Información Importante

La Universidad Santo Tomás, informa que el(los) autor(es) ha(n) autorizado a usuarios internos y externos de la institución a consultar el contenido de este documento a través del Catálogo en línea del CRAI-Biblioteca y el Repositorio Institucional en la página Web de la CRAI-Biblioteca, así como en las redes de información del país y del exterior con las cuales tenga convenio la Universidad.

Se permite la consulta a los usuarios interesados en el contenido de este documento, para todos los usos que tengan finalidad académica, nunca para usos comerciales, siempre y cuando mediante la correspondiente cita bibliográfica se le dé crédito al trabajo de grado y a su autor.

De conformidad con lo establecido en el Artículo 30 de la Ley 23 de 1982 y el artículo 11 de la Decisión Andina 351 de 1993, la Universidad Santo Tomás informa que “los derechos morales sobre documento son propiedad de los autores, los cuales son irrenunciables, imprescriptibles, inembargables e inalienables.”

Centro de Recursos para el Aprendizaje y la Investigación, CRAI-Biblioteca
Universidad Santo Tomás, Bucaramanga
Diseño de un modelo de sistema de costos ABC para la empresa COPROLAC QUESALAC S.A.S.

Erik Sanider Castillo Oviedo

Director
Ingeniero Juan Carlos Cadena Sarmiento

Universidad Santo Tomas
División de Ingenierías y Arquitectura
Facultad de Ingeniería Industrial
Bucaramanga, 2017
Tabla de contenido

Introducción ... 11

1 Diseño de un modelo de sistema de costos ABC para la empresa COPROLAC QUESALAC S.A.S ... 12

1.1 Definición del problema .. 12
 1.1.1 Descripción del problema ... 12
 1.1.2 Formulación del problema ... 13
1.2 Justificación ... 14
1.3 Objetivos .. 15
 1.3.1 Objetivo general ... 15
 1.3.2 Objetivo específico ... 15

2 Descripción de la empresa .. 16

2.1 Información general de la empresa ... 16
2.2 Misión ... 16
2.3 Visión .. 17
2.4 Organigrama .. 17
2.5 Mapa de planta de producción .. 18

3 Marco referencial .. 18

3.1 Marco teórico ... 18
 3.1.1 Sistemas de costos .. 18
3.2 Marco conceptual ... 24
 3.2.1 Costo .. 24
 3.2.2 Contabilidad de Costos .. 24
 3.2.3 Elementos del costo .. 25
 3.2.4 Actividad ... 27
 3.2.5 Recurso ... 28
 3.2.6 Objetos de costos .. 29
 3.2.7 Direccionador de costos ... 29
 3.2.8 Medidas de actividad (cost drivers) ... 29
 3.2.9 Cadena de valor .. 30
MODELO DE SISTEMA DE COSTOS ABC

3.2.10 Centros de costos ... 30
3.3 Marco legal y normativo .. 31
3.4 Marco histórico ... 32
3.5 Estado del arte ... 36
4 Metodología .. 42
 4.1 Fundamentos epistemológicos ... 42
 4.2 Diseño de la investigación .. 42
 4.2.1 Tipos de investigación .. 42
 4.2.2 Fases, etapas del proyecto ... 43
5 Desarrollo metodológico .. 44
 5.1 Descripción del proceso productivo por cada línea 44
 5.1.1 Línea proceso productivo de cuajada 44
 5.1.2 Línea proceso productivo de queso doble crema 46
 5.1.3 Línea proceso productivo de queso bajo en grasa 48
 5.1.4 Línea proceso productivo de queso costeño 50
 5.1.5 Línea proceso productivo de otros 50
 5.2 Diagrama de flujo por línea de producción 52
 5.2.1 Diagramas de flujo ... 52
 5.2.2 Diagramas de operaciones ... 53
 5.3 Diseño del modelo de sistema de costos 59
 5.3.1 Identificación de las actividades generadoras de valor .. 59
 5.3.2 Identificación de los centros de costos 59
 5.3.3 Agrupación de las actividades en centros de costos 61
 5.3.4 Identificación de los inductores de costos 63
 5.4 Asignación de costos al modelo .. 69
 5.5 Calcular el costo del producto por cada línea de producción... 70
6 Comparación de indicadores ... 71
7 Recomendaciones .. 76
8 Conclusiones .. 76
9 Bibliografía .. 78
Lista de tablas

Tabla 1. Resumen de actividades generadoras de valor en el proceso de producción bajo en grasa 60
Tabla 2. Centros de costos .. 61
Tabla 3. Resumen actividades en sus centros de costos para bajo en grasa .. 62
Tabla 4. Inductores de costos ... 63
Tabla 5. Formato toma de tiempos .. 64
Tabla 6. Formato de tiempos normalizados ... 64
Tabla 7. Distribución de costos mano de obra (muestra) ... 65
Tabla 8. Muestra de distribución de mantenimiento .. 66
Tabla 9. Muestra de distribución de depreciación ... 67
Tabla 10. Distribución arriendo planta producción .. 68
Tabla 11. Centro de recepción con sus inductores de costo ... 69
Tabla 12. Cálculo del costo del queso doble crema x 300g Coprolac ... 70
Tabla 13. Comparativo costo de producción línea doble crema ... 72
Tabla 14. Comparativo costo de producción línea bajo en grasa ... 73
Tabla 15. Valores de leche queso bajo en grasa x 2500g .. 73
Tabla 16. Comparativo costo de producción línea costeño ... 74
Tabla 17. Comparativo costo de producción línea otros .. 75
Lista de figuras

Figura 1. Organigrama Coprolac Quesalac S.A.S. Fuente: Coprolac Quesalac 17
Figura 2 Mapa planta de producción Coprolac Quesalac S.A.S. Fuente: Coprolac Quesalac s.a.s . 18
Figura 3 Diagrama de flujo línea de cuajada. Fuente: autor del proyecto 56
Figura 4 Diagrama de operaciones ref.: cuajada x 400g. Fuente: autor del proyecto............... 58
Lista de anexos

Anexo A. Diagramas de flujo.

Anexo B. Diagramas de operaciones.

Anexo C. Actividades generadoras de valor.

Anexo D. Centros de costos y actividades.

Anexo E. Estudio de tiempos.

Anexo F. Inductores de costo.

Anexo G. Asignación de costos por actividad.

Anexo H. Cálculo de costo por producto y línea de producción.
Resumen

Título: Diseño de un Modelo de Sistema de Costos ABC para la empresa Coprolac Quesalac S.A.S.

Autor: Erik Snaider Castillo Oviedo

Palabras Clave: Inductores de Costo, Actividades, Centros de Costo, Sistemas de Costeo, Rentabilidad.

Descripción:

En el presente documento se muestra el desarrollo de las actividades que dieron lugar a diseñar un modelo de sistema de costos ABC para la empresa Coprolac Quesalac, con el fin de tener un conocimiento más profundo de la naturaleza de sus costos de producción de cada una de sus líneas, que a la postre le permitan ajustar los precios de venta y así poder ser un poco más competitivos en el mercado.

Para dicho proyecto se inició identificando todo el proceso productivo de las diferentes líneas de producción, para así poder comprender cuales actividades generaban valor al producto, una vez identificadas las actividades se determinaron los centros de costos que englobaban a estas actividades, posteriormente se empezó a definir los diferentes inductores de costos los cuales se asignaron a sus respectivas actividades y a sus centros de costos. En la última parte del proyecto se comparó los resultados arrojados por la metodología del ABC con los costos que maneja la empresa actualmente, llevando a dar recomendaciones y conclusiones sobre el modelo propuesto frente a la situación actual de Coprolac Quesalac S.A.S.
Abstract

Title: Design of an Abc System Cost Model for the company Coprolac Quesalac S.A.S.²

Author: Erik Snaider Castillo Oviedo

Key Words: Cost Inductors, Activities, Cost Centers, Costing Systems, Profitability.

Description:

The present document shows the development of activities that have created a design for an ABC cost system model for the company Coprolac Quesalac, in order to have a deeper understanding of the nature of their production costs of each Its lines, which in the end allow you to adjust the sales prices and thus be able to be a little more competitive in the market.

For this project began identifying the entire production process of the different production lines, in order to be able to understand which activities generated value to the product, once identified the activities were determined the cost centers that encompassed these activities, subsequently began to define the Different cost drivers from which their respective activities and cost centers were assigned. The last part of the project compares the results of the ABC methodology with the costs that the company is currently carrying out, making recommendations and conclusions about the proposed model against the current situation of Coprolac Quesalac S.A.S.
Cumplimiento de objetivos

<table>
<thead>
<tr>
<th>OBJETIVO</th>
<th>CUMPLIMIENTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caracterizar las diferentes líneas de producción a través de diagramas de flujo y de operaciones.</td>
<td>Numeral 5.1 y 5.2</td>
</tr>
<tr>
<td></td>
<td>Anexo A</td>
</tr>
<tr>
<td></td>
<td>Anexo B</td>
</tr>
<tr>
<td>Identificar las actividades que agregan valor de cada línea de producción.</td>
<td>Numeral 5.3.1</td>
</tr>
<tr>
<td></td>
<td>Anexo C</td>
</tr>
<tr>
<td>Identificar los inductores de costo.</td>
<td>Numeral 5.3.4</td>
</tr>
<tr>
<td>Agrupar las actividades en centros de costos.</td>
<td>Numeral 5.3.3</td>
</tr>
<tr>
<td></td>
<td>Anexo D</td>
</tr>
<tr>
<td>Identificar los costos de mano de obra, materia prima y CIF de cada línea de producción.</td>
<td>Numeral 5.3.4</td>
</tr>
<tr>
<td></td>
<td>Anexo E</td>
</tr>
<tr>
<td></td>
<td>Anexo F</td>
</tr>
<tr>
<td>Asignar los costos a cada centro de costos.</td>
<td>Numeral 5.4</td>
</tr>
<tr>
<td></td>
<td>Anexo G</td>
</tr>
<tr>
<td>Calcular el costo del producto por cada línea de producción.</td>
<td>Numeral 5.5</td>
</tr>
<tr>
<td></td>
<td>Anexo H</td>
</tr>
</tbody>
</table>
Introducción

Actualmente en el mercado existe una competitividad muy grande en todos los aspectos de las empresas, generando así que estas innoven cada vez más, ya sea en los productos, servicios y/o procesos necesarios para el funcionamiento de las mismas.

Pero no solo la alta competitividad está afectando el sector de los lácteos, sino también el escaso de muchos insumos quienes generan precios altos en los mismos o en algunos casos la posibilidad de un bajo nivel de producción dentro de las empresas. Por lo tanto un buen manejo en los demás componentes que generan el costo del producto puede llevar a una empresa a diferenciarse de las demás.

Es así como un buen manejo de los costos puede llegar a ser una gran ventaja competitiva, pero para ello, el usar los métodos tradicionales de costeo puede no ser suficiente para un buen manejo de la información financiera y productiva, por lo cual se requiere el uso de una metodología que permita obtener de manera más precisa la información de los costos, permitiendo tener una visión de los puntos clave del proceso productivo llevando a la organización en una mejora continua de los procesos.

Para la empresa COPROLAC QUESALAC S.A.S el usar un modelo de sistema de costos ABC le permitiría tener un conocimiento más exacto de los costos de sus diferentes líneas de producción, llevándolos a crear estrategias de ventas que se ajusten a la realidad del mercado existente, bien sea manejando los diferentes precios de venta o sacándole mayor provecho a los productos más rentables.
1. Diseño de un modelo de sistema de costos ABC para la empresa COPROLAC QUESALAC S.A.S

1.1 Definición del problema

1.1.1 Descripción del problema.

COPROLAC QUESALAC SAS, es una empresa que produce y comercializa productos lácteos, dio su inicio hace 19 años en 1997 bajo la razón social QUESILLOS DEL PARAISO la cual estaba conformada por tres socios (3) entre ellos el señor Cesar Martínez Beltrán, actual dueño de COPROLAC QUESALAC SAS, para esa época procesaba aproximadamente 1400 litros de leche diario.

