreja. El observador se ubica a 50 cm del paciente a la misma altura de sus ojos.

Procedimiento de la retinoscopia de Bell

- Colocar la esfera en la frente directamente encima del retinoscopio.
- Pedir al paciente que mire a la imagen de la esfera y que la mantenga nítida.
- Observar el reflejo inicial del ojo derecho con la franja vertical. Normalmente se observa movimiento directo indicando un lag de acomodación (es aconsejable girar la franja para determinar cualquier error astigmático).
- Continuar moviendo la esfera hacia el paciente hasta que el movimiento del reflejo cambie de "con" a "contra". En este momento mirar a la regla y apuntar mentalmente la distancia.
• Seguir moviendo la esfera unos centímetros más y luego volver hacia atrás.
• Observar el reflejo y anotar la distancia donde cambie de un movimiento "contra" a "con".
• Repetir los mismos pasos en el ojo izquierdo.
• Anotar la técnica, la distancia donde el movimiento del reflejo cambió en el OD y en el OI, si el reflejo era contra al principio de la prueba y la respuesta del paciente con las lentes de +0.50 dpt.
• La distancia normal de la retinoscopía de Bell para detectar un cambio del reflejo directo a contra es de 33 a 40 cm; y del movimiento contra a directo es de 35 a 43 cm.

Retinoscopía Mohindra

Su propósito es determinar el error refractivo de lejos usando la luz del retinoscopio como punto de fijación.

Indicaciones de la retinoscopía Mohindra

Se utiliza sobre todo en niños y bebés, aunque también se puede realizar en adultos.

Equipo de la retinoscopía Mohindra

• Retinoscopio.
• Regla de retinoscopía.

Preparación de la retinoscopía Mohindra

• El optómetro se sitúa a una distancia de 50 cm del paciente pudiendo usar el mismo ojo para examinar ambos ojos del paciente.
• La habitación debe estar completamente a oscuras.
• La intensidad del retinoscopio debe permitir observar el reflejo, pero sin molestar al paciente.

Procedimiento de la retinoscopía Mohindra
• Ocluir el ojo izquierdo para examinar el ojo derecho.

• Si se examina un niño pequeño, este tenderá a fijarse en la luz. Si esto no ocurre se puede provocar la atención del niño haciendo diferentes ruidos. Si se usa este método en un niño mayor o en un adulto, pedir al paciente que mire directamente a la luz.

• Buscar e identificar el meridiano principal.

• Determinar la potencia de cada meridiano con la regla esquiascópica.

• Calcular el resultado con cilindros negativos.

• Añadir una esfera de -1.25 al componente esférico. La resultante esfero-cilíndrica representa la corrección de lejos.

• Nota: la esfera de -1.25 representa una constante empírica definida.

• Ocluir el ojo derecho del paciente.

• Repetir los pasos del 2 al 6.

• Tomar la agudeza visual.

Anotación de la retinoscopia mohindra

• Especificar la técnica utilizada.

• Anotar la corrección y la AV (si se puede obtener del ojo derecho y del ojo izquierdo).

2.3 Autorefractómetro

El autorefractómetro es un dispositivo automatizado capaz de realizar una lectura muy aproximada de la queratometría corneal y la refracción. (10)
Su principio óptico se basa en emplear emisiones infrarrojas de 820 nm, el cual el 40% de la luz infrarroja que incide, se refleja alrededor de esa longitud de onda en la córnea, con el fin de no afectar el diámetro pupilar con emisiones luminosas visibles. (10)

Autorefractómetro Plusoptix A12C de Tecnoptix

El principio de medición se basa en la luz infrarroja excéntrico-foto retinoscopía que se proyecta a través de las pupilas en la retina. Dependiendo del error de refracción de la luz forma un patrón de brillo específico dentro de la pupila. La refracción esférica se calcula en base a esta media luna para determinar el patrón de cilindro y el eje de la misma medición, se repite en tres meridianos. (11)

Figura 2. Distancia a la que se utiliza el autorefractómetro Plusoptix A12C (11)
Parámetros del autorefractómetro

- Niños en etapa preverbal de 6 meses en adelante.
- Pacientes que no cooperen.
- Distancia de medición: un metro.
- Tiempo de adquisición de la toma de 0,8 segundos.
Ambos ojos se miden simultáneamente y también de manera monocular.

Las lecturas incluyen refracción completa, tamaños pupilares, distanza pupilar y los reflejos corneales. (11)

Rango de medición del autorefractómetro Plusoptix A12C de Tecnoptix (limitaciones del autorefractómetro) (12)

- Rango esférico: -7.0/+5.0 dpt en pasos de 0.25 dpt.
- Rango cilíndrico: -7.0/+5.0 dpt en pasos de 0.25 dpt.
- Tamaño de pupila: 4.0-8.0 mm en pasos de 0,1 mm.

2.4 Reproducibilidad de mediciones

De acuerdo con el Vocabulario Internacional de Metrología (VMI), la reproducibilidad de resultados de mediciones es: la proximidad de concordancia entre los resultados de mediciones sucesivas del mismo mensurando bajo condiciones de medición que cambian.

Dónde:

- Una declaración válida de reproducibilidad requiere que se especifique la condición que cambia.
- Las condiciones que cambian pueden incluir: principio de medición, método de medición, observador, instrumento de medición, patrón de referencia, lugar, condiciones de uso, tiempo.
- La reproducibilidad puede ser expresada cuantitativamente en términos de la dispersión característica de los resultados.
Se entiende que los resultados usualmente son resultados corregidos. Tradicionalmente en los estudios R&R se le conoce como la variabilidad entre las condiciones.

Figura 5. Reproducibilidad

Aplicación de los estudios de reproducibilidad

En metrología las aplicaciones de los estudios de repetibilidad y reproducibilidad encuentran aplicación en los procesos de evaluación, validación y análisis de las mediciones, estas aplicaciones son entre otras: q Evaluación de ensayos de aptitud, q Validación de métodos de calibración, q Análisis de comparaciones inter-laboratorio, q Evaluación de la incertidumbre de medición, q Evaluación de cartas de control, q Conocer la variabilidad de mediciones e instrumentos (GRR según MSA), q Evaluación de la deriva (estabilidad) de instrumentos.

Métodos para la determinación de reproducibilidad

Los métodos aceptables para la determinación de estudios de repetibilidad y reproducibilidad se basan en la evaluación estadística de las dispersiones de los resultados, ya sea en forma de rango estadístico (máximo - mínimo) o su representación como varianzas o desviaciones estándar, estos métodos son: Rango, Promedio y Rango, ANOVA (análisis de varianza).
Rango

Este método permite una rápida aproximación a la variabilidad de las mediciones, no descompone la variabilidad en repetibilidad y reproducibilidad, su aplicación típica es como el método rápido para verificar si la relación r&R no ha cambiado. MSA nos dice que es capaz de detectar sistemas de medición no aceptables el 80 % de las veces con una muestra de solo 5 mediciones y el 90 % de las veces con una muestra de apenas 10 mediciones.

Promedio y rango

Este método permite una estimación tanto de repetibilidad como reproducibilidad, sin embargo, no permite conocer su interacción, esta interacción entre la repetibilidad y la reproducibilidad o entre el instrumento y el operador puede conocerse en caso de que exista con el método de ANOVA.

ANOVA (análisis de varianza)

Las ventajas de la técnica de ANOVA comparada con el método de Promedio y Rango son:
Es posible manejar cualquier arreglo o estructura experimental, Es posible estimar las varianzas más exactamente, Se obtiene mayor información de los datos experimentales, Permite conocer la interacción entre la repetibilidad y la reproducibilidad. r&R ANOVA Reproducibilidad

Condición Las desventajas son que su computación numérica es más compleja, desventaja que sin embargo puede ser resuelta mediante el uso de herramientas de análisis de datos.

Técnicas para el análisis de estudios de repetibilidad y reproducibilidad

Una vez que se han determinado los valores de repetibilidad y reproducibilidad es útil llevar a cabo un análisis de los resultados mediante las siguientes técnicas:

Análisis gráfico
El análisis gráfico se puede realizar mediante el uso de diferentes formatos de cartas y gráficas de los datos y resultados como son: Carta de promedios, carta de rangos, carta de series (run), gráfica de dispersión (Scatter), carta Whiskers, carta de errores, histograma normalizado, gráfica X-Y de promedios y talla, comparación de gráficas X-Y. Una evaluación gráfica adicional, es posible mediante el cálculo de las llamadas estadísticas h y k de Mandel, las cuales se describen ampliamente en ISO 5725-2 y ASTM E 691. El valor de h representa la consistencia estadística entre condiciones, mientras que k representa la consistencia estadística interna a las condiciones.