La sociedad QUESILLOS DEL PARAISO fue disuelta en el año 2013, quedando así como único dueño el señor Cesar Martínez Beltrán, procediendo a cambiar la razón social con el nombre comercial COPROLAC QUESALAC S.A.S, con el pasar de los años aumento la producción de productos lácteos de manera significativa y su mercado se incrementó proporcionando un cubrimiento a la costa Atlántica y los Santanderes, actualmente COPROLAC QUESALAC SAS,
cuenta con una planta moderna de producción con capacidad para procesar más de 10.000 litros diarios de leche con variedad de productos.

La empresa Coprolac Quesalac S.A.S. no cuenta con un sistema de cotos como tal, según el gerente la información que se obtiene de los costos no es real, se basó en experiencias vividas, en supuestos de los encargados que dejaron los diferentes costos de MOD, MP, y CIF de manera fija para cada línea de producción, esta fijación de costos se realizó ya varios años atrás.

Además en los últimos meses el precio de los insumos (leche) ha aumentado por la escasez que se presentó a causa del paro camionero vivido en todo el país.

Por lo anterior el gerente considera que algunas de las referencias que posee la empresa tienen costos desajustados, asignando precios en los productos que no son acordes a la realidad vivida, y no se tiene conocimiento real sobre la rentabilidad actual que generan estos productos.

Por tal razón el gerente considera pertinente la implementación de una metodología de costos capaz de asociar de manera veraz los costos a cada referencia de producto, permitiéndole aspirar a una mayor competitividad en precios y facilitando la toma de decisiones estratégicas.

1.1.2 Formulación del problema

¿Cuáles son los costos de producción, asociados a las actividades que agregan valor a los productos, de las diferentes líneas de la empresa COPROLAC QUESALAC S.A.S?
1.2 Justificación

Este proyecto se realiza con el fin de generar una herramienta importante de gestión que le permita a COPROLAC QUESALAC S.A.S. tener un conocimiento más profundo de la naturaleza de sus costos así como la confiabilidad de información que se puede obtener con la implementación de dicha metodología, mostrando la realidad de cada producto e identificando aquellos que no son rentables para la empresa. Teniendo en cuenta que esta es una mediana empresa con variedad de referencias, se hace muy viable la implementación de esta metodología.

También al realizar este proyecto se verán beneficiados los clientes de la compañía ya que se obtendrán los costos de cada producto permitiendo ajustar el precio de venta.

Por otro lado también me permitirá emplear los conocimientos adquiridos en la universidad en uno de los sistemas de costeo modernos, el cual no posee un gran auge en Latinoamérica, por consiguiente se consideraría innovador.
1.3 Objetivos

1.3.1 Objetivo general.

Diseñar un modelo de sistema de costos basado en actividades ABC que permita determinar los costos de producción que existen en cada una de las diferentes líneas de quesos y facilite la gestión estratégica en la empresa COPROLAC QUESALAC S.A.S.

1.3.2 Objetivo específico.

- Caracterizar las diferentes líneas de producción a través de diagramas de flujo y de operaciones.
- Identificar las actividades que agregan valor de cada línea de producción.
- Identificar los inductores de costo.
- Agrupar las actividades en centros de costos.
- Identificar los costos de mano de obra, materia prima y CIF de cada línea de producción.
- Asignar los costos a cada centro de costos.
- Calcular el costo del producto por cada línea de producción.
2 Descripción de la empresa

2.1 Información general de la empresa

Razón Social: COPROLAC QUESALAC S.A.S

NIT: 900.581.128

Ciudad: Bucaramanga Santander

Dirección: Calle 7 Nº 18 – 46 barrio comuneros

Teléfono: 6718305 – 6718271

Actividad económica: Elaboración y comercialización de productos derivados de la leche

No. Centro de trabajos: Tres (3), administración, ventas y producción

Correo: cesarmartinez_coprolac@hotmail.com

Representante legal: Cesar Martínez Beltrán

2.2 Misión

COPROLAC QUESALAC SAS, es una empresa que produce y comercializa productos lácteos de excelente calidad y de un alto valor nutricional, que satisface las necesidades de cada uno de nuestros consumidores, manteniendo un enfoque de excelencia en el servicio con responsabilidad con la comunidad y el medio ambiente.
Asegurando la confianza en los procesos de higiene y salud a todos nuestros clientes, socios y colaboradores.

2.3 Visión

COPROLAC QUESALAC SAS., para el año 2017 está proyectada para ser una empresa líder en el mercado de productos lácteos a nivel nacional y regional, manteniendo la excelencia en la calidad y el servicio a sus clientes, para ello implementando un cubrimiento en atención y distribución; en almacenes de cadena, supereter y línea institucional.

Logrando una rentabilidad sostenible para sus socios, comerciales y todo su equipo de colaboradores, permitiendo la satisfacción al consumidor final en aras de una mejora continua.

2.4 Organigrama

Figura 1. Organigrama Coprolac Quesalac S.A.S. Fuente: Coprolac Quesalac
2.5 Mapa de planta de producción

Figura 2.2 Mapa planta de producción Coprolac Quesalac S.A.S. Fuente: Coprolac Quesalac s.a.s

3 Marco referencial

3.1 Marco teórico

3.1.1 Sistemas de costos.

Los sistemas de costos son un conjunto de métodos, normas y procedimientos, que rigen la planificación, determinación y análisis del costo.
Algunos autores dicen que las características de producción en cada empresa son los factores que determinan el sistema de costos a utilizar, puesto que el sistema de costos va a depender del tipo de operación que se realiza, a continuación veremos los diferentes tipos de metodologías y sistemas de costos existentes (tradicionales y modernos) basados en las investigaciones realizadas sobre el tema.

Para Sinisterra los sistemas por órdenes de trabajo son aquellos en los que se acumulan los costos de la producción de acuerdo a las especificaciones del cliente. De manera que los costos que demanda cada orden de trabajo se van acumulando para cada trabajo, siendo el objeto de costos un grupo o lote de productos homogéneos o iguales, con las características que el cliente desea. Así mismo Torre Salina dice que el sistema de costos por órdenes resulta ser una herramienta útil para preparar la información financiera de negocios que trabajan con base en necesidades específicas.

Otro de los sistemas de costos existentes es el sistema de costeo por proceso en los cuales los costos de producción se acumulan en las distintas fases del proceso productivo, durante un lapso de tiempo. En cada fase se debe elaborar un informe de costos de producción, en el cual se reportan todos los costos incurridos durante un lapso de tiempo; los costos de producción serán traspasados de una fase a otra, junto con las unidades físicas del producto y el costo total de producción se halla al finalizar el proceso productivo -última fase-, por efecto acumulativo secuencial. [1]

El sistema de costo por proceso para Torre salinas a diferencia del sistema de costos por órdenes se caracteriza por:
• La acumulación de costos es departamental, independientemente del destino de sus unidades.
• En los sistemas de costos por proceso se lleva una subcuenta por cada departamento no por cada orden de trabajo.
• Cada departamento hace un control de costo unitario de las unidades producidas.

En la metodología de costeo variable se consideran y acumulan sólo los costos variables como parte de los costos de los productos elaborados, por cuanto los costos fijos sólo representan la capacidad para producir y vender independientemente de lo que se fabrique. Los autores que proponen el método afirman que los costos fijos de producción se relacionan con la capacidad instalada y ésta, a su vez, está en función dentro de un período determinado, pero jamás con el volumen de producción. El hecho de contar con una determinada capacidad instalada genera costos fijos que, independientemente del volumen que se produzca, permanecen constantes en un período determinado. De ahí que para costear bajo este método se incluyan únicamente los costos variables, los costos fijos de producción deben llevarse al período.

Mientras que en la metodología de costeo absorbente se consideran y acumulan todos los costos de producción, tanto costos fijos como costos variables, éstos son considerados como parte del valor de los productos elaborados, bajo la premisa de que todos los costos son necesarios para fabricar un producto. El argumento en que se basa dicha inclusión es que para llevar a cabo la actividad de producir se requiere de ambos ya que ambos tipos de costos contribuyeron para la producción por lo tanto, deben incluirse. [2]

Hasta aquí las metodologías y sistemas denominadas tradicionales, para Morillo Moreno estos métodos se tornan obsoletos cuando las empresas se proponen mejorar constantemente, en
cuanto a productividad, reducción de costos y fabricación de bienes y servicios más atractivos dado que los mismos se limitan a determinar correctamente el costo de los productos, para valorar inventarios, costear productos vendidos y calcular utilidades. Por ello se han desarrollado, en las últimas décadas, varios métodos de costeo, como el costeo basado en actividades, sistemas de costos de calidad, costeo por objetivos, costeo kaizen, y el costeo backflus, los cuales acumulan los costos de tal manera que facilitan la adopción de medidas o acciones encaminados a la mejora continua y a la reducción de costos. De igual forma Sosa flores dice que los métodos tradicionales se desarrollaron principalmente para cumplir la función de valoración de inventarios (para satisfacer las normas de "objetividad, verificabilidad y materialidad"), para incidencias externas tales como acreedores e inversionistas. Sin embargo, estos métodos tradicionales tienen muchos defectos, especialmente cuando se les utiliza con fines de gestión interna así que las actividades son ahora el centro del sistema contable y no los servicios. Estos pierden protagonismo como único objetivo de costo, es decir, el ABC emerge como un sistema de gestión integral.

Además Ramírez dice que los sistemas tradicionales facilitan una visión departamental de los costos de la empresa, dificultando las acciones de reducción de costos y normalmente apenas se utiliza un criterio de asignación de los costos indirectos a los centros de costos, el cual generalmente no es revisado con frecuencia, dándolos así como aspectos negativos del sistema.

Y para Sosa Flórez [3] el método ABC a diferencia de los métodos tradicionales, brinda ciertas ventajas específicas dado el tratamiento que le otorga a los costos indirectos en el momento en que se les asignan al producto, pues antes de llegar al producto final tendrán que ser analizadas las actividades que se llevan a cabo para lograr el output mientras en los métodos tradicionales los costos indirectos se vienen imputando a los productos mediante una base arbitraria.
MODELO DE SISTEMA DE COSTOS ABC

Por otra parte el costeo basado en actividades como solución a los problemas que plantean los métodos tradicionales, busca dar una correcta asignación de los costos indirectos de fabricación, optimización de procesos, orientación hacia la gerencia pretendiendo ser más competitivos en su entorno. [4]

Por lo cual esta metodología parte de la diferencia entre costos directos y costos indirectos, relacionando los últimos con las actividades que se realizan en la empresa. Las actividades se plantean de tal forma que los costos indirectos aparecen como directos a las actividades, desde donde se les traslada a los productos (objeto de costos), según la cantidad de actividades consumidas por cada objeto de costos. De esta manera, el costo final está conformado por los costos directos y por los costos asociados a ciertas actividades, consideradas como las que añaden valor a los productos. [5]

Este método permite la asignación y distribución de los diferentes costos indirectos de acuerdo con las actividades realizadas, contribuyendo en la toma de decisiones sobre líneas de servicio, segmentos de mercado y relaciones con los clientes.

Para Sosa Flórez este sistema incluye el análisis de los inductores de costos, el análisis de las actividades y las medidas de ejecución, apoya los esfuerzos de mejora continua y ofrece estrategias para el Benchmarking de la ejecución y la satisfacción de los clientes; además refuerza la importancia de la coordinación del trabajo entre procesos de negocio. Su principal aportación es el análisis exhaustivo al que se ven sometidos las actividades en función de las necesidades de los clientes.

Viéndolo desde las ventajas tenemos a varios autores que dan sus aportes como Río González quien nos dice que el método ABC puede crear una base informativa que facilite la
implantación de un proceso de gestión de calidad total, para superar los problemas que limitan los resultados actuales. Además Proporciona herramientas de valoración objetivas de imputación de costos ya que los recursos son consumidos por las actividades y estos a su vez son consumidos por los objetos de costos (resultados). Y así como incrementar la credibilidad y utilidad de la información de costos en el proceso de toma de decisiones gerenciales.

Otro de las ventajas es que los datos obtenidos por el sistema ABC pueden identificar los productos antieconómicos y los costos innecesarios, por lo que los recursos pueden ser utilizados de manera productiva. El método también ayuda a fijar los precios excesivos o incorrectos de los productos o servicios. [6]

Siguiendo esta idea también se tendría mayor visión sobre las actividades realizadas permitiéndole a la empresa: Concentrarse más en la gestión de las actividades, tal como mejorar la eficiencia de las actividades de alto costo e identificar y reducir las actividades que no proporcionan valor agregado. Esto según [7] y favorece el mejoramiento continuo, ya que resulta más fácil detectar el origen de las oportunidades.

Finalizando con las ventajas se podría afirmar que ABC es una metodología que nos permite conocer el flujo de las actividades realizadas en la organización que están consumiendo los recursos disponibles y por lo tanto incorporando o imputando costos a los procesos. [8]

Pero así como se plantean ventajas también se plantean algunos inconvenientes como el caso de Gutiérrez Ponce el cual dice que la selección de los inductores de costos puede ser un proceso difícil y complejo así como puede que se descarte lo adecuado de los sistemas tradicionales.
Otro de los autores que ve inconvenientes en el método es Sáez Torrecillo el cual dice que su implementación suele ser muy costosa, ya que todo el entramado de actividades y generadores de costos exige mayor información que otras metodologías.

Siguiendo esta línea otro de los inconvenientes del método de costos ABC sería que se necesitan de otras herramientas de gestión para garantizar la obtención de ventajas competitivas; por sí solo, no es capaz de determinar qué añade o no el valor, tampoco determinar por sí solo, si un cliente está satisfecho, si un proceso se adecua a los objetivos globales de la organización o si se es posible cumplir con las expectativas de los clientes. [3].

3.2 Marco conceptual

3.2.1 Costo.

Se considera costo el consumo de recursos (materias primas, mano de obra, costos indirectos, etc.) que se requieren para desarrollar actividades relacionadas con la producción de bienes o la prestación de servicios. El beneficio generado por el sacrificio de estos recursos se obtendrá una vez se venda o se entregue el producto final. [9]

3.2.2 Contabilidad de Costos.
Para [10] la contabilidad de costos en el sentido más general es aquel procedimiento contable diseñado para calcular lo que cuesta producir manufacturar algo, o lo que cuesta elaborar una unidad de producción disponible para la venta. Esta contabilidad permite clasificar, asignar, acumular los costos de las actividades procesos y productos que a través de un sistema nos permitirá tener información pertinente para la toma de decisiones y planeaciones administrativas.

Hablando específicamente, los fines de la contabilidad de costos planteados por Pastrana son:

- Determinar el costo de los inventarios de los productos fabricados para efectos de presentación del Balance general.
- Determinar el costo de los productos vendidos con el fin de calcular la utilidad o pérdida en el período y así poder presentar el estado de Ganancias y Perdidas.
- Servir de fuente de información de costos para estudios económicos y decisiones especiales, entre otras, inversiones de capital a largo plazo, tales como reposición de maquinarias, expansión de la planta de producción, fabricación de nuevos productos, fijación de precios para la ventas, etc.
- Dotar a la gerencia de una herramienta útil para la planeación y el control sistemático de los costos de producción.

3.2.3 **Elementos del costo.**

Se entiende como la suma de todos los cargos que incurren en la transformación del producto terminado, al manufacturar se encuentran involucrados en la obtención de los costos.
totales del producto tres componentes fundamentales como mano de obra, materias primas y costos indirectos.

- Materias primas:

 Representan los materiales que una vez sometidos a una transformación se convierten en productos terminados. La materia primase suele clasificar en directa e indirecta.

 La materia prima directa hace referencia a todos los materiales naturales o productos de otra industria que integran físicamente el producto terminado o que se pueden asociar fácilmente con él. [11], para ser considerada materia prima debe cumplir con tres características: es fácil de identificar en el producto, su valor es significativo y su uso es relevante en el proceso.

 Las materias primas que no se pueden cuantificar plenamente con los productos terminados se clasifican como materiales indirectos [12]. Es decir se utiliza en el proceso productivo pero su valor es muy pequeño en relación al producto.

 La materia prima es frecuentemente denominada almacén en muchas empresas y no debe confundirse con los suministros. [11]

- Mano de obra

 La mano de obra representa el esfuerzo del trabajo humano que se aplica en la elaboración del producto.

 A la contabilidad de costos compete medir en unidades monetarias el monto de las remuneraciones al personal y aplicarlas a los periodos contables en que convencionalmente se divide una entidad, es decir, con el periodo en que estas ocurren o se devengan, registrándose en
forma paralela al ingreso que las origino e independientemente a la fecha que se paguen. La mano de obra la podemos distinguir en sueldos y salarios [13].

Así como con la materia prima la mano de obra se divide en directa e indirecta. La primera es la que se emplea directamente, es el esfuerzo laboral que aplican los trabajadores físicamente relacionado con el proceso productivo ya sea por acción manual u operando alguna máquina, ya la parte de mano de obra que no se encuentra estrechamente relacionada con el proceso de conversión al producto terminado se denomina mano de obra indirecta aunque son absolutamente esenciales para el funcionamiento de la fabrica, no se pueden atribuir y cargar directamente a ninguna tarea, lote o proceso específico de producción, ya que generalmente el personal se emplea en labores de vigilancia, acondicionamiento, mantenimiento y supervisión. [13]

- Costos indirectos

Comprende aquellos costos de producción que no son ni materiales directos ni mano de obra directa, se clasifican en tres grupos básico: mano de obra indirecta, materia prima indirecta y otros CIF (depreciaciones, insumos, servicios, etc...)

3.2.4 Actividad.

Es el conjunto de actuaciones o tareas que tienen como objetivo agregar valor a un objeto. Se define como el conjunto de tareas que originan trabajo, según Brinsom 1996, tienen las siguientes características:

1. Son realizadas por un individuo o grupo de individuos.
2. Suponen o dan lugar a un saber o hacer específico.

3. Emplean una serie de recursos físicos o humanos.

4. Tienen carácter relativamente homogéneo desde el punto de vista de su comportamiento, costo y ejecución.

5. Permiten tener un resultado (producto).

6. Están dirigidas a satisfacer un cliente específico, tanto interno como externo.

3.2.5 Recurso.

Para García Colín 2009, los recursos son los elementos físicos tecnológicos y humanos consumidos en las actividades propias de la organización. Los recursos pueden ser cada uno de los costos y gastos consumidos en el periodo o una agrupación de los mismos de acuerdo con criterios razonables de agrupación.

Los recursos se asignan de la siguiente forma:

- **Directa:** son aquellos que no requieren la utilización de direccionadores para su asignación a los diferentes niveles que componen el modelo de costos.
- **Indirecta:** cuando para su asignación a los diferentes niveles de la estructura del modelo de costos, se requiere la utilización de direccionadores de costo.
3.2.6 **Objetos de costos.**

Es todo aquello frente a lo cual se desea medir asignar y acumular costos internamente o externamente en la empresa ya sea un producto, un servicio, una operación etc…

3.2.7 **Direccionador de costos.**

En la literatura de costos se le ha dado diferentes nombres a este concepto: inductor, conductor, base de asignación, base de distribución, direccionador o cost driver. Es un criterio de aplicación o distribución de costos el cual determina cómo se distribuyen los recursos de la entidad a las actividades y objetos de costo o las actividades y algunos recursos a los objetos de costo finales, la función principal de un direccionador es facilitar una distribución razonable y objetiva de los costos en todos los niveles de la organización. [9, 14]

3.2.8 **Medidas de actividad (cost drivers).**

Según Kaplan. Son medidas competitivas que sirven como conexión entre las actividades y sus gastos indirectos de fabricación respectivos y que pueden relacionar también con el producto terminado. Cada "medida de actividad" debe estar definida en unidades de actividad perfectamente identificables. Las medidas de actividad son conocidas como "COST DRIVERS", término cuya traducción en castellano aproximada sería la de "origen del costo" porque son precisamente los "cost drivers" los que causan que los gastos indirectos de fabricación varíen; es decir, mientras
más unidades de actividad del "cost driver" específico identificado para una actividad dada se consuman, entonces mayores serán los costos indirectos asociados con esa actividad.

3.2.9 Cadena de valor.

Porter [14] define el valor como la suma de los beneficios percibidos que el cliente recibe menos los costos percibidos por él al adquirir y usar un producto o servicio. La cadena de valor es esencialmente una forma de análisis de la actividad empresarial mediante la cual descomponemos una empresa en sus partes constitutivas, buscando identificar fuentes de ventaja competitiva en aquellas actividades generadoras de valor. Esa ventaja competitiva se logra cuando la empresa desarrolla e integra las actividades de su cadena de valor de forma menos costosa y mejor diferenciada que sus rivales. Por consiguiente la cadena de valor de una empresa está conformada por todas sus actividades generadoras de valor agregado y por los márgenes que éstas aportan. El análisis de la cadena de valor comienza con el reconocimiento de que cada empresa o unidad de negocios, es "una serie de actividades que se llevan a cabo para diseñar, producir, comercializar, entregar y apoyar su producto".

3.2.10 Centros de costos.

Se denomina como el conjunto de recursos humanos y tecnológicos que interactúan para la producción de un bien o la prestación de un servicio que permita satisfacer necesidades para ello se debe cumplir con 4 aspectos importantes:
1. Posee recurso físico o tecnológico que constituye el costo directo del centro de costos.
2. Produce bienes o servicios diferentes a otros centros
3. Es administrable

3.3 Marco legal y normativo

Los costos en la normatividad colombiana se pueden analizar a partir de la Constitución Política de Colombia de 1991, así:

Artículo 338. “En tiempo de Paz, solamente el Congreso, las asambleas departamentales y los concejos distritales y municipales podrán imponer contribuciones fiscales o parafiscales. La ley, las ordenanzas y los acuerdos deben fijar, directamente, los sujetos activos y pasivos, los hechos y las bases gravables, y las tarifas de los impuestos. La ley, las ordenanzas y los acuerdos pueden permitir que las autoridades fijen la tarifa de las tasas y contribuciones que cobren a los contribuyentes, como recuperación de los costos de los servicios que les presten o participación en los beneficios que les proporcionen; pero el sistema y el método para definir tales costos y beneficios, y la forma de hacer su reparto, deben ser fijados por la ley, las ordenanzas o los acuerdos”.

La Ley 174 de 1994, establece que todos los contribuyentes obligados a presentar su declaración tributaria firmada por revisor fiscal o contador público, deben utilizar el sistema de inventario permanente u otro de reconocido valor técnico autorizado por la Dirección de Impuestos y Aduanas Nacionales –DIAN-. Esta norma implícitamente obliga a la implantación de un sistema
de costos para aquellas empresas que manufacturen productos o comercialicen bienes, ya que se deben contabilizar los costos de cada venta al momento de realizarla.

También se resalta el hecho de que la Contaduría General de la Nación ha emitido múltiples conceptos relacionados con costos, los cuales en su mayoría hacen referencia a elementos muy técnicos propios de un sistema de costos que, en varios casos obedecen más a la decisión técnica de quien participa en el diseño del modelo o la aplicación de elementos planteados en el Sistema Nacional de Contabilidad Pública, tales como las normas técnicas relativas a las cuentas de actividad financiera, económica, social y ambiental, en su parte de costos de ventas y operación y costos de producción, igualmente algunos tratamientos contables definidos en el Catálogo General de Cuentas.

3.4 Marco histórico

El sistema de costeo ABC permite mayor exactitud en la asignación de los costos de las empresas y ya que permite la visión de ellas a través de actividades.