Análisis numérico

El análisis numérico se realiza mediante el cálculo de las componentes individuales de repetibilidad y reproducibilidad.

La variabilidad interna (SW) para cada una de las p condiciones se estima como la desviación estándar de las n mediciones de cada condición.

La repetibilidad (r) se obtiene como resultado del promedio de las p varianzas que estiman la variabilidad interna de cada condición, esta variabilidad interna promedio (Sr) es conocida como el ruido presente en el experimento, \(r = \sqrt{[Sr^2]} = \sqrt{\Sigma SW^2 / p} \).

La reproducibilidad (R) o variabilidad entre las condiciones (SL) se obtiene mediante la diferencia de la varianza (Sm 2) de los p promedios menos la varianza representativa del ruido del experimento (Sr 2) entre la cantidad de mediciones n de cada condición. \(R = \sqrt{[SL^2]} = \sqrt{[Sm^2 - Sr^2 / n]} \).
Y, finalmente la combinación r&R se obtiene como la raíz cuadrada de la suma de varianzas de repetibilidad (variabilidad interna promedio) y reproducibilidad (variabilidad entre condiciones). $r&R = \sqrt{r^2 + R^2} = \sqrt{Sr^2 + SL^2}$.

El análisis numérico se complementa con la comparación del valor obtenido de la reproducibilidad r con respecto al de la repetibilidad R:

- Si la reproducibilidad está por abajo del 10% de la repetibilidad ($R < 0,1 \cdot r$), generalmente se considera que la reproducibilidad es aceptable, y existe compatibilidad entre las diferentes condiciones que fueron evaluadas.
- Si la reproducibilidad está entre el 10% y el 30% de la repetibilidad ($0,1 \cdot r < R < 0,3 \cdot r$), se considera que la reproducibilidad entre las diferentes condiciones puede ser aceptable en base a la importancia de la aplicación, costo del equipo de medición, costo del servicio de calibración o reparación, etc.
- Si la reproducibilidad está por arriba del 30% de la repetibilidad ($R > 0,3 \cdot r$), Se deberá mejorar el sistema de medición [personal, equipo, métodos, condiciones]. (14)

Coeficiente de correlación intraclase

El ICC se ha aceptado como el índice de concordancia para datos continuos. El objetivo es determinar el grado de concordancia de las observaciones por diferentes observadores e instrumentos. Si se evalúa el tamaño de los componentes de la varianza entre los grupos y dentro de éstos, el ICC describe la proporción de la variación total, la cual es explicada por las diferencias entre los observadores e instrumentos. La varianza total entre las mediciones se debe a tres diferentes fuentes: las diferencias entre los observadores e instrumentos, las diferencias entre los sujetos y los residuos que representan la variación no explicada. (14)
3 Método

El presente trabajo de grado se encuentra dentro del área de investigación cuidado primario de la salud visual y ocular desde el desarrollo de la optometría basada en evidencia. La línea de investigación utilizada fue la línea 1 evaluación de pruebas diagnósticas y ayudas pedagógicas, con la cual se evaluó la reproducibilidad del autorefractómetro pediátrico Plusoptix A12C de Tecnoptix como ayuda diagnóstica. Se aplicó el objetivo 3, el cual establece la validez y reproducibilidad de las pruebas diagnósticas aplicadas para la evaluación de la función visual y ocular, basándose en la reproducibilidad de la cual se obtuvieron datos confiables que permiten apoyarse en sus resultados, tomándolo como una impresión diagnóstica para establecer el estado refractivo del paciente. Se aplicó al logro 3, el cual fundamenta el uso y aplicación de pruebas clínicas para el diagnóstico y evolución de la función visual. Por consiguiente, se dio constancia sobre el autorefractómetro Plusoptix A12C de Tecnoptix como una herramienta útil para el tamizaje visual que facilita el examen en cuanto a rapidez y precisión aceptable en niños de 24 a 71 meses de edad.

El tipo de estudio fue cuantitativo, dado que se obtuvieron valores numéricos en las medidas de la retinoscopía monoculcar de Merchán y en el autorefractómetro, y la investigación se realizó a base de pruebas diagnósticas, en el que se compararon las mediciones obtenidas en dos oportunidades con el autorefractómetro pediátrico Plusoptix A12C con diferente examinador. Se desarrolló por medio del diseño longitudinal de pruebas diagnósticas debido a que se realizaron varias mediciones por paciente, sin que esto implique seguimiento. Fue una investigación en la cual se logró una medición que constó de dos tomas realizadas con el autorefractómetro
Plusoptix A12C de Tecnoptix, y una toma con la retinoscopía dinámica monocular de Merchán; sólo para verificar que los pacientes cumplieran con los criterios de selección.

La prueba diagnóstica se realizó en el mismo tiempo de evaluación de los participantes por lo cual no se tuvo ningún tipo de seguimiento durante la investigación.

3.1 Selección y descripción de los participantes

La población objeto de este trabajo fueron 160 niños y niñas de los Colegios Infantiles MAGIC KIDS y Colegio Cooperativo MIS PRIMEROS TRAZOS. Se obtuvo una muestra de 70 niños y niñas de 24 a 71 meses de edad de la población objeto de estudio.

Para el cálculo del tamaño de la muestra se utilizó la fórmula (15) y un nivel de exactitud [amplitud del intervalo] de 0.1.

\[
n = \left\lfloor \frac{Z_{1-\alpha/2}}{\left(0.5 \log \frac{1 + r}{1 - r} \right) - \left(0.5 \log \frac{1 + r - IC}{1 - 0.898 + 0.005}\right)} \right\rfloor^2 + 3 \equiv 70 \text{ participantes}
\]

El método de muestreo que se empleó fue no probabilístico por conveniencia, debido a que los niños pertenecientes en este estudio fueron niños de los dos colegios infantiles mencionados anteriormente.

Para poder seleccionar esta muestra se tuvieron en cuenta las siguientes características:

* **Criterios de selección**

Se incluyeron:

- Niños [as] de 24 a 71 meses.
- Niños [as] pertenecientes al Colegio Infantil Magic Kids y al Colegio Cooperativo Mis Primeros Trazos.
• Niños [as] que tuvieran firmado por sus padres el consentimiento informado.

Criterios de exclusión

Se excluyeron:

• Niños [as] con rangos esféricos mayores a -7/+5 dioptrías, porque es el rango establecido por el autorefractómetro.
• Niños [as] con rangos cilíndricos mayores a -7/+5 dioptrías, porque es el rango establecido por el autorefractómetro.
• Niños [as] con tamaño pupilar menor a 4.0 mm y mayor a 8.0 mm, porque es el rango establecido por el autorefractómetro.
• Niños [as] no colaboradores.

3.2 Estadística y tratamiento de datos

Para la reproducibilidad del autorefractómetro pediátrico plusoptix A12C de tecnoptix en niños de 24 a 71 meses de edad del Colegio Infantil Magic Kids y Colegio Cooperativo Mis primeros trazos se tuvieron en cuenta variables sociodemográficas [edad, género y lugar de procedencia] y variables clínicas la toma de la RDMM y las dos tomas con el autorefractómetro [esfera, cilindro y eje] [Ver tabla 1].

3.2.1 Plan de análisis

Para el análisis de los datos se realizó un análisis univariado, en el que se hizo una descripción de las variables según su nivel de medición [distribución de frecuencias para las variables cualitativas y medidas de tendencia central y dispersión para las cuantitativas, ver tabla 2] y para
las variables cuantitativas también se tuvo en cuenta la distribución de la misma y un análisis bivariado [ver tabla 3] donde se calculó el coeficiente de correlación intraclase\(^1\) para establecer la reproducibilidad del autorefractómetro pediátrico plusoptix A12C de tecnoptix.