En la identificación dentro del sistema ABC se debe en primer lugar ubicar las actividades de forma adecuada en los procesos productivos que agregan valor, para que en el momento que se inicien operaciones, la organización tenga la capacidad de responder con eficiencia y eficacia a las exigencias que el mercado le imponga. Una vez especificadas las actividades en la empresa y la agrupación en los procesos adecuados, se establecen las unidades de trabajo, los transmisores de
costos y la relación de transformación de los factores para medir con ello la productividad de los inputs y para transmitir racionalmente el costo de los inputs sobre el costo de los outputs.

Un estudio de la secuencia de actividades y procesos, unido a sus costos asociados, podrá ofrecer a las directivas de la organización una visión de los puntos críticos de la cadena de valor, así como la información para realizar una mejora continua en el proceso creador de valor. Para [14] si se conocen los factores causales que accionan las actividades, es fácil aplicar los Cost drivers los cuales influyen en el perfeccionamiento de algún atributo de eficiencia de la actividad cuyo afinamiento contribuirá a completar la armonía de la combinación productiva. Estos inductores o cost driver suelen enfocarse hacia la mejora de la calidad o características de los procesos y productos, a conseguir reducir los plazos, a mejorar el camino crítico de las actividades centrales y a reducir costos.

Según Jhonson y Kaplan los Sistemas de Costos Basados en Actividades no han supuesto nada más, que la vuelta a los orígenes de la Contabilidad de Costos. Esta afirmación se fundamenta en que la Contabilidad de Costos nació científicamente, pareja a la revolución industrial. Sobre los orígenes se pueden evidenciar diferentes versiones o caminos. Según Johnson “existen dos caminos que conducen a los actuales ideales del análisis por actividades”.

El primero trata sobre los contadores Gordón Shillinglaw en Columbia y George Stabus en Berkeley, quienes diseñaron los conceptos de análisis basados en las actividades a comienzos de la década del 60. Sin embargo, estos conceptos no influyeron el pensamiento académico de la época, ni influenciaron a los dos desarrollos del costeo por actividades en el mundo.

De acuerdo a esta versión se estima que el primer desarrollo del ABC, tiene sus inicios en la década del 60 en General Electric, donde la gente especializada en control de gestión y finanzas
mejor información para controlar los costos indirectos; ellos pueden haber sido los primeros en usar la terminología de actividad para describir las tareas que generaban costos.

El otro camino que conduce al costeo basado en las actividades, se presume que fue originado a través de unos estudios los cuales se realizaron en forma independiente a los avances efectuados por General Electric. Iniciamos con el primer estudio que se encuentra relacionado con el escrito de Alexander Hamilton Church, en las primeras décadas del siglo XX; donde se hizo énfasis en el estudio de las causas generadoras de los costos indirectos, allí se planteó que la fuente real de los costos eran los procesos subyacentes, y que estos servirían como base para la imputación a productos individualizados, y así consentir su control y reducción, evitando el desperdicio, no obstante su propuesta, planteaba almacenar y recopilar una cantidad enorme de información la cual tenía un análisis intensivo y complejo de los mismos, algo que con las técnicas existentes no era viable, implicando mayores costos en su realización; siendo ésta la causa principal por la cual el sistema no fue aceptado.

El segundo estudio se encuentra relacionado con el escrito creado por Konrad Mellerowicz en los años 50 llamado Platzkosten, su obra no tuvo mayor repercusión y con el pasar del tiempo fue olvidada.

El tercer estudio fue propuesto por George J. Staubus en su libro Activity costing and input-output accounting en 1971 sobre método de costeo. Su obra tuvo una mayor aceptación, tal es así que muchas investigaciones modernas fijan el origen del costeo basado en la actividad en esta publicación. E la obra el autor plantea la necesidad de que los Sistemas de Información Contable brinden a los gerentes toda información necesaria y confiable para la toma eficaz de decisiones, además él autor informa que se dedica especial atención a varios aspectos de
MODELO DE SISTEMA DE COSTOS ABC

la Contabilidad de Costos, algunos son: identificación de los objetivos relevantes del costeo, el significado de los costos. Y también se plantea que los objetivos principales del costeo son las actividades sobre las cuales se deben tomar las decisiones.

Y un cuarto estudio propuesto por Jeffrey G. Miller y Thomas E. Vollmann en 1985 sobre el costeo basado en las transacciones, el cual años después fue divulgado por H. Thomas Johnson y Robert S. Kaplan. Por medio de su libro " Pérdidas relevantes: surgimiento y fallos de la administración contable" publicado en 1987 el cual es el que se tiene actualmente como base para el costeo por actividades. En esta obra se analizaron los cambios que se venían originando en el proceso de producción y comercialización debido a las nuevas técnicas de programación y control, sus promotores, Robin Cooper y Robert Kaplan, determinaron que el costo de los productos debe comprender el costo de las actividades necesarias para fabricarlo y venderlo y el costo de las materias primas. La complejidad cada vez mayor de los procesos productivos y la falta de medios técnicos e informáticos fueron los factores que provocaron que la Contabilidad de Costos se preocupase cada vez menos de las actividades como núcleo del cálculo de costos y más de las diferentes partes de la organización al frente de los cuales fueron apareciendo responsables de la gestión, justificándose así el auge tradicional de los costos por departamentos.

Por lo cual se puede decir que el Costeo Basado en Actividades, es un procedimiento que simpatiza por su correcta relación de los Costos Indirectos de Producción con un producto, servicio o actividad específicos, mediante una adecuada identificación de aquellas actividades o procesos de apoyo, la utilización de bases de asignación cost driver y su medición razonable en cada uno de los objetos o unidades de costeo.
3.5 Estado del arte

Laura Andrea Gómez Roa en su proyecto de grado para optar por el título de ingeniero industrial dirigido por el contador público Orlando León Ortega en el año 2014, nos permite conocer el planteamiento realizado sobre el diseño de un sistema de costos ABC para la empresa salsamentaría de Santander LTDA. Se inició con una descripción del problema donde se evidencia que luego de incursionar en el mercado del T a T se provocó desorden en los inventarios los cuales ocasionaron problemas con el control de costos y no se conocía el costo real de producir dichos productos para ello el autor plantea como solución el sistema de costos por actividades, la metodología usada fue:

1. Definición de objetos de costos
2. Definición de procesos y actividades por centros de costos
3. Identificación de los elementos del costo
4. Definición de los inductores de costos
5. Modelo de implementación del sistema de costos

Luego de realizada toda esta metodología, el autor llegó a las siguientes conclusiones:

- El análisis de las actividades permitió observar que las actividades como empaque, horneado y embutido son las más costosas por la cantidad de mano de obra que requieren para su ejecución así como el costo de mantenimiento así como la actividad de enfriamiento por el alto consumo de energía.
MODELO DE SISTEMA DE COSTOS ABC

- Se evidencio que la planta de producción no tiene la capacidad suficiente para producir tanta variedad de productos y como consecuencia se está generando un costo indirecto de producción muy elevado.
- Fue posible apreciar el desperdicio de tiempo de la mano de obra diaria de actividades como el tajado, empaque y mezclado, debido a las distancias entre las áreas.

Otro de los estudios realizados es el de Diana Marcela Quintero Costea el cual es un trabajo de grado para optar por el título de ingeniero industrial dirigido por la ingeniera Olga Patricia Chacón en el año 2004 donde se realizó un diseño de un sistema de costos ABC en la empresa distribuciones pastor julio delgado y cia Ltda. con el fin de proveer la información suficiente a la gerencia para la toma de decisiones acertadas, facilitar la reducción de costos en la empresa y brindar un control más adecuado de los mismos a la dirección para ello se siguió la siguiente metodología:

1. Identificar y analizar los procesos
2. Definieron los objetos de costos
3. Definición de procesos y actividades por centros de costos
4. Identificación de actividades que no agregan valor
5. Identificar los componentes de costos principales
6. Definición de los inductores de costos
7. Calculo de costo de las actividades
8. Calculo de costo por línea de producto

Luego de realizada esta metodología se llegó a unas conclusiones las más relevantes son:
• La gerencia debe hacer énfasis en el control de los costos de inactividad. El costo para la empresa de la inactividad y la realización de otras actividades fuera de los procesos normales de la compañía, tienen para esta un porcentaje de los gastos totales del mes de junio de 5.72%. Igualmente las actividades que no generan valor en los procesos acumulan un 2.58% de los costos totales, los cuales tampoco fueron agregados al costo de los productos.

• En comparación con el costeo tradicional, la metodología aplicada en este trabajo tomo como parte del costo de los productos el costo de oportunidad, tanto para la actividad de almacenamiento como para la distribución. Esto con la finalidad de estimar un costo para la compañía por poseer un inventario permanente en el almacén y una flota propia de transporte.

• La mayor utilidad que presta a la compañía la elaboración de este proyecto, es la orientación a la identificación de los costos de las actividades en las diferentes estancias de los procesos, de la cual se puede comenzar a realizar comparaciones y controles cuando se presenten cifras atípicas dentro de los mismos.

Otra de las investigaciones realizadas es la de Marcos Andrés Patiño Vanegas sobre su proyecto de grado para optar por el título de ingeniero industrial dirigido por el contador público Orlando León Ortega en el año 2014 el cual trata sobre un diagnóstico, formulación e implementación de la estructura de costos para la cooperativa de transportes de San Gil, Cotrasangil a partir del sistema de costeo ABC, este proyecto se realizó porque la empresa no contaba con una eficiente estructura de costos por lo cual no se podían tomar decisiones correctas por la información algo difusa que se conseguía y como es una empresa en pleno auge se le generan
algunos problemas administrativos, para solucionar este inconveniente el autor planteó la siguiente metodología:

1. Análisis de los procesos de valor
2. Determinación de los centros de costos
3. Identificación de los recursos consumidos en la prestación del servicio
4. Identificación de los inductores de costos
5. Diseño de la herramienta ofimática para la implementación del sistema de costos abc
6. Prueba piloto del nuevo sistema de costos
7. Análisis de la prueba piloto
8. Capacitación al personal involucrado en el manejo del nuevo sistema de costos

Posteriormente realizada esta metodología se llegaron a unas conclusiones las más relevantes fueron:

- Se caracterizaron los procesos involucrados en la prestación de servicio por parte de Cotrasangil Ltda., donde se pudo apreciar la carencia de estandarización de los mismos.

- De acuerdo a la distribución del costo ABC en los procedimientos, se evidencio que la unidad de negocio encomiendas no deja la utilidad que la administración esperaba, por lo tanto registra perdida de 14%.

- Las estaciones de servicio La avenida y Cotrasangil, registran una utilidad importante para el ejercicio de Cotrasangil Ltda., debido al margen de utilidad de estas y el flujo de efectivo de las mismas.
• La implementación del nuevo sistema ayuda a la alta gerencia a tomar las decisiones correspondientes de acuerdo al porcentaje de utilidad de cada centro de costo, ya que en algunos se presenta una utilidad negativa.

Por ultimo encontramos la tesis realizada por Doris Liliana Ávila Torres y Johana Cecilia Márquez para optar por el título de ingeniería en contabilidad y auditoría dirigido por el LCDO. Santiago Serrano en el año 2013 en la universidad Politécnica Silesiana en cuenca Ecuador el cual nos habla sobre una propuesta de diseño de un sistema de costos ABC y análisis de aplicabilidad en la empresa Elaborados de madera Amorosayalkaster CIA.LTDA Ubicado en la ciudad de cuenca, el fin de esta tesis fue la necesidad de implementar un sistema que le permitiese a la empresa conocer los costos de fabricación en cada uno de los procesos productivos, a fin de no solo conocer los costos de manufactura, sino también, administrar más eficientemente los recursos que se disponen, para ello de implemento la siguiente metodología:

• Diagnóstico del departamento contable y proceso productivo de la empresa
• Elaboración de la cadena de valor
• Identificar las actividades de cada proceso
• Determinar los centros de actividades y relacionarlos con las actividades
• Recopilación de los costos indirectos y relacionarlos con las actividades
• Calculo del costo total relacionado con las actividades principales
• Elección de cost drivers o generadores de costos
• Calculo del costo unitario de los generadores de valor
• Calculo del costo total unitario

Luego de realizar esta metodología se llegó a las siguientes conclusiones:

• La empresa no cuenta con un sistema de costeo adecuado, el método tradicional que utilizan asigna los costos de manera incorrecta, lo que ocasiona que la empresa no conozca el costo real de sus productos y calcule de manera errónea el valor de venta.

• En el proceso de producción existen muchas horas ociosas, esto se debe a que no existe un control permanente.

• Los resultados de la aplicación del costeo basado en actividades son favorables notoriamente para la empresa, además de costear de manera más real los costos indirectos a cada una de las obras, los directivos se pudieron dar cuenta de la existencia de varios factores que se visualizaban notablemente, entre ellas se mencionan desperdicios, reprocesos, demora en ciertas estaciones de trabajo, así como actividades que son de mayor relevancia y que generan valor para la empresa.
4 Metodología

4.1 Fundamentos epistemológicos

Se tendrá un enfoque mixto con énfasis en el enfoque cuantitativo ya que inicialmente se necesita caracterizar el proceso e identificar actividades, centros de costos e inductores de costos posteriormente se tomarán datos numéricos y con estos se les realizará un análisis estadístico para relacionar los costos con las actividades y posteriormente con los productos.

4.2 Diseño de la investigación

4.2.1Tipos de investigación.

Método inductivo en el cual Pérez Porto y Merino dicen que tras una primera etapa de observación, análisis y clasificación de los hechos, se logra postular una hipótesis que brinda una solución al problema planteado.

Bajo esta premisa la investigación será inicialmente de tipo descriptivo la cual consiste en llegar a conocer las situaciones, costumbres y actitudes predominantes a través de la descripción exacta de las actividades. (Caracterización de procesos productivos, identificación de las actividades, identificación de los centros de costos, identificación de los inductores) y pasará a ser
una investigación correlacional la cual tiene como objetivo medir el grado de relación que existe entre dos o más conceptos o variables, en un contexto en particular (Ecured). Para el caso de la empresa se medirá la relación de las variables de MOD, MPD y CIF para la consecución de los costos de las actividades

4.2.2 Fases, etapas del proyecto.

Las fases o etapas que se tendrán en cuenta para este proyecto son:

1. Contextualización de la empresa: se realizara una descripción general de la empresa

2. Descripción del proceso productivo según cada línea de producción.

3. Realizar diagramas de operaciones y de flujo de procesos para cada producto describiendo así el método de cada línea de producción.

4. Identificar y clasificar las actividades generadoras de valor en principales, auxiliares y de control basándose en los diagramas de operaciones y de flujo así como supervisiones al momento de realizar la producción de cada línea de producto.

5. Agrupar las actividades en sus respectivos centros de costos (existen varios productos con procesos similares pero con tiempos diferentes por lo cual algunos centros se harán según referencia).

6. Identificar los inductores de costos para cada actividad teniendo en cuenta que es lo que me causa el costo en esa actividad (horas hombre, insumos, luz etc…).

7. Diseñar formato para la medición de tiempos y formato de tiempos normalizados.
8. Toma de premuestra de medición de tiempos según unidad de trabajo por medio del método cronometrado para cada línea de producción

9. Análisis de datos recogidos (se asignaran las valoraciones por medio del método de nivelación, y asignación de suplementos mediante el Método de valoración objetiva con estándares de fatiga).

10. Calculo de tiempos normalizados usando los formatos diseñados anteriormente en las diferentes hojas de Excel.

11. Asignación de los costos a cada centro de costos

12. Asignación de costos a cada producto.

13. Calculo de valor de venta.

5 Desarrollo metodológico

5.1 Descripción del proceso productivo por cada línea

5.1.1 Línea proceso productivo de cuajada

- Recepción de la leche: el camión de acopio con los tanques de leche llega a la empresa inmediatamente se procede a conectar una manguera a las tinas donde se deposita y se mira la cantidad de leche recibida.
• Inspección de la leche: Se toma una muestra de leche de cada tanque del camión de acopio, las cuales se llevan al laboratorio verificando olor, acidez, color, temperatura, densidad, PH, alcohol.

• Calentado de leche: se enciende la caldera la cual se encuentra conectada a cada tanque, luego se abre las válvulas para la entrada de vapor en cada tanque y poder alcanzar la temperatura requerida.

• Adición del cuajo para cuajada: se adiciona el cuajo dependiendo de la cantidad de leche que está destinada para la cuajada (leche con un grado de acidez predeterminado).

• Reposo de la leche: se deja reposar la leche en las tinas mientras el cuajo hace efecto.

• Separado de cuajada del suero: se conecta una manguera a la tina por la cual se sale constantemente todo el suero que se encuentra con la cuajada.

• Mezclar cuajada con sal: se le adiciona sal a la cuajada ya desuerada y se mezcla manualmente.

• Moldeado cuajada: se toma la cuajada y se mete en una canasta que posee un lienzo.

• Almacenar en cuarto frío: se toman los moldes de las cuajadas y se almacenan en el cuarto frío.

• Desmoldar y cortar cuajada: se saca la cuajada de sus respectivos moldes y se corta en bloques de 400g, 500g, y 2500g.

• Embolsar y etiquetar la cuajada: según el peso del bloque de la cuajada se empaca si es de 400g se mete en unas tazas de plástico y se embolsan, si son de 500 y 2500g se meten en su respectiva bolsa y se les coloca su etiqueta.
• Sellar las bolsas con cuajada: se toma las bolsas con las referencias de 400 500 y 2500 g se colocan en la maquina sellado la cual los sella al vacío, luego se coloca en las canastilla.

5.1.2 Línea proceso productivo de queso doble crema

• Recepción de la leche: el camión de acopio con los tanques de leche llega a la empresa inmediatamente se procede a conectar una manguera a las tinas donde se deposita y se mira la cantidad de leche recibida.

• Inspección de la leche: Se toma una muestra de leche de cada tanque del camión de acopio, las cuales se llevan al laboratorio verificando olor, acidez, color, temperatura, densidad, PH, alcohol.

• Calentado de leche: se enciende la caldera la cual se encuentra conectada a cada tanque, luego se abre las válvulas para la entrada de vapor en cada tanque y poder alcanzar la temperatura requerida.

• Adición del cuajo para cuajada: se adiciona el cuajo dependiendo de la cantidad de leche que está destinada para queso doble crema y se deja reposar

• Adición de insumos: luego de reposar con el cuajo, se mezcla mientras se le va adicionando suero fermentado.

• Separar el cuajo de queso del suero: se saca el cuajo del queso depositándolo en una mesa escurridora que quitara el suero.
• Hilado del queso: se transporta el cuajo de queso al trompo o marmita el cual hila el cuajo de queso que se encuentra adentro mientras que le aplica calor cocinándolo y dándole elasticidad.

• Recepción de queso hilado: se abre la escotilla de la marmita y el queso hilado cae en el carro receptor.

• Cortar, pesar y moldear el queso hilado: se amasa el queso posteriormente se corta en trozos de 300, 500, 2500 g de peso y se colocan en su respectivo molde.

• Almacenar en cuarto frio: los moldes se depositan en los escabiladeros y se guardan en el cuarto frio.

• Desmoldar y Embolsar bloque de queso: se saca el bloque de queso de 2500 g de su molde y se introduce en la bolsa para entregar al área de tajado, los de 300 y 500 g se empacan en su respectiva bolsa.

• Tajar el bloque de queso: se toman los bloques de queso de 2500g y se introducen en la maquina tajador la cual los rebana en tajas de 25g o 30g dependiendo la referencia.

• Separar las tajas según referencia: los operarios separan manualmente las tajas con sus respectivos separadores plásticos según la orden de tajado recibida.

• Embolsar y etiquetar el queso tajado: se toma el queso ya separado y se introduce en su respectiva bolsa, dependiendo de la referencia se le coloca la etiqueta respectiva.

• Sellar los productos: en la maquina selladora se acomodan el producto ya embolsado y laminado, esta máquina sella al vacío dejando ya el producto terminado.
5.1.3 Línea proceso productivo de queso bajo en grasa

- Recepción de la leche: el camión de acopio con los tanques de leche llega a la empresa inmediatamente se procede a conectar una manguera a las tinas donde se deposita y se mira la cantidad de leche recibida.

- Inspección de la leche: Se toma una muestra de leche de cada tanque del camión de acopio, las cuales se llevan al laboratorio verificando olor, acidez, color, temperatura, densidad, PH, alcohol.

- Calentado de leche: se enciende la caldera la cual se encuentra conectada a cada tanque, luego se abre las válvulas para la entrada de vapor en cada tanque y poder alcanzar la temperatura requerida.

- Descremar la leche: se coloca la leche en un tanque el cual se lleva a la maquina descremadora ahí se introduce la leche y la maquina separa la crema de la leche.

- Adición del cuajo para cuajada: se adiciona el cuajo dependiendo de la cantidad de leche que está destinada para queso doble crema y se deja reposar

- Adición de insumos: luego de reposar con el cuajo, se mezcla mientras se le va adicionando suero fermentado.

- Separar el cuajo de queso del suero: se saca el cuajo del queso depositándolo en una mesa escurridora que quitara el suero.

- Hilado del queso: se transporta el cuajo de queso al trompo o marmita el cual hila el cuajo de queso que se encuentra adentro mientras que le aplica calor cocinándolo y dándole elasticidad.
• Recepción de queso hilado: se abre la escotilla de la marmita y el queso hilado cae en el carro receptor.

• Cortar, pesar y moldear el queso hilado: se amasa el queso posteriormente se corta en trozos de 300, 500, 2500 g de peso y se colocan en su respectivo molde.

• Almacenar en cuarto frío: los moldes se depositan en los escabiladeros y se guardan en el cuarto frío.

• Desmoldar y Embolsar bloque de queso: se saca el bloque de queso de 2500 g de su molde y se introduce en la bolsa para entregar al área de tajado, los de 300 y 500 g se empacan en su respectiva bolsa.

• Tajar el bloque de queso: se toman los bloques de queso de 2500g y se introducen en la maquina tajador la cual los rebana en tajas de 25g o 30g dependiendo la referencia.

• Separar las tajas según referencia: los operarios separan manualmente las tajas con sus respectivos separadores plásticos según la orden de tajado recibida.

• Embolsar y etiquetar el queso tajado: se toma el queso ya separado y se introduce en su respectiva bolsa, dependiendo de la referencia se le coloca la etiqueta respectiva.

• Sellar los productos: en la maquina selladora se acomodan el producto ya embolsado y laminado, esta máquina sella al vacío dejando ya el producto terminado.
5.1.4 Línea proceso productivo de queso costeño

- Recepción de queso costeño: se recibe el queso costeño entregado por los proveedores.
- Cortar queso costeño: se corta el queso en trozos de 1L y de 5L
- Moler queso costeño: se toma los trozos de queso sobrantes del corte de 1 y 5L y se introducen en la máquina moledora.
- Empaque queso costeño: se toman los trozos de 1L y 5L y se empacan en sus respectivas bolsas, con el queso molido se empaca según sus referencias 300 y 2500g.
- Sellar queso costeño: se toman las bolsas de queso costeño se acomodan en la máquina selladora la cual los sella al vacío.
- Empaque queso costeño molido: se procede a llenar las bolsas con sello hermético de 300g con queso costeño molido a través de una pala medidora.