Tabla 1. **Variables analizadas en el estudio**

<table>
<thead>
<tr>
<th>Variable</th>
<th>Referencia conceptual</th>
<th>Referencia operacional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edad</td>
<td>Tiempo que ha vivido una persona o ciertos animales o vegetales (15)</td>
<td>Meses cumplidos</td>
</tr>
<tr>
<td>Lugar de procedencia</td>
<td>Lugar geográfico donde la persona origina nace o deriva. (7)</td>
<td>Rural-urbano</td>
</tr>
<tr>
<td>Esfera</td>
<td>Valor que indica el grado de miopía o hipermetropía. (16)</td>
<td>Dioptrías</td>
</tr>
<tr>
<td>Cilindro</td>
<td>Valor que indica el grado de astigmatismo. (17)</td>
<td>Dioptrías</td>
</tr>
<tr>
<td>Eje</td>
<td>Valor que indica la orientación del astigmatismo en los ojos. (18)</td>
<td>Dioptrías</td>
</tr>
</tbody>
</table>

\(^1\) Proporción de la variabilidad total sobre la variabilidad entre personas. Incluye la diferencia promedio entre los dos métodos.
<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>CLASIFICACIÓN</th>
<th>ANÁLISIS UNIVARIADO</th>
<th>GRÁFICAS A USAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edad</td>
<td>Cuantitativa razón</td>
<td>Medidas de tendencia central (media, mediana, moda) medidas de dispersión (rango, mínimo valor, máximo valor, desviación estándar)-estadística descriptiva.</td>
<td>Histograma</td>
</tr>
<tr>
<td>Género</td>
<td>Cualitativa nominal dicotómica</td>
<td>Razones, proporciones y distribución de frecuencias-estadística descriptiva.</td>
<td>Diagrama sectorial</td>
</tr>
<tr>
<td>Lugar de procedencia</td>
<td>Cualitativa nominal politómica</td>
<td>Razones, proporciones y distribución de frecuencias-estadística descriptiva.</td>
<td>Diagrama sectorial</td>
</tr>
<tr>
<td>Esfera</td>
<td>Cuantitativa razón continua</td>
<td>Medidas de tendencia central (media, mediana, moda) medidas de dispersión (rango, mínimo valor, máximo valor, desviación estándar)-estadística descriptiva.</td>
<td>Histograma</td>
</tr>
<tr>
<td>Cilindro</td>
<td>Cuantitativa razón continua</td>
<td>Medidas de tendencia central (media, mediana, moda) medidas de dispersión (rango, mínimo valor, máximo valor, desviación estándar)-estadística descriptiva.</td>
<td>Histograma</td>
</tr>
<tr>
<td>Eje</td>
<td>Cuantitativa razón discreta</td>
<td>Medidas de tendencia central (media, mediana, moda) medidas de dispersión (rango, mínimo valor, máximo valor, desviación estándar)-estadística descriptiva.</td>
<td>Histograma</td>
</tr>
</tbody>
</table>

2 Se evaluó la distribución de las variables cuantitativas con la prueba de Shapiro Wilk.
Tabla 3. Plan de análisis bivariado

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>ANÁLISIS BIVARIADO</th>
<th>GRÁFICAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toma 1 – 2</td>
<td>Coeficiente de correlación intraclase</td>
<td>Diagrama de dispersión</td>
</tr>
<tr>
<td>Autorefractómetro</td>
<td>para esfera, cilindro, eje</td>
<td>Diagrama de cajitas</td>
</tr>
<tr>
<td>Edad – Genero</td>
<td>Chi-cuadrado</td>
<td>Diagrama de dispersión</td>
</tr>
<tr>
<td>Edad - Esfera</td>
<td>U de Mann Whitney</td>
<td>Diagrama de dispersión</td>
</tr>
<tr>
<td>Edad - Cilindro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edad - Defecto refractivo</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.2.2 Análisis crítico del protocolo

- Sesgo de información: La calibración del autorefractómetro fue una limitante para obtener los datos adecuados de los participantes; esto se controló con el software del autorefractómetro el cual realiza una auto-calibración.

- Sesgo de selección: No realización de muestreo aleatorio debido a que los rangos de medida establecidos por el autorefractómetro en estudio limitó la inclusión de los participantes.

- Sesgo de confusión: Influencia del estado refractivo de los examinadores en los datos obtenidos en las pruebas, lo cual se evitó teniendo una adecuada corrección óptica para cada uno de los examinadores.

- Sesgo de medición: posible descalibración de los instrumentos para realizar las pruebas, especialmente el autorefractómetro. Se evitó con un soporte técnico antes de iniciar las pruebas.

3.3 Información técnica

Para recolectar la información se tuvieron en cuenta 3 instrumentos, de los cuales el primero fue el formato de identificación de los participantes. [Apéndice A]
Para identificar a cada participante se asignó un código consecutivo y el formato se realizó por medio de la entrevista a los padres. El formato incluía la edad en meses cumplidos, el género, el lugar de procedencia y teléfono o celular del acudiente.

El segundo instrumento [Apéndice B] fue el formato de selección de los participantes, en donde los padres dieron el consentimiento informado para que el participante pudiera entrar en el estudio. Se tuvo en cuenta que el participante perteneciera al Colegio Infantil Magic Kids y al Colegio Cooperativo Mis Primeros Trazos, se anotaron los valores de esfera, cilindro y tamaño pupilar para saber si cumplían con los criterios de selección; y así mismo se tuvo en cuenta que el participante fuera colaborador. Comprendiendo por colaborador a un participante que después de explicarle el test realizará de forma adecuada las especificaciones del test, en este caso teniendo en cuenta la ayuda de los padres y la dinámica entre examinador-paciente. Se anotó en el formato el valor de la retinoscopía dinámica monocular de Merchán obtenido por un solo examinador, en este caso, la directora del proyecto sólo para verificar que los pacientes cumplieran con los criterios de selección.

El tercer instrumento [Apéndice C] fue el formato de resultados del autorefractómetro plusoptix A12C, en donde la información que se anotó fue la obtenida por el autorefractómetro plusoptix A12C. A diferencia del formato anterior, se tuvieron en cuenta dos examinadores que realizaron una toma cada uno.

3.3.1 Procedimiento de la investigación

Para la realización del trabajo se siguió el siguiente procedimiento.
Se realizó una prueba piloto con una muestra de 10 niños de las edades 2, 3, 4 y 5 años, pertenecientes a los colegios Magic Kids y Mis Primeros Trazos. En caso de que se presentaran cambios en la prueba piloto, se harían las modificaciones correspondientes al estudio.

Se informó a los padres o acudientes de los posibles participantes sobre el objetivo del estudio y en qué consistía.

Si el padre o el acudiente aceptaban participar se firmaba el consentimiento informado.

Se aplicó el formato de selección de los participantes, realizando la toma de la retinoscopia dinámica monocular de Merchán con un único examinador elegido por conveniencia; para determinar si la persona podía ingresar en el estudio.

De acuerdo con los resultados obtenidos, se aplicó el formato de identificación de los participantes seleccionados que fueron identificados con un código por motivos de confidencialidad.

Se realizó la primera toma con el autorefractómetro Plusoptix A12C, siendo el examinador elegido por conveniencia.

Al minuto siguiente, se realizó la segunda toma con el autorefractómetro Plusoptix A12C; siendo un examinador diferente al de la primera toma elegido por conveniencia.

Se analizaron los valores obtenidos en ambas tomas con el autorefractómetro Plusoptix A12C para determinar su reproducibilidad.
3.4 Implicaciones bioéticas

De acuerdo a los principios establecidos por el Consejo de Organizaciones Internacionales de las Ciencias Médicas propuesta desde 1982 y en la Resolución 8430 del 4 de octubre de 1993, que teniendo en cuenta las características de esta investigación la clasificó como investigación sin riesgo y en cumplimiento de los aspectos mencionados en el Artículo 6 de la misma resolución, este estudio se desarrolló conforme a los siguientes criterios basados en CIOMS las cuales son las pautas éticas internacionales para la investigación en seres humanos. (20)

- Justificación ética y validación científica de la investigación biomédica en seres humanos
- Comités de evaluación ética
- Consentimiento informado individual el cual contiene; información esencial para potenciales sujetos de investigación, las obligaciones de los investigadores, beneficios y riesgos de participar en un estudio, distribución equitativa de cargas y beneficios en la selección de grupos de sujetos en la investigación,
- Protección de la confidencialidad.