5.1.5 Línea proceso productivo de otros

5.1.5.1 Queso holandés

- Pasteurizar la leche: se calienta la leche a la temperatura adecuada.
- Reposo de la leche: se deja reposar hasta que baje la temperatura.
- Adicionar el cultivo: se adiciona cultivo pre maduración.
- Adicionar otros insumos: se adiciona otros insumos como cloruro de calcio, color annato y cuajo
- Partir cuajada: se agita hasta formar grano
- Desuerar leche: se bombea el suero a los respectivos tanques para que solo quede el cuajo de queso
- Moldear: se introduce el cuajo de queso en los respectivos moldes
- Prensar: se toma el molde y se mete en la prensa hidráulica
- Salmuera: se deposita en salmuera entre 15 y 18 horas
- Oreado: se deja durante 3 días orear a una temperatura de 4° - 5° grados centígrados
- Maduración: se deja el queso en un cuarto a 15° C para su maduración por 30 días

5.1.5.2 Quesillo, campesino y chitaga

- Recepción de la leche: el camión de acopio con los tanques de leche llega a la empresa inmediatamente se procede a conectar una manguera a las tinas donde se deposita y se mira la cantidad de leche recibida.
- Inspección de la leche: Se toma una muestra de leche de cada tanque del camión de acopio, las cuales se llevan al laboratorio verificando olor, acidez, color, temperatura, densidad, PH, alcohol.
- Calentado de leche: se enciende la caldera la cual se encuentra conectada a cada tanque, luego se abre las válvulas para la entrada de vapor en cada tanque y poder alcanzar la temperatura requerida.
- Adición del cuajo para cuajada: se adiciona el cuajo dependiendo de la cantidad de leche que está destinada para queso doble crema y se deja reposar
- Adición de insumos: luego de reposar con el cuajo, se mezcla mientras se le va adicionando suero fermentado.
• Separar el cuajo de queso del suero: se saca el cuajo del queso depositándolo en una mesa escurridora que quitara el suero.

• Hilado del queso: se transporta el cuajo de queso al trompo o marmita el cual hila el cuajo de queso que se encuentra adentro mientras que le aplica calor cocinándolo y dándole elasticidad.

• Cortar, pesar y moldear el queso hilado: se amasa el queso posteriormente se corta en trozos de 300, 500, 3500 g de peso y se colocan en su respectivo molde.

• Desmoldar y Picar quesillo: se toma el molde con el quesillo y se corta en 9 trozos cuadrados de 350g cada uno luego se saca del molde.

• Embolsar quesillo: se toma los cuadrados de quesillo y se meten en sus respectivas bolsas de igual manera con el queso chitaga y campesino.

• Sellar: se toma las bolsas con los quesos se acomodan en la máquina y se sellan al vacío.

5.2 Diagrama de flujo por línea de producción

5.2.1 Diagramas de flujo

Los diagramas se realizaron con el fin de identificar los procesos comprometidos en cada producto, esta información se consiguió gracias al aporte del jefe de producción, así como las observaciones que se realizaron en la planta de producción. En la Figura número 3 se muestra el
diagrama de flujo para la línea de cuajada, los restantes diagramas de flujo se encuentran en el anexo A.

5.2.2 Diagramas de operaciones

Los diagramas se realizaron con el fin de observar las diferentes actividades de producción según cada referencia y también los insumos que ingresan o salen de cada una de estas. En la figura número 4 se muestra el diagrama de operaciones para la línea de cuajada específicamente la referencia de 400 gramos, los demás diagramas se encuentran en el anexo B.
INICIO

Recepción de la leche.

Llenado de tina

Calentar

Cumple la temperatura?

SI

Adición del cuajo

Reposo de la cuajada

Separado del suero

Adición de sal y mezclado

A

NO
MODELO DE SISTEMA DE COSTOS ABC

Diagrama Numero: 1
Fecha: 27/05/16
Elaborado por: Erik Castillo Oviedo

DIAGRAMA DE FLUJO

LINEA: CUAJADA

PAG: 2 de 2

A

Moldear

Almacenar cuarto frio

Desmoldar cuajada

SI

Producto es para la referencia de 400 gramos?

NO

Cortar cuajada x 400g

Empacar

Sellar

SI

Perdida de vacío?

No

SI

SI

Fin

Cortar cuajada x 2500g

Empacar

Sellar

Perdida de vacío?

NO

Almacén PT

SA

Producto es para la referencia de 500 gramos?

NO

Cortar cuajada x 500g

Empacar

Sellar

Perdida de vacío?

SI

SI

SI

SI

SI

SI

SI

SI
Figura 3 Diagrama de flujo línea de cuajada. Fuente: autor del proyecto

<table>
<thead>
<tr>
<th>Diagrama Numero:</th>
<th>Producto: cuajada</th>
<th>Operación: 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fecha: 27/05/16</td>
<td>Elaborado por: Erik Castillo Oviedo</td>
<td>Inspección: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Actividad combinada: 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Almacenamiento: 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transporte: 0</td>
</tr>
</tbody>
</table>

Diagrama de operaciones proceso de elaboración de cuajada x 400g.
MODELO DE SISTEMA DE COSTOS ABC

Leche (peróxido)

1. Recepción e inspección de leche.
2. Llenado de tina.
3. Calentar
4. Adición del cuajo.
5. Reposo e inspección estado de la cuajada.
7. Sal
8. Mezclar cuajo con sal.
Diagrama Numero: 1
Producto: cuajada
Fecha: 27/05/16
Elaborado por: Erik Castillo

Operación: 10
Inspección: 0
Actividad combinada: 4
Almacenamiento: 2
Transporte: 0

Diagrama de operaciones proceso de elaboración de cuajada x 400g.

1. Almacenaje en cuarto frío
2. Almacén producto terminado
3. Retirar del molde y pesar cuajada
4. Cortar y meter en taza 400g
5. Meter en molde
6. Tacita
7. Bolsa
8. Embolsar
9. Sellar

Figura 4 Diagrama de operaciones ref.: cuajada x 400g. Fuente: autor del proyecto
5.3 Diseño del modelo de sistema de costos

5.3.1 Identificación de las actividades generadoras de valor.

Entendiendo que actividad se define como un conjunto de actuaciones o tareas que tienen como objetivo agregar valor a un objeto. Se identificaron aquellas actividades que generan valor en el proceso productivo, teniendo como base la descripción del proceso productivo por cada línea vista en el capítulo 5.1, así como los diferentes diagramas de flujo y de operaciones que se encuentran en los anexos 1 y 2. En la tabla número 1 se encontrara un resumen de las actividades que generan valor para la línea de bajo en grasa, el total de actividades de las demás líneas se encuentran en el anexo C.

5.3.2 Identificación de los centros de costos.

Aunque en la empresa existe una gran diversidad de referencias muchas de las actividades comparten características similares en cuanto a mano de obra, materia prima y CIF por lo cual algunos centros de costos poseen un gran número de actividades. En la tabla número 2 encontraremos los centros de costos identificados para Coprolac Quesalac S.A.S
Tabla 1.

Resumen de actividades generadoras de valor en el proceso de producción bajo en grasa

<table>
<thead>
<tr>
<th></th>
<th>Actividad</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Recepción de leche</td>
</tr>
<tr>
<td>2</td>
<td>Calentar la leche</td>
</tr>
<tr>
<td>3</td>
<td>Descremar la leche para Bajo en grasa</td>
</tr>
<tr>
<td>4</td>
<td>Adición cuajo y leche descremada (Bajo en grasa)</td>
</tr>
<tr>
<td>5</td>
<td>Cortar leche (Bajo en grasa)</td>
</tr>
<tr>
<td>6</td>
<td>Desuercar cuajo (Bajo en grasa)</td>
</tr>
<tr>
<td>7</td>
<td>Hilado cuajo (Bajo en grasa)</td>
</tr>
<tr>
<td>8</td>
<td>Cortar, pesar y meter en molde bloque 5 libras (Bajo en grasa)</td>
</tr>
<tr>
<td>9</td>
<td>Cortar, pesar y meter en molde de 300g Bajo en grasa</td>
</tr>
<tr>
<td>10</td>
<td>Cortar, pesar y meter en molde de 500g Bajo en grasa</td>
</tr>
<tr>
<td>11</td>
<td>Desmoldar Bajo en grasa 300g</td>
</tr>
<tr>
<td>12</td>
<td>Desmoldar Bajo en grasa 500g</td>
</tr>
<tr>
<td>13</td>
<td>Desmoldar bloque de queso Bajo en Grasa</td>
</tr>
<tr>
<td>14</td>
<td>Tajar bloque de 5L (25g)</td>
</tr>
<tr>
<td>15</td>
<td>Separar queso Bajo en grasa por 300g</td>
</tr>
<tr>
<td>16</td>
<td>Separar queso Bajo en grasa por 500g</td>
</tr>
<tr>
<td>17</td>
<td>Embolsar y etiquetar queso Bajo en grasa Coprolac 300g</td>
</tr>
<tr>
<td>18</td>
<td>Embolsar y etiquetar queso Bajo en grasa Coprolac 500g</td>
</tr>
<tr>
<td>19</td>
<td>Embolsar queso Bajo en grasa tajado Coprolac 300g</td>
</tr>
<tr>
<td>20</td>
<td>Embolsar queso Bajo en grasa tajado Coprolac 500g</td>
</tr>
<tr>
<td>21</td>
<td>Sellar queso Bajo en grasa Coprolac 300g</td>
</tr>
<tr>
<td>22</td>
<td>Sellar queso Bajo en grasa Coprolac 500g</td>
</tr>
<tr>
<td>23</td>
<td>Sellar queso Bajo en grasa tajado 300g</td>
</tr>
<tr>
<td>25</td>
<td>Sellar queso Bajo en grasa tajado 500g</td>
</tr>
</tbody>
</table>
Fuente: Autor del proyecto

Tabla 2

Centros de costos

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recepción</td>
<td>Recepción de la leche e inspección de la misma</td>
</tr>
<tr>
<td>Adecuación</td>
<td>Abrir la válvula de gas para la pasteurización de la leche</td>
</tr>
<tr>
<td>Descremado</td>
<td>Alistar la máquina, Separar la grasa de la leche, y limpiar la maquina</td>
</tr>
<tr>
<td>Adición de insumos</td>
<td>Adición de cuajo, lactasa, leche descremada sal</td>
</tr>
<tr>
<td>Adición de insumos holandes</td>
<td>Adición de cultivo colorannatro y cuajo</td>
</tr>
<tr>
<td>Partir cuajada</td>
<td>Mezclar por un tiempo determinado la leche mientras se le agrega suero</td>
</tr>
<tr>
<td>Desuerado</td>
<td>Alistar mesa escurridora, separar el cuajo del suero</td>
</tr>
<tr>
<td>Licuado</td>
<td>Alistar la máquina, Licuar suero costeño, limpieza de la maquina</td>
</tr>
<tr>
<td>Hilado</td>
<td>Precaletar el trompo o marmita, Hilar queso en marmita</td>
</tr>
<tr>
<td>Moldeado</td>
<td>Moldear según referencia</td>
</tr>
<tr>
<td>Moldeado cuajada</td>
<td>Moldear en canastilla y prensar</td>
</tr>
<tr>
<td>Moldeado Holandes</td>
<td>Moldear y meter en salmuera</td>
</tr>
<tr>
<td>Desmoldado</td>
<td>Desmolde de los bloques de queso</td>
</tr>
<tr>
<td>Cortar cuajada/ holandes</td>
<td>Cortar en trozos según referencia</td>
</tr>
<tr>
<td>Tajar</td>
<td>Tajar en laminas</td>
</tr>
<tr>
<td>Moler</td>
<td>Moler queso costeño y limpiar maquina</td>
</tr>
<tr>
<td>Separado manual (tajado)</td>
<td>Separar según referencia</td>
</tr>
<tr>
<td>Empaque</td>
<td>Embolsado y etiquetado según referencia</td>
</tr>
<tr>
<td>Sellado</td>
<td>Sellar al vacío</td>
</tr>
<tr>
<td>Maduración holandes</td>
<td>Madurar queso en cuartos especiales</td>
</tr>
</tbody>
</table>

Fuente: Autor del proyecto

5.3.3 Agrupación de las actividades en centros de costos

Aquí se tomaron las actividades generadoras de valor las cuales se asignaron a sus respectivos centros de costos tal como se puede observar en la tabla 3 donde se tiene el resumen
de la línea bajo en grasa. Ya en el anexo número D se tiene el total de centros de costos con sus actividades y sus inductores.

Tabla 3

Resumen actividades en sus centros de costos para bajo en grasa

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recepción</td>
<td>Recepción de leche</td>
</tr>
<tr>
<td>Adecuación</td>
<td>Calentar la leche</td>
</tr>
<tr>
<td>Descremado</td>
<td>Descremar la leche para Bajo en grasa</td>
</tr>
<tr>
<td>Adición de insumos</td>
<td>Adición cuajo y leche descremada (Bajo en grasa)</td>
</tr>
<tr>
<td>Partir cuajada</td>
<td>Cortar leche (Bajo en grasa)</td>
</tr>
<tr>
<td>Desuerado</td>
<td>Desuerar cuajo (Bajo en grasa)</td>
</tr>
<tr>
<td>Hilado</td>
<td>Hilado cuajo (Bajo en grasa)</td>
</tr>
<tr>
<td>Moldeado</td>
<td>Cortar, pesar y meter en molde bloque 5 libras (Bajo en grasa)</td>
</tr>
<tr>
<td></td>
<td>Cortar, pesar y meter en molde de 300g Bajo en grasa</td>
</tr>
<tr>
<td></td>
<td>Cortar, pesar y meter en molde de 500g Bajo en grasa</td>
</tr>
<tr>
<td>Desmoldado</td>
<td>Desmoldar Bajo en grasa 300g</td>
</tr>
<tr>
<td></td>
<td>Desmoldar Bajo en grasa 500g</td>
</tr>
<tr>
<td></td>
<td>Desmoldar bloque de queso Bajo en Grasa</td>
</tr>
<tr>
<td>Tajar</td>
<td>Tajar bloque de 5L (25g)</td>
</tr>
<tr>
<td></td>
<td>Tajar bloque de 5L (30g)</td>
</tr>
<tr>
<td>Separado manual (tajado)</td>
<td>Separar queso Bajo en grasa por 300g</td>
</tr>
<tr>
<td></td>
<td>Separar queso Bajo en grasa por 500g</td>
</tr>
<tr>
<td>Empaque</td>
<td>Embolsar y etiquetar queso Bajo en grasa Coprolac 300g</td>
</tr>
<tr>
<td></td>
<td>Embolsar y etiquetar queso Bajo en grasa Coprolac 500g</td>
</tr>
<tr>
<td></td>
<td>Embolsar queso Bajo en grasa tajado Coprolac 300g</td>
</tr>
<tr>
<td></td>
<td>Embolsar queso Bajo en grasa tajado Coprolac 500g</td>
</tr>
<tr>
<td>Sellado</td>
<td>Sellar queso Bajo en grasa Coprolac 300g</td>
</tr>
<tr>
<td></td>
<td>Sellar queso Bajo en grasa Coprolac 500g</td>
</tr>
<tr>
<td></td>
<td>Sellar queso Bajo en grasa tajado 300g</td>
</tr>
<tr>
<td></td>
<td>Sellar queso Bajo en grasa tajado 500g</td>
</tr>
</tbody>
</table>

Fuente: Autor del proyecto
5.3.4 Identificación de los inductores de costos

A continuación se enlistaran los inductores de costos los cuales son aquellos factores que determinan el origen de los costos y la distribución de los mismos a las actividades generadoras de valor. Los inductores se definieron según la tabla 4.

Tabla 4.

<table>
<thead>
<tr>
<th>No</th>
<th>Nombre</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mano de obra directa</td>
<td>Gastos de personal según los tiempos de cada actividad (salarios y prestaciones sociales)</td>
</tr>
<tr>
<td>2</td>
<td>Mano de obra indirecta</td>
<td>Gastos de personal según cada actividad en el tiempo dedicado para adecuación y limpieza de las áreas y las maquinas (salarios y prestaciones sociales)</td>
</tr>
<tr>
<td>3</td>
<td>Insumos</td>
<td>Materia prima como: cuajo, lactasa sal, cultivo de maduración, cloruro de calcio</td>
</tr>
<tr>
<td>4</td>
<td>CIF</td>
<td>Servicios públicos, arriendo, depreciaciones, seguros, pólizas, mantenimiento.</td>
</tr>
</tbody>
</table>

Fuente: Autor del proyecto

Los inductores se han definido de la siguiente forma:

Mano de obra: para asignar el gasto de personal se tiene en cuenta el tiempo que dedica el personal para realizar las actividades según las unidades de trabajo existentes así como el salario y las prestaciones sociales de cada trabajador. Para ello se realizó un estudio de métodos y usando como base los formatos que se encuentran en la tabla número 5, y la tabla número 6. La totalidad del estudio de tiempos se encuentra en el anexo número E.
Tabla 5.
Formato toma de tiempos

<table>
<thead>
<tr>
<th>DEPARTAMENTO:</th>
<th>xxxx</th>
<th>LINEA</th>
<th>xxx</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPERACIÓN:</td>
<td>xxx</td>
<td>REFERENCIA</td>
<td>xxx</td>
</tr>
<tr>
<td>ESTUDIO DE TIEMPOS No:</td>
<td>xxx</td>
<td>OPERARIO</td>
<td>xxx</td>
</tr>
<tr>
<td>METODO UTILIZADO:</td>
<td>xxx</td>
<td>OBSERVADO POR</td>
<td>xxx</td>
</tr>
<tr>
<td>MAQUINA:</td>
<td>xxx</td>
<td>FECHA</td>
<td>xxx</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DESCRIPCION DEL ELEMENTO</th>
<th>V</th>
<th>C</th>
<th>UNID</th>
<th>TIEMPO BASICO</th>
<th>DESCRIPCION DEL ELEMENTO</th>
<th>V</th>
<th>C</th>
<th>UNID</th>
<th>TIEMPO BASICO</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIEMPO BASICO PROMEDIO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TIEMPO BASICO PROMEDIO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente Autor del proyecto

Tabla 6
Formato de tiempos normalizados

<table>
<thead>
<tr>
<th>DEPARTAMENTO:</th>
<th>LINEA:</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPERACIÓN:</td>
<td>CARGO</td>
</tr>
<tr>
<td>ELEMENTO</td>
<td>DESCRIPCION</td>
</tr>
<tr>
<td>TIEMPO DE PRODUCCION</td>
<td>SIN SUPLEMENTO SEGundos MINUTos HORAS</td>
</tr>
</tbody>
</table>

Fuente Autor del proyecto
Una vez obtenidos los tiempos, a estos se les distribuye el salario y las prestaciones de los empleados involucrados en el estudio, para calcular el costo de mano de obra multiplicando el tiempo invertido por el factor del salario del trabajador tal y como se muestra a continuación.

Tabla 7

DISTRIBUCION DE COSTOS MANO DE OBRA (MUESTRA)

<table>
<thead>
<tr>
<th>EVENTO</th>
<th>TIEMPO FINAL</th>
<th>UNIDAD DE MEDIDA</th>
<th>TIEMPO POR UNIDAD DE MEDIDA</th>
<th>GASTO DE PERSONAL PRODUCCION * SEG</th>
<th>M.O.D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descremar la leche para Bajo en Grasa</td>
<td>3003,31248</td>
<td>828</td>
<td>3,627188986</td>
<td>$1,40</td>
<td>$5,075</td>
</tr>
<tr>
<td>Adición de cultivo (HOLANDES)</td>
<td>934,9235</td>
<td>1050</td>
<td>0,890403333</td>
<td>$1,40</td>
<td>$1,25</td>
</tr>
<tr>
<td>Adición cloruro de calcio, color annato (HOLANDES)</td>
<td>778,121167</td>
<td>1050</td>
<td>0,741067778</td>
<td>$1,40</td>
<td>$1,04</td>
</tr>
<tr>
<td>Adicionar cuajo (HOLANDES)</td>
<td>3412,31435</td>
<td>1050</td>
<td>3,24982319</td>
<td>$1,40</td>
<td>$4,55</td>
</tr>
<tr>
<td>Cortar leche (DOBLE CREMA)</td>
<td>1009,28065</td>
<td>1600</td>
<td>0,630800406</td>
<td>$1,40</td>
<td>$1,20</td>
</tr>
<tr>
<td>Cortar leche (BAJO EN GRASA)</td>
<td>1007,58252</td>
<td>828</td>
<td>1,216887101</td>
<td>$1,40</td>
<td>$2,32</td>
</tr>
<tr>
<td>Agregar agua y mezclar (HOLANDES)</td>
<td>2514,3629</td>
<td>1050</td>
<td>2,394631333</td>
<td>$1,40</td>
<td>$3,35</td>
</tr>
<tr>
<td>Partir cuajada (CUAJADA)</td>
<td>804,3091</td>
<td>2040</td>
<td>0,394269167</td>
<td>$1,40</td>
<td>$0,55</td>
</tr>
<tr>
<td>Desuercar (HOLANDES)</td>
<td>2746,4724</td>
<td>1050</td>
<td>2,615688</td>
<td>$1,40</td>
<td>$3,66</td>
</tr>
</tbody>
</table>

Fuente: Autor del proyecto

En la anterior tabla se observa el tiempo en segundos para desarrollar la actividad necesaria para la producción de 100 gramos de queso así como el valor de gasto de personal por segundo de trabajo, permitiendo calcular el costo de mano de obra para dicha actividad.

Materia prima: dependiendo de las actividades, existen diferentes insumos que generan costos, estos valores se sacaron de las facturas de compra, teniendo como base la cantidad necesaria para la fabricación de 100 gramos de queso, los insumos del queso son: cuajo en polvo, tripolifosfato, cloruro de calcio, color annato, cultivo de maduración, lactasa, CMC, Nisina, sal, leche y queso, estos valores se encuentran en el anexo número F. Los costos restantes de materia
MODELO DE SISTEMA DE COSTOS ABC

prima son los de empaque, obtenidos con las facturas de compra usadas para cada referencia de producto, estos también se encuentran en el anexo F.

CIF: para los costos indirectos de fabricación se dividieron de la siguiente manera

- Mantenimiento: para este rubro se divide el valor de acuerdo al uso de las máquinas así la que se use más veces al mes tendrá un mayor valor de mantenimiento, el costo de mantenimiento de maquinaria y equipo se distribuirá de acuerdo a la disposición que se encuentra en el anexo 6. En la tabla 8 se evidencia una muestra de lo realizado.

Tabla 8

<table>
<thead>
<tr>
<th>Mantenimiento</th>
<th>Veces al mes</th>
<th>Costo del mes</th>
<th>Costo unid.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recepción de leche</td>
<td>Bomba</td>
<td>30</td>
<td>26.802,95</td>
</tr>
<tr>
<td>Recibir queso costeño</td>
<td>Bascula</td>
<td>9</td>
<td>8.040,89</td>
</tr>
<tr>
<td>Calentar la leche</td>
<td>Caldera</td>
<td>30</td>
<td>26.802,95</td>
</tr>
<tr>
<td>Pasteurización leche queso holandés</td>
<td>Caldera</td>
<td>2</td>
<td>1.786,86</td>
</tr>
<tr>
<td>Descremar la leche para Bajo en grasa</td>
<td>Descremadora</td>
<td>28</td>
<td>25.016,09</td>
</tr>
<tr>
<td>Descremar la leche para Deslactosado</td>
<td>Descremadora</td>
<td>9</td>
<td>8.040,89</td>
</tr>
<tr>
<td>Calentar la leche</td>
<td>Tina</td>
<td>30</td>
<td>26.802,95</td>
</tr>
</tbody>
</table>

Mantenimiento mes

$ 2.360.000,00

Fuente Autor del proyecto
- Seguros: las maquinas usadas se encuentran aseguradas por un mismo monto por lo cual estos valores se distribuyen según la cantidad de uso las máquinas. El cálculo de los costos de seguro a las actividades se encuentra en el anexo 6.

- Depreciación: Los valores de depreciación se sacaron de las facturas de compra de las maquinarias y se encuentra evidenciada en el anexo 6. la depreciación se distribuye con base en el uso de la maquinaria y equipo y la cantidad de ocasiones que se realiza la actividad al mes en dicho equipo. A continuación una muestra del proceso.