Para las normas que rigen la República de Colombia, se encuentra la Resolución 008430 de 1993. En la cual establece las normas científicas, técnicas y administrativas para la investigación en salud. El artículo 5 habla que toda investigación en la que el ser humano sea sujeto de estudio, deberá prevalecer el criterio del respeto a su dignidad y la protección de sus derechos y su bienestar.

En el artículo 11 de la presente resolución se clasifican las investigaciones en 4 categorías, de acuerdo a esas clasificaciones la investigación se encontró ubicada en el apartado Investigación Con Riesgo Mínimo, la cual define como estudios prospectivos que emplean el registro de datos
a través de procedimientos comunes consistentes en: exámenes físicos o sicológicos de diagnóstico o tratamientos rutinarios, entre los que se consideran: pesar al sujeto, electrocardiogramas, pruebas de agudeza auditiva, termografías, colección de excretas y secreciones externas, obtención de placenta durante el parto, recolección de líquido amniótico al romperse las membranas, obtención de saliva, dientes residuales y dientes permanentes extraídos por indicación terapéutica, placa dental y cálculos removidos por procedimientos profilácticos no invasores, corte de pelo y uñas sin causar desfiguración, extracción de sangre por punción venosa en adultos en buen estado de salud, con frecuencia máxima de dos veces a la semana y volumen máximo de 450 ml en dos meses excepto durante el embarazo, ejercicio moderado en voluntarios sanos, pruebas sicológicas a grupos o individuos en los que no se manipulará la conducta del sujeto, investigación con medicamentos de uso común, amplio margen terapéutico y registrados en este Ministerio o su autoridad delegada, empleando las indicaciones, dosis y vías de administración establecidas y que no sean los medicamentos que se definen en el artículo 55 de esta resolución (21).

La investigación no se realizó en animales o en laboratorios, ya que fue una investigación sin intervención. El conocimiento que se produjo no se pudo obtener por medio de hechos científicos, pero dicha investigación contiene componentes cuantitativos necesarios para la valoración al final del proceso.

- **Justicia:** Todos los participantes fueron tratados de la misma manera con las mismas oportunidades.
- **No maleficencia:** No se causó ningún daño con los procedimientos y se procuró el mayor bien posible.
• **Autonomía:** Como parte de la autonomía se aplicó un consentimiento informado y se informó a los padres todo lo relacionado con el estudio. Los padres de los participantes tuvieron libertad de escoger participar o no en el estudio. Si el participante no colaboraba en los procedimientos no se obligaba a participar.

• **Beneficiencia:** Se buscó beneficiar a todos los participantes reduciendo al máximo todos los riesgos.

Para poder iniciar con la investigación y tal como lo dispone la Resolución 8430 de 1993 fue necesario contar con el consentimiento informado y por escrito, adicionalmente del representante legal si se trataba de un menor de edad, del Colegio Infantil Magic Kids y Colegio Cooperativo Mis primeros trazos, la aprobación del proyecto por parte del Comité de trabajos de grado de la Facultad de Optometría de la Universidad Santo Tomás y del Comité de Ética en Investigación del Colegio Infantil Magic Kids y Colegio Cooperativo Mis primeros trazos.

El consentimiento informado fue hecho en duplicado, una de las copias se anexó al archivo de la investigación y la otra fue entregada al participante. Se entregó un consentimiento informado [Ver apéndice C].

4 Resultados

Métodos en procedimiento.

Para determinar la reproducibilidad interobervador del autorefractómetro plusoptix A12C, se realizó inicialmente una prueba piloto en la cual se incluyeron 10 niños entre las edades de 2 y 5 años. En base a esto, no se presentaron modificaciones en cuanto al procedimiento, los formatos
de selección y recolección de la información. Posterior a la prueba piloto, se procedió a seleccionar y recolectar la información de los participantes tal como se muestra en la figura 6.

![Flujograma de participantes](image)

Figura 6. Flujograma de participantes.

A continuación se presentan los hallazgos relacionados con la descripción de los participantes. Seguidamente, se describen los resultados en función de los objetivos propuestos.

Se obtuvo como muestra final 69 participantes (138 ojos) entre los 24 y 67 meses de edad, con una mediana de la edad de 42 meses, de los cuales el 51% pertenecían al género femenino. La distribución de las variables cuantitativas se evaluó con la prueba de Shapiro Wilk.
Presentaron distribución normal la esfera del OI en la toma 2, la diferencia de esfera y cilindro de OD, OI y ODI con p> 0.05 tal como se puede apreciar en la tabla 4. Para las variables con distribución normal, en la tabla se presenta como medida de tendencia central el promedio y de dispersión la desviación estándar, mientras que para las variables con distribución no normal se presenta la mediana y el rango intercuartílico.

Tabla 4.a. Análisis de variables cuantitativas.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Medida de tendencia central</th>
<th>Medida de dispersión</th>
<th>P prueba Swilk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edad- meses</td>
<td>69</td>
<td>42</td>
<td>(37 a 57)</td>
<td></td>
</tr>
<tr>
<td>Esfera ojo derecho toma 1</td>
<td>69</td>
<td>+0,75</td>
<td>(0,50 a 1,00)</td>
<td>0.00523</td>
</tr>
<tr>
<td>Cilindro ojo derecho toma 1</td>
<td>66</td>
<td>-0,50</td>
<td>(-0,75 a -0,50)</td>
<td>0.00000</td>
</tr>
<tr>
<td>Eje ojo derecho toma 1</td>
<td>66</td>
<td>24</td>
<td>(14 a 63)</td>
<td>0.00000</td>
</tr>
<tr>
<td>Esfera ojo izquierdo toma 1</td>
<td>69</td>
<td>+0,75*</td>
<td>0,86</td>
<td>0.06177</td>
</tr>
<tr>
<td>Cilindro ojo izquierdo toma 1</td>
<td>62</td>
<td>-0,75</td>
<td>(-1,00 a -0,50)</td>
<td>0.00000</td>
</tr>
<tr>
<td>Eje ojo izquierdo toma 1</td>
<td>62</td>
<td>152</td>
<td>(103 a 158)</td>
<td>0.00000</td>
</tr>
<tr>
<td>Esfera ojo derecho toma 2</td>
<td>69</td>
<td>+0,75</td>
<td>(0,71 a 1,00)</td>
<td>0.00660</td>
</tr>
<tr>
<td>Cilindro ojo derecho toma 2</td>
<td>68</td>
<td>-0,50</td>
<td>(-0,75 a -0,25)</td>
<td>0.00000</td>
</tr>
<tr>
<td>Eje ojo derecho toma 2</td>
<td>68</td>
<td>41</td>
<td>(22 a 89)</td>
<td>0.00000</td>
</tr>
<tr>
<td>Esfera ojo izquierdo toma 2</td>
<td>69</td>
<td>+0,90*</td>
<td>0,77</td>
<td>0.19113</td>
</tr>
<tr>
<td>Cilindro ojo izquierdo toma 2</td>
<td>66</td>
<td>-0,75</td>
<td>(-0,75 a -0,50)</td>
<td>0.00000</td>
</tr>
<tr>
<td>Eje ojo izquierdo toma 2</td>
<td>66</td>
<td>146</td>
<td>(94 a 162)</td>
<td>0.00000</td>
</tr>
<tr>
<td>Diferencia de esferas OD</td>
<td>138</td>
<td>-0,05*</td>
<td>0,36</td>
<td>0.88383</td>
</tr>
<tr>
<td>Diferencia de astigmatismos OD</td>
<td>134</td>
<td>-0,11*</td>
<td>0,24</td>
<td>0.09184</td>
</tr>
<tr>
<td>Diferencia de ejes OD</td>
<td>134</td>
<td>-1</td>
<td>(-3,00 a 0,00)</td>
<td>0.00000</td>
</tr>
<tr>
<td>Diferencia de esferas OI</td>
<td>138</td>
<td>0,01*</td>
<td>0,36</td>
<td>0.97216</td>
</tr>
<tr>
<td>Diferencia de astigmatismos OI</td>
<td>128</td>
<td>0,02*</td>
<td>0,2</td>
<td>0.09213</td>
</tr>
</tbody>
</table>
Tabla 4.b. Análisis de variables cuantitativas.

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Media</th>
<th>Rango</th>
<th>P-valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diferencia de ejes OI</td>
<td>128</td>
<td>0</td>
<td>(-2,00 a 0,13)</td>
<td>0.00000</td>
</tr>
<tr>
<td>Esfera toma 1</td>
<td>138</td>
<td>+0,75</td>
<td>(0,50 a 1,00)</td>
<td>0.00023</td>
</tr>
<tr>
<td>Cilindro toma 1</td>
<td>128</td>
<td>-0,62</td>
<td>(-0,75 a -0,50)</td>
<td>0.00000</td>
</tr>
<tr>
<td>Eje toma 1</td>
<td>128</td>
<td>88</td>
<td>(36 a 124)</td>
<td>0.00000</td>
</tr>
<tr>
<td>Esfera toma 2</td>
<td>138</td>
<td>+0,75</td>
<td>(0,75 a 1,00)</td>
<td>0.00146</td>
</tr>
<tr>
<td>Cilindro toma 2</td>
<td>134</td>
<td>-0,50</td>
<td>(-0,75 a -0,50)</td>
<td>0.00000</td>
</tr>
<tr>
<td>Eje toma 2</td>
<td>134</td>
<td>92</td>
<td>(70 a 143)</td>
<td>0.00000</td>
</tr>
<tr>
<td>Diferencia de esferas ODI</td>
<td>138</td>
<td>-0,02*</td>
<td>0,36</td>
<td>0.85698</td>
</tr>
<tr>
<td>Diferencia de astigmatismos ODI</td>
<td>138</td>
<td>0,00*</td>
<td>0,21</td>
<td>0.16277</td>
</tr>
<tr>
<td>Diferencia de ejes ODI</td>
<td>138</td>
<td>-1</td>
<td>(-2,00 a 0,00)</td>
<td>0.00000</td>
</tr>
</tbody>
</table>

*Promedio y desviación estándar.

El 1, 44% de los OD fue emétrepe mientras que para OI fueron el 2,89%. El promedio de la esfera tanto de OD como OI en la toma 1 y en la toma 2 de OD fue de +0,75, mientras que la de la toma 2 de OI fue de +0,90 (Ver tabla 1). El 95,65% de los OD y el 89,98% de los OI presentaron astigmatismo en la toma 4. En OD el 71,01% correspondió a astigmatismos hipermetrópicos, el 7,24% a astigmatismos miópicos y el 17,37% a astigmatismos mixtos. En OI el 44,92% correspondió a astigmatismos hipermetrópicos, el 4,34% a astigmatismos miópicos y el 18,84% a astigmatismos mixtos. Los valores de los cilindros de la refracción se pueden observar en la tabla 1.

En relación al eje del astigmatismo, se encontró que en la primera toma el 93% de los participantes tenían astigmatismo, mientras que en la segunda toma el 97% lo presentaban. Para describirlo se categorizó el tipo de acuerdo a su clasificación (WR para astigmatismos entre 0º a 30º y 150º a 180º, oblicuo en astigmatismos de 30,1º a 119,9º y AR para astigmatismos entre 60º
y 120°). El tipo de astigmatismo más frecuente fue con la regla (WR) con un 77% para la primera toma y un 75% para la segunda toma (Ver tabla 5).

Tabla 5. Distribución del astigmatismo.

<table>
<thead>
<tr>
<th>Tipo de astigmatismo</th>
<th>Toma 1 Absoluta</th>
<th>Toma 1 Relativa (%)</th>
<th>Toma 2 Absoluta</th>
<th>Toma 2 Relativa (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WR</td>
<td>98</td>
<td>77</td>
<td>100</td>
<td>75</td>
</tr>
<tr>
<td>Oblicuo</td>
<td>15</td>
<td>12</td>
<td>18</td>
<td>13</td>
</tr>
<tr>
<td>AR</td>
<td>15</td>
<td>12</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>128</td>
<td>100</td>
<td>134</td>
<td>100</td>
</tr>
</tbody>
</table>

La mediana de la esfera para ambas tomas fue de +0,75 dpt, con un valor mínimo de -2,00 dpt y un máximo de +3,25 dpt para la toma 1, y un mínimo de -1,75 dpt y máximo de +3,00 dpt para la toma 2 (Ver figura 7).

Figura 7. Descripción de las esferas de la refracción con el autorefractómetro en las dos tomas.

La mediana del cilindro para la toma 1 fue de -0,62 dpt y para la toma 2 de -0,50 dpt con un valor mínimo de -3,00 dpt y un máximo de -0,25 dpt para ambas tomas (Ver figura 8).
Figura 8. Descripción del cilindro de la refracción con el autorefractómetro en las dos tomas.

La mediana del eje para la toma 1 fue de 88° y para la toma 2 de 92°, con un valor mínimo de 0° y máximo de 180° para ambas tomas (Ver figura 9).

Figura 9. Descripción del eje de la refracción con el autorefractómetro en las dos tomas.
El promedio de la diferencia en las esferas de la medida de la refracción con autorefractómetro, es de -0,02 dpt con una desviación estándar de 0,36. El promedio de la diferencia de astigmatismos es de 0,00 dpt con una desviación estándar de 0,21 dpt (Ver figura 10).

![Gráfico de dispersión]

Figura 10. Descripción de la diferencia en esferas y astigmatismo de la refracción con autorefractómetro en las dos tomas.

La prueba chi cuadrado, se utilizó para analizar la relación entre el defecto refractivo de cada ojo y el género. En cuanto al ojo derecho e izquierdo, se concluyó a partir del valor de p (0,418) y (0,264) respectivamente, que el resultado no es estadísticamente significativo; es decir, se rechaza la hipótesis nula de que el defecto refractivo de cada ojo es independiente del sexo. Por lo tanto, se concluye que ambas variables estudiadas son independientes y no existe una relación entre ellas.

Para analizar la relación de la esfera y el cilindro de cada ojo con el género, se utilizó la prueba de U-Mann Whitney (Ver figura 11).
Con el valor de p (0.3995) para la esfera y cilindro (0.0919) de ambos ojos, se rechaza la hipótesis nula que la mediana de la esfera y el cilindro no es igual para hombres y mujeres. (Ver tabla 6).

Tabla 6. Prueba de U-Mann Whitney

<table>
<thead>
<tr>
<th>Variable</th>
<th>Calificación escala (%)</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><50</td>
<td>50 – 100</td>
</tr>
<tr>
<td></td>
<td>n= 41</td>
<td>n= 165</td>
</tr>
<tr>
<td></td>
<td>(19.9%)</td>
<td>(80.1%)</td>
</tr>
<tr>
<td>Sexo</td>
<td>Mujer</td>
<td>60.9</td>
</tr>
<tr>
<td></td>
<td>Hombre</td>
<td>39</td>
</tr>
<tr>
<td>Edad</td>
<td>40 – 49</td>
<td>19.5</td>
</tr>
<tr>
<td></td>
<td>50 – 59</td>
<td>34.2</td>
</tr>
<tr>
<td></td>
<td>60 – 70</td>
<td>46.3</td>
</tr>
</tbody>
</table>
Tabla 7. *CCI toma 1 y toma 2 del autorefractómetro.*

<table>
<thead>
<tr>
<th></th>
<th>CCI</th>
<th>IC 95%</th>
<th>Prob > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esfera</td>
<td>0.83162</td>
<td>0.68824-0.97500</td>
<td>0.0000</td>
</tr>
<tr>
<td>Cilindro</td>
<td>0.90178</td>
<td>0.79057-1.01298</td>
<td>0.0000</td>
</tr>
<tr>
<td>Eje</td>
<td>0.99409</td>
<td>0.99079-0.99738</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

En la figura 12 se muestra la correlación del defecto refractivo de la toma 1 y la toma 2 obtenido con el autorefractómetro. Según la escala propuesta por Landis y Koch (22), se obtuvo un grado de acuerdo casi perfecto para los valores de esfera, cilindro y eje.

![CCI toma 1 y toma 2 del autorefractómetro](image)

Figura 12. Correlación de las dos tomas con el autorefractómetro.

En la tabla 8 y 9, se revelan los resultados del CCI del defecto refractivo teniendo en cuenta el género. Dichos datos de CCI son estadísticamente significativos tanto para mujeres como para hombres.
5. Discusión

Generalmente, los autorefractómetros se utilizan en la consulta de optometría para estimar el valor de la refracción. Los principales atributos de su uso en niños deben ser la precisión y eficiencia para la estimación del defecto refractivo. El autorefractómetro Plusoptix A12C es portátil y está diseñado para proporcionar una estimación rápida del error de refracción. Dentro de sus principales características, se podría señalar que el dispositivo es amigable con los niños debido a su diseño y al sonido que transmite cuando realiza cada medición; esta característica llama la atención del niño y ayuda a que siempre fije su mirada en el dispositivo; de ésta manera se generan datos más confiables. Adicional a esto, un solo examinador puede utilizarlo.
fácilmente, además de requerir muy poco entrenamiento y práctica para ser utilizado de manera efectiva.

En general, nuestros participantes presentaron una correlación casi perfecta para la esfera, cilindro y eje (CCI >0,8) entre las dos mediciones de la refracción realizadas con el Plusoptix A12C. La alta reproducibilidad del cilindro y el eje, tanto para hombres como mujeres, es importante debido a que éstos generan mayor ambliopización en los niños. Por una parte, en las mujeres la esfera demostró un CCI ligeramente menor (substancial 0,6). Aunque en los hombres el CCI de la esfera fue casi perfecto (0,86), continuó demostrando el valor más bajo con respecto al cilindro y el eje; esto lo relaciona con el mismo hallazgo en la esfera de las mujeres. Este resultado se podría justificar por el componente acomodativo que aún está activo a 1 metro (1 dpt de acomodación aproximadamente). Necesariamente, las tomas fueron realizadas a dicha distancia por las especificaciones que exige el diseño del equipo. Las razones por las cuales la distancia de medición es 1 metro son: los datos de diámetro pupilar y distancia interpupilar son más fáciles de calcular, garantiza que el niño no sienta invadido su espacio de confort y se evita que la resolución de la cámara empiece a ser insuficiente. También, se ha afirmado que la acomodación tiene un efecto prominente en la refracción y afecta valores esféricos equivalentes de los niños en edad escolar (23) (mayores de 6 años); a partir de ello se puede esperar que en nuestros participantes al tener menor edad, el componente acomodativo esté presente en mayor medida y así haya un mayor efecto en la esfera.

Análogo a lo anterior, en estudios similares como el de Peterseim M et al. en el cual determinaron el CCI del defecto refractivo bajo cicloplejia con el Plusoptix A09 y Spot en pacientes de 1 a 16 años; encontraron que los autorefractómetros subestimaron la hipermetropía
o sobreestimaron la miopía con respecto a la retinoscopía bajo cicloplejia, concluyendo que aunque estos están diseñados para ser utilizados sin cicloplejia; la acomodación todavía puede ser variable y puede haber jugado un papel en la subestimación de la hipermetropía, lo que soporta el menor CCI de la esfera para ambos géneros, encontrado en el estudio actual. En cuanto al coeficiente de correlación intraclase determinado en este estudio, comparando el autorefractómetro Spot vs Plusoptix A09 para la esfera y el cilindro fue de 0.826 y 0.767, respectivamente; estos difieren al CCI obtenido en nuestro estudio donde la esfera presenta un valor menor que el del cilindro (15). Debido a que el número de hombres y mujeres participantes fue similar, la reproducibilidad es generalizable para ambos géneros.

Adicional a esto, varios estudios sugieren que la fotorrefracción no ciclopléjica (la misma realizada en el presente estudio), tiene una exactitud y repetibilidad razonables en comparación con la retinoscopia ciclopléjica y la refracción subjetiva. Sin embargo, en un estudio (24) se demostró que la acomodación no puede ser completamente neutralizada y puede ser especialmente importante en los niños que tienen alta reserva acomodativa, como los participantes de nuestro estudio.

Como fortalezas de este estudio se pueden señalar que éste aumenta los estudios de reproducibilidad del autorefractómetro Plusoptix A12C, hecho que resulta importante debido a que diversos estudios previos han examinado la reproducibilidad de las mediciones del error refractivo con otras referencias de autorefractómetros Plusoptix, sin embargo, no se ha encontrado alguno con el Plusoptix A12C. Además, con esta investigación se proporciona la reproducibilidad del defecto refractivo en condiciones no ciclopléjicas y en niños muy pequeños, como se recomienda realizar en otros estudios (25).
Dentro de las limitaciones del estudio, se encuentra que la población es relativamente pequeña. Dado que se incluyeron niños de 24 a 67 meses de edad (2-5 años), los datos sobre la reproducibilidad de este instrumento no son generalizables para otros grupos de edad. No se empleó ciclopléjico al utilizar el autorefractómetro por los efectos secundarios que el fármaco puede ocasionar en niños en edades muy tempranas (26).

Nuestros hallazgos sugieren que las refracciones con el Plusoptix A12C son útiles como punto de partida para la evaluación posterior mediante alguna técnica de refracción manual por un optómetro determinando la corrección óptica precisa. De la misma manera, realiza cada medición de una forma más ágil, lo que es de gran ayuda para realizar el examen refractivo en niños, debido a la poca colaboración que estos presentan, tanto en la consulta optométrica como en tamizajes visuales. Debido a que se obtuvieron mediciones de la mayoría (95%) de los participantes en nuestro estudio y a que las características del autorefractómetro no son tan restrictivas, este instrumento puede ser útil en tamizajes visuales con gran cantidad de niños. Teniendo en cuenta estos aspectos, instrumentos como el Plusoptix A12C aumentarían la eficiencia y conveniencia de practicar la optometría pediátrica en consulta como en actividades de proyección social, en este caso, permitiendo al examinador identificar a los niños con defectos refractivos significativos y remitirlos para un examen de optometría integral.

6. Conclusiones y recomendaciones

- Teniendo en cuenta las características referidas en los criterios de selección del estudio, se puede señalar que el autorefractómetro pediátrico Plusoptix A12C proporciona un dato refractivo
confiable con un coeficiente de correlación intraclase substancial para esfera en mujeres, casi perfecto para cilindro y eje de las mujeres, y un coeficiente de correlación intraclase casi perfecto para esfera, cilindro y eje de hombres.

- El uso del autorefractómetro pediátrico Plusoptix A12C como herramienta base, no busca remplazar, la corrección óptica y análisis del optómetro.

- Los datos del presente estudio indican que la reproducibilidad del defecto refractivo (esferas entre -1,75 y +3,25 dpt; cilindros de -0,25 a -3,50 dpt y ejes de 0° a 180°) con el autorefractómetro pediátrico Plusoptix A12C es buena en niños y niñas entre los 24 y 67 meses de edad bajo condiciones no ciclopléjicas.

- A pesar del CCI ligeramente menor para la esfera del defecto refractivo, la alta reproducibilidad del cilindro y el eje para ambos géneros, es importante ya que éstos generan mayor ambliopización en los niños; lo que hace útil al Plusoptix A12C en estos casos.

- El Plusoptix A12C puede ser una herramienta útil para obtener mediciones iniciales confiables del error refractivo bajo condiciones no ciclopléjicas en la consulta de optometría como en tamizajes visuales, para su posterior evaluación integral.

- El Plusoptix A12C hace más ágil la consulta de optometría pediátrica y las actividades de proyección social, debido a que realiza las mediciones rápidamente y en la mayoría de niños.

- Antes del uso generalizado del Plusoptix A12C para la detección de errores refractivos, se recomienda realizar investigaciones adicionales en poblaciones más grandes con diferentes grupos de edad.
• También se recomienda evaluar la reproducibilidad y exactitud de este en condiciones ciclopléjicas, debido a la influencia de la acomodación residual en la esfera del defecto refractivo.

• Desarrollar la reproducibilidad de la retinoscopía dinámica monocular de merchán y la refacción bajo cicloplejía para compararla con el autorefractómetro pediátrico Plusoptix A12C.
Referencias bibliográficas

18. Ficha de elaboración para criterios éticos enviada por los docentes de seminario para la elaboración de un proyecto de grado.

24. Otálora LM. Martínez BC. Molina MN. Estudio comparativo entre la retinoscopia dinámica monocular y la retinoscopia bajo cicloplejía con tropicamida al 1% en niños de 2 a 5 años de la localidad de Engativá en la ciudad de Bogotá. Ciencias & Tecnología para la Salud Visual y Ocular.
Apéndices

Apéndice A. Formatos de recolección de la información

Modelo de formato de identificación de participantes

| Código del participante: ________________________________ |
| Edad (en meses cumplidos): ________________________________ |
| Género: ________________________________ |
| Lugar de procedencia (rural-urbana): ________________________________ |
| Celular del acudiente: ________________________________ |
FORMATO DE SELECCIÓN DE PARTICIPANTES

Código del participante: __________

Participante del Colegio Infantil Magic Kids y Colegio Cooperativo Mis Primeros Trazos: Sí ____
No ____

Participante con consentimiento informado de sus padres: Sí ____ No ____

Valor esférico de la retinoscopia dinámica monocular de Merchán del participante

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>OD: _____________</td>
<td>Cumple criterio Sí___ No___</td>
</tr>
<tr>
<td>OI: _____________</td>
<td>Cumple criterio Sí___ No___</td>
</tr>
</tbody>
</table>

Valor cilíndrico de la retinoscopia dinámica monocular de Merchán del participante

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>OD: _____________</td>
<td>Cumple criterio Sí___ No___</td>
</tr>
<tr>
<td>OI: _____________</td>
<td>Cumple criterio Sí___ No___</td>
</tr>
</tbody>
</table>

Tamaño pupilar del participante

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>OD: ____</td>
<td>Cumple criterio Sí___ No___</td>
</tr>
<tr>
<td>OI: ____</td>
<td>Cumple criterio Sí___ No___</td>
</tr>
</tbody>
</table>

Participante colaborador: Sí ____ No ____
Modelo de formato de resultados del autorefractómetro Plusoptix A12C

<table>
<thead>
<tr>
<th>Universidad Santo Tomás</th>
<th>FACULTAD DE OPTOMETRIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formato de resultados del autorefractómetro Plusoptix A12C</td>
<td></td>
</tr>
</tbody>
</table>

Código del participante: __________

Valores completos arrojados por el autorefractómetro Plusoptix A12C

Toma 1: ________________
Examinador: ____________

Toma 2: ________________
Examinador: ____________
Apéndice B. Formato de referencias de la muestra

<table>
<thead>
<tr>
<th>Nombre del artículo</th>
<th>Población</th>
<th>Sensibilidad</th>
<th>Especificidad</th>
<th>Falsos positivos</th>
<th>Falsos negativos</th>
<th>VPP</th>
<th>VPN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparación del autorefractómetro plusoptiX S04 y A09</td>
<td>113 niños, <1 a 11 años (edad media de 5 años)</td>
<td>92%</td>
<td>88%</td>
<td>11%</td>
<td>8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluación del autorefractómetro plusoptiX durante la examinación de niños con autismo</td>
<td>48 pacientes <1 a 15 años (edad media 6 años)</td>
<td>88%</td>
<td>87%</td>
<td>18%</td>
<td>12%</td>
<td>94%</td>
<td>78%</td>
</tr>
<tr>
<td>Comparación de fotorefracción sin cicloplejía, fotorefracción ciclopléjica y retinoscopía ciclopléjica en niños</td>
<td>196 ojos de 98 niños (50 hembras y 48 varones). Edad media de 28,8 ± 18.5mo (rango12-72mo)</td>
<td>Para la determinación de errores refractivos en niños, las medidas del plusoptix A09 dan resultados incorrectos después de la instilación de ciclopentolato. El poder cilíndrico medido por el PlusoptiX A09 con o sin cicloplejía es más alto. Sin embargo, las medidas no ciclopléjicas con el plusoptix A12C para el equivalente esférico y el poder esférico fueron similares a las medidas de la refracción ciclopléjicas en preescolares y niños no verbales.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photoscreeners in the Pediatric Eye Office: Compared Testability and Refractions on High-Risk Children</td>
<td>265 niños (edad media 6,0 ± 3,4 años)</td>
<td>El coeficiente de correlación intraclass para equivalentes esféricos indicó excelente acuerdo entre retinoscopía</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comparación</td>
<td>Cantidad y Datos</td>
<td>précisión</td>
<td>Sensibilidad</td>
<td>Especificidad</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------</td>
<td>-----------</td>
<td>--------------</td>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flip chart Visual Acuity Screening for Amblyopia Risk Factors Compared to the PlusoptiX A12C Photoscreener, Tests Performed by a Lay Screener.</td>
<td>71 niños de 3 a 10 años</td>
<td>94%</td>
<td>89%</td>
<td>11%</td>
<td>6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comparación del autorefractor SureSight y autorefractómetro PlusoptiX A09 para examen visual en Honduras rural</td>
<td>216 niños <1 a 17 años, edad media de 9 años.</td>
<td>89%</td>
<td>80%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comparación del autorefractor SureSight y el autorefractómetro plusoptiX para examen visual pediátrico</td>
<td>90 niños, <1 a 17 años.</td>
<td>98%</td>
<td>88%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comparación del Plusoptix A09 y Retinomax K-Plus 3 con retinoscopia en niños.</td>
<td>200 ojos de 200 pacientes (94 mujeres, 106 varones) Edad media de 6,2 ± 2,8 años (rango: 4-12 años)</td>
<td>El Plusoptix A09 y Retinomax K-Plus 3 concuerdan bien con la retinoscopia ciclopléjico. Ambos dispositivos pueden ser utilizados para la selección de los niños de entre 4 y 12 años de edad. El Plusoptix A09 puede eliminar la necesidad de cicloplejía para la detección de errores de refracción.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Apéndice C. Consentimiento informado

Con base en los principios establecidos en la Resolución 8430 del 4 de octubre de 1993 por la cual se establecen las normas para la investigación en salud en Colombia, específicamente en el Artículo 15, en lo relacionado con el Consentimiento Informado, usted deberá conocer acerca de esta investigación y aceptar que su hijo [a] participe en ella si lo considera conveniente. Por favor lea con cuidado este documento y realice todas las preguntas que consideré necesarias para su total comprensión del mismo.

Se está realizando la investigación reproducibilidad del autorefractómetro pediátrico plusoptix A12C de Tecnoptix en niños de 24 a 71 meses de edad del Colegio Infantil Magic Kids y Colegio Cooperativo Mis Primeros Trazos la cual tiene como objetivo determinar la concordancia entre los dos resultados obtenidos con el autorefractómetro en los niños, que es un equipo computarizado que permite determinar la refracción del niño. En la primera etapa de la investigación se aplicará un formato para saber si su hijo [a] cumple con las características para ser seleccionado. Dentro de las razones para que su hijo [a] sea seleccionado están: tener una edad entre los 24 y 71 meses, ser estudiante del Colegio Infantil Magic Kids y Colegio Cooperativo Mis Primeros Trazos, estado refractivo dentro del rango del autorefractómetro y ser un participante colaborador en las pruebas realizadas, pero su participación es totalmente voluntaria.

Si su hijo [a] cumple con los criterios anteriormente mencionados en la segunda etapa se le realizará: primero; aplicar el formato de identificación de su hijo [a], al cual se le será asignado un código de identificación por motivos de confidencialidad, segundo; realizar la primera toma con el autorefractómetro en cada ojo y tercero; pasado un minuto realizar la segunda toma con el
autorefractómetro en cada ojo. Según el artículo 11 de la Resolución 8430 del 4 de octubre de 1993 este estudio se clasifica como investigación con riesgo mínimo ya que se realizarán procedimientos comunes en la práctica clínica optométrica sin ningún procedimiento invasivo o complicaciones.

Los beneficios que usted y su hijo [a] recibirán con este estudio es la utilización de este aparato como una herramienta base para el optómetra al momento de definir una corrección óptica más exacta y de manera más rápida.

Recuerde que usted puede preguntar y solicitar aclaración en cualquier momento durante el estudio, sobre los procedimientos que se le realicen, los riesgos, los beneficios y asuntos relacionados con la investigación.

Usted se encuentra en plena libertad de retirarse del estudio en cualquier momento, sin que por ello se afecte su atención y tratamiento por parte del optómetra o del Colegio Infantil Magic Kids y Colegio Cooperativo Mis Primeros Trazos.

Tenga la plena seguridad que en la publicación de los resultados se mantendrá el secreto profesional y la identidad de su hijo [a] no será revelada; para lo cual se utilizara información codificada a la cual solo tendrá acceso el investigador principal. La participación en esta investigación no tendrá ningún costo para usted.

Me comprometo a entregarle información actualizada que obtengamos en el estudio, en especial si esta puede afectar su voluntad de participar en el estudio.

Yo _________________________ hago constar que he leído y entendido el presente documento y que las dudas que surgieron con respecto a la participación de mi hijo [a] __________________________ fueron aclaradas. Acepto participar en la investigación
titulada Reproducibilidad del autorefractómetro pediátrico Plusoptix A12C de Tecnoptix en pacientes de 24 a 71 meses de edad del Colegio Infantil Magic Kids y Colegio Cooperativo Mis Primeros Trazos.

Nombre del acudiente del participante

Tipo y número de identificación

Firma del acudiente

Nombre del Testigo 1

Tipo y número de identificación
Dirección _____________________________
Teléfono ______________
Relación que guarda con el participante ______________________

Firma del testigo 1
Fecha de la firma del consentimiento informado ____________________

Nombre del Testigo 2

Tipo y número de identificación

Dirección ________________________

Teléfono _____________

Relación que guarda con el participante ______________________

Firma del testigo 2

Fecha de la firma del consentimiento informado __________________

___________________________ ________
Nombre Investigador Principal Firma

En caso de cualquier inquietud se puede comunicar con: Alejandra Calderón-3167468885, Yerli García-3183970588, Yury Muñoz-3012025917, Diana Navarro-3156161867.
Apéndice D. Carta a la institución del Colegio Infantil Magic Kids

Bucaramanga, 12 de agosto de 2015

Señora

Jazmín Omaira Portilla Niños
Rectora del Colegio Infantil MAGIC KIDS
Respetada Rectora.

Reciba un cordial saludo de la Facultad de Optometría de la Universidad Santo Tomas de Bucaramanga. Por medio de este comunicado le solicitamos amablemente nos autorice a MARÍA ALEJANDRA CALDERON VERA identificada con C.C. 1.095.941.744, DIANA CAROLINA NAVARRO CAICEDO identificada con C.C. 1.098.744.287, YURY PAOLA MUÑOZ CHAVEZ identificada con C.C. 1.098.698.166 y YERLI KATHERINE GARCIA HERNANDEZ identificada con C.C. 1.095.822.094, estudiantes de optometría de séptimo y octavo semestre realizar el test de REFRACCIÓN en sus instalaciones a los estudiantes que se encuentren entre 24 a 71 meses de edad. Con la finalidad de evaluar la REPRODUCIBILIDAD DEL AUTOREFRACTOMETRO PEDIATRICO PLUSOPTIX A12C DE TECHOPTIX EN PACIENTE DE 24 A 71 MESES DE EDAD EN EL COLEGIO INFANTIL MAGIC KIDS Y AL COLEGIO COOPERATIVO MIS PRIMEROS TRAZOS.
A la espera de su respuesta;

Cordialmente.

MARÍA ALEJANDRA CALDERON VERA
Estudiante octavo semestre Universidad Santo Tomas

DIANA CAROLINA NAVARRO CAICEDO
Estudiante séptimo semestre

YURY PAOLA MUÑOZ CHAVEZ
Estudiante séptimo semestre Universidad Santo Tomás

YERLI KATHERINE GARCIA HERNANDEZ
Estudiante octavo semestre Universidad Santo Tomás

CLARA INES BELTRAN CAMACHO
Directora trabajo de grado Universidad Santo Tomás

Contacto: Carrera 1 29-88 interior 4 balcones de la cumbre 2 barrio de la cumbre Floridablanca; Teléfono: 6581471 – 3183970588; Correo: katerine.garcia1294@hotmail.com
Apéndice E. Carta a la Institución Colegio Cooperativo Mis primeros trazos.

Bucaramanga, 12 de agosto de 2015

Señora

Jazmín Omaira Portilla Niños

Rectora del Colegio Cooperativo Mis primeros trazos

Respetada Rectora

Reciba un cordial saludo de la Facultad de Optometría de la Universidad Santo Tomás de Bucaramanga. Por medio de este comunicado le solicitamos amablemente nos autorice a MARÍA ALEJANDRA CALDERÓN VERA identificada con C.C. 1.095.941.744, DIANA CAROLINA NAVARRO CAICEDO identificada con C.C. 1.098.744.287, YURY PAOLA MUÑOZ CHAVEZ identificada con C.C. 1.098.698.166 y YERLI KATHERINE GARCIA HERNANDEZ identificada con C.C. 1.095.822.094, estudiantes de optometría de séptimo y octavo semestre realizar el test de REFRACCIÓN en sus instalaciones a los estudiantes que se encuentren entre 24 a 71 meses de edad. Con la finalidad de evaluar la REPRODUCIBILIDAD DEL AUTOREFRACTÓMETRO PEDIÁTRICO PLUSOPTIX A12C DE TECHOPTIX EN PACIENTE DE 24 A 71 MESES DE EDAD EN EL COLEGIO INFANTIL MAGIC KIDS Y AL COLEGIO COOPERATIVO MIS PRIMEROS TRAZOS.
A la espera de su respuesta;

Cordialmente.

MARÍA ALEJANDRA CALDERON VERA
Estudiante octavo semestre Universidad Santo Tomás

DIANA CAROLINA NAVARRO CAICEDO
Estudiante séptimo semestre Universidad Santo Tomás

YURY PAOLA MUÑOZ CHÁVEZ
Estudiante séptimo semestre Universidad Santo Tomás

YERLI KATHERINE GARCÍA HERNÁNDEZ
Estudiante octavo semestre Universidad Santo Tomás

CLARA INES BELTRAN CAMACHO
Directora Trabajo de grado Universidad Santo Tomás

Contacto: Carrera 1 29-88 interior 4 balcones de la cumbre 2 barrio de la cumbre Floridablaca; Teléfono: 6581471 – 3183970588; Correo: katerine.garcia1294@hotmail.com
Apéndice F. Carta para el préstamo del autorefractómetro Plusoptix A12C

Floridablanca, agosto 12 de 2015

Señor

Fernando Conde Tocancipá

Gerente General de Tecnoptix

Reciba un cordial saludo de la Facultad de Optometría de la Universidad Santo Tomás de Bucaramanga. Por medio de este comunicado le solicitamos amablemente nos autorice a

MARÍA ALEJANDRA CALDERON VERA identificada con C.C. 1.095.941.744, DIANA CAROLINA NAVARRO CAICEDO identificada con C.C. 1.098.744.287, YURY PAOLA MUÑOZ CHAVEZ identificada con C.C. 1.098.698.166 y YERLI KATHERINE GARCIA HERNANDEZ identificada con C.C. 1.095.822.094, estudiantes de optometría de séptimo (7) y octavo (8) semestre, el préstamo del equipo autorefractómetro pediátrico plusoptix A12C de Techoptix con la finalidad de realizar las pruebas previstas para la tesis

REPRODUCIBILIDAD DEL AUTOREFRACTÓMETRO PEDIÁTRICO PLUSOPTIX A12C DE TECNOPTIX EN PACIENTES DE 24 A 71 MESES DE EDAD COLEGIO INFANTIL MAGIC KIDS Y AL COLEGIO COOPERATIVO MIS PRIMEROS TRAZOS.

Atentas a su respuesta
Cordialmente.

MARÍA ALEJANDRA CALDERÓN VERA
Estudiante octavo semestre Universidad Santo Tomás

DIANA CAROLINA NAVARRO CAICEDO
Estudiante séptimo semestre Universidad Santo Tomás

YURY PAOLA MUÑOZ CHAVEZ
Estudiante séptimo semestre Universidad Santo Tomás

YERLI KATHERINE GARCÍA HERNÁNDEZ
Estudiante octavo semestre Universidad Santo Tomás

CLARA INES BELTRÁN CAMACHO
Directora Trabajo de grado Universidad Santo Tomás

Contacto: Carrera 1 29-88 interior 4 balcones de la cumbre 2 barrio de la cumbre Floridablanca; Teléfono: 6581471 – 3183970588; Correo: katerine.garcia1294@hotmail.com