<table>
<thead>
<tr>
<th>Tabla 9 Muestra de distribución de depreciación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veces al mes</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>28</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>9</td>
</tr>
</tbody>
</table>

Trompo depreciación mensual
$ 291.666,67

Fuente: Autor del proyecto

- Arriendo: es el valor que se paga por cada área de trabajo, para estos inductores se clasifico a cada actividad en un área o zona de arriendo, si cada zona tiene varias actividades el valor que se asigna varia del tamaño en metros cuadrados de la zona, así como el número de ocasiones que se realiza la actividad en un mes. Las
diferentes zonas identificadas se encuentran en la tabla 7. En el anexo F se encuentra la distribución completa del arriendo en cada actividad.

Tabla 10

Distribución arriendo planta producción

<table>
<thead>
<tr>
<th>Largo en metros</th>
<th>Ancho en metros</th>
<th>Area m(^2)</th>
<th>valor mes</th>
<th>valor dia</th>
</tr>
</thead>
<tbody>
<tr>
<td>tinas</td>
<td>11</td>
<td>4,5</td>
<td>49,5</td>
<td>$ 412,500,00</td>
</tr>
<tr>
<td>trompos</td>
<td>8,5</td>
<td>4</td>
<td>34</td>
<td>$ 283,333,33</td>
</tr>
<tr>
<td>tajado</td>
<td>5</td>
<td>4</td>
<td>20</td>
<td>$ 166,666,67</td>
</tr>
<tr>
<td>moldeado</td>
<td>4,5</td>
<td>4</td>
<td>18</td>
<td>$ 150,000,00</td>
</tr>
<tr>
<td>empaque</td>
<td>4</td>
<td>2</td>
<td>8</td>
<td>$ 66,666,67</td>
</tr>
<tr>
<td>despacho</td>
<td>5</td>
<td>4</td>
<td>20</td>
<td>$ 166,666,67</td>
</tr>
<tr>
<td>costeño</td>
<td>5</td>
<td>2</td>
<td>10</td>
<td>$ 83,333,33</td>
</tr>
<tr>
<td>cuarto prod terminado</td>
<td>5</td>
<td>4</td>
<td>20</td>
<td>$ 166,666,67</td>
</tr>
<tr>
<td>escaleras</td>
<td>3,5</td>
<td>2</td>
<td>7</td>
<td>$ 58,333,33</td>
</tr>
<tr>
<td>laboratorio</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>$ 16,666,67</td>
</tr>
<tr>
<td>desechos</td>
<td>1,5</td>
<td>1</td>
<td>1,5</td>
<td>$ 12,500,00</td>
</tr>
<tr>
<td>canastillas</td>
<td>5</td>
<td>2</td>
<td>10</td>
<td>$ 83,333,33</td>
</tr>
</tbody>
</table>

Los 3 pisos: Área m\(^2\) $ 5,000,000,00

Valor mes Producción

| $ | 1,666,666,67 |

Fuente Autor del proyecto

- Para los servicios públicos, en el caso del agua se distribuirá de acuerdo al consumo aproximado de la misma en las diferentes actividades tomando como base el precio por litro de agua que se encuentra en el recibo del servicio. Para el caso de la luz se distribuirá de acuerdo al consumo de k/h de las diferentes máquinas y cuartos fríos tomando como base el valor fijo de kilovatio que figura en el recibo de la luz. Y para el caso del gas se tomará el valor total del recibo del mismo y se dividirá en
las actividades donde se requiera de este servicio. En el anexo F se encontrará la
distribución del consumo de los servicios de agua, luz y gas.

5.4 Asignación de costos al modelo

Ya identificadas las actividades generadoras de valor, los centros de costos, los inductores
de costos y agrupadas las actividades con los centros, se distribuyó los valores de los inductores
de costos en cada actividad y por consiguiente en cada centro de costo. La herramienta utilizada
para este proceso es Microsoft Excel en sus respectivas hojas de cálculo se encuentran las
actividades y en ellas los valores de cada inductor de costos. En la siguiente tabla se observará al
centro de costo de recepción con sus actividades y los costos que existe en ellas.

Tabla 11
Centro de recepción con sus inductores de costo

<table>
<thead>
<tr>
<th>ACTIVIDAD</th>
<th>INDUCTORES</th>
<th>VALOR INDUCTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recepción de leche (100g)</td>
<td>Leche</td>
<td>$ 840,0</td>
</tr>
<tr>
<td></td>
<td>Electricidad</td>
<td>$ 0,1</td>
</tr>
<tr>
<td></td>
<td>Depreciación</td>
<td>$ 0,3</td>
</tr>
<tr>
<td></td>
<td>mantenimiento</td>
<td>$ 0,2</td>
</tr>
<tr>
<td></td>
<td>seguro</td>
<td>$ 0,0</td>
</tr>
<tr>
<td></td>
<td>Terreno</td>
<td>$ 1,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$ 841,6</td>
</tr>
<tr>
<td>Recibir queso costeño (100g)</td>
<td>Queso</td>
<td>$ 800,0</td>
</tr>
<tr>
<td></td>
<td>Electricidad</td>
<td>$ 0,03</td>
</tr>
<tr>
<td></td>
<td>Depreciación</td>
<td>$ 1,4</td>
</tr>
<tr>
<td></td>
<td>Mantenimiento</td>
<td>$ 3,1</td>
</tr>
<tr>
<td></td>
<td>Seguro</td>
<td>$ 0,7</td>
</tr>
<tr>
<td></td>
<td>Terreno</td>
<td>$ 14,9</td>
</tr>
</tbody>
</table>

Fuente Autor del proyecto
En el anexo G archivos Excel se encuentra todos los centros de costos con el valor de los inductores en cada actividad en su totalidad.

5.5 **Calcular del costo del producto por cada línea de producción.**

Para el cálculo de costo del producto se toma las actividades necesarias para la fabricación de una referencia y se suman los valores de los costos asignados en el numeral 5.4. En la tabla 12 se encuentra el producto de queso Doble Crema Comp. Coprolac X 300g procedente de la línea de Doble Crema donde se evidencia la asignación del costo al producto.

Tabla 12

Cálculo del costo del queso doble crema x 300g Coprolac

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Costo actividad</th>
<th>Costo producto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recepción de leche</td>
<td>$2,524,68</td>
<td>$3,259,86</td>
</tr>
<tr>
<td>Calentar la leche</td>
<td>$14,73</td>
<td>$</td>
</tr>
<tr>
<td>ASEO</td>
<td>$100,38</td>
<td>$</td>
</tr>
<tr>
<td>Adición de cuajo</td>
<td>$8,00</td>
<td>$</td>
</tr>
<tr>
<td>Cortar leche</td>
<td>$7,92</td>
<td>$</td>
</tr>
<tr>
<td>Desuerrado de cuajo</td>
<td>$9,43</td>
<td>$</td>
</tr>
<tr>
<td>Hilado de cuajo</td>
<td>$123,11</td>
<td>$3,259,86</td>
</tr>
<tr>
<td>Cortar, pesar y meter en molde</td>
<td>$76,65</td>
<td>$</td>
</tr>
<tr>
<td>Desmoldar</td>
<td>$50,39</td>
<td>$</td>
</tr>
<tr>
<td>Embolsar y etiquetar</td>
<td>$221,08</td>
<td>$</td>
</tr>
<tr>
<td>Sellar</td>
<td>$114,69</td>
<td>$</td>
</tr>
<tr>
<td>Cuarto producto terminado</td>
<td>$8,79</td>
<td>$</td>
</tr>
</tbody>
</table>
Fuente Autor del proyecto

El cálculo de los costos de cada producto se encuentra en su totalidad en el anexo H.

Posteriormente de tener el costo de producción del producto se le suma los gastos administrativos, los cuales pertenecen al pago de nómina del personal administrativo, despacho y de ventas, como los gastos de servicios públicos de luz y agua así como el auxilio de rodamiento y los gastos de útiles y equipos de oficina

En el anexo H se muestran los productos con sus costos de producción, gastos administrativos precio de venta y la rentabilidad actual que genera cada uno

6 Comparación de indicadores

La comparación de los costos según el sistema o forma actual ante el propuesto se hizo para el mes de noviembre del año 2016 usando los costos de producción como base del indicador.

Cabe resaltar que en el costeo actual de la empresa se tomó un valor único para la mano de obra directa e indirecta, CIF y gastos administrativos, lo cual genera una diferencia notable en los costos de cada producto en comparación con la metodología propuesta.

En la tabla 13 se encuentra en comparativo para la línea de producción de queso Doble Crema.
Tabla 13
Comparativo costo de producción línea doble crema

<table>
<thead>
<tr>
<th>Producto</th>
<th>Costo actual</th>
<th>Costo propuesto</th>
<th>Diferencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUESO DOB. CREMA COMP. COPROLAC X 300 GRS</td>
<td>$3.534,10</td>
<td>$3.839,48</td>
<td>305,38</td>
</tr>
<tr>
<td>QUESO DOB. CREMA COMP. COPROLAC X 500 GRS</td>
<td>$5.613,80</td>
<td>$5.896,81</td>
<td>283,01</td>
</tr>
<tr>
<td>QUESO DOB. CREMA COMP. COPROLAC X 2500 GRS</td>
<td>$25.034,40</td>
<td>$24.819,15</td>
<td>-215,25</td>
</tr>
<tr>
<td>QUESO DOB. CREMA TAJADO COPROLAC X 300 GRS</td>
<td>$3.339,70</td>
<td>$3.728,34</td>
<td>388,64</td>
</tr>
<tr>
<td>QUESO DOB. CREMA TAJADO COPROLAC X 500 GRS</td>
<td>$5.692,40</td>
<td>$5.747,28</td>
<td>54,88</td>
</tr>
<tr>
<td>QUESO DOB. CREMA TAJADO COPROLAC X 1250 GRS</td>
<td>$13.435,80</td>
<td>$13.482,22</td>
<td>46,42</td>
</tr>
<tr>
<td>QUESO DOB. CREMA TAJADO QUESALAC X 200 GRS</td>
<td>$2.374,60</td>
<td>$2.724,69</td>
<td>350,09</td>
</tr>
<tr>
<td>QUESO DOB. CREMA TAJADO QUESALAC X 300 GRS</td>
<td>$3.256,60</td>
<td>$3.702,79</td>
<td>446,19</td>
</tr>
<tr>
<td>QUESO DOB. CREMA TAJADO QUESALAC X 500 GRS</td>
<td>$5.288,60</td>
<td>$5.712,73</td>
<td>424,13</td>
</tr>
<tr>
<td>QUESO DOB. CREMA TAJADO QUESALAC X 1250 GRS</td>
<td>$13.020,00</td>
<td>$13.362,94</td>
<td>342,94</td>
</tr>
<tr>
<td>QUESO DOB. CREMA TAJADO QUESALAC X 2500 GRS</td>
<td>$25.576,80</td>
<td>$25.698,12</td>
<td>121,32</td>
</tr>
<tr>
<td>QUESO DOB. CREMA COMP. COPROLAC X 2500 GRS</td>
<td>$24.887,40</td>
<td>$24.545,21</td>
<td>-342,19</td>
</tr>
<tr>
<td>QUESO DOB. CREMA TAJADO MAS POR MENOS X 300 GRS</td>
<td>$3.345,40</td>
<td>$3.752,61</td>
<td>407,21</td>
</tr>
<tr>
<td>QUESO DOB. CREMA TAJADO MAS POR MENOS X 500 GRS</td>
<td>$5.377,80</td>
<td>$5.771,43</td>
<td>393,63</td>
</tr>
<tr>
<td>QUESO DOB. CREMA COMP. MAS POR MENOS X 300 GRS</td>
<td>$3.537,10</td>
<td>$3.890,99</td>
<td>353,89</td>
</tr>
</tbody>
</table>

Fuente: Autor del proyecto

Para la línea doble crema como se evidencia en la tabla 13 el costo propuesto es mayor al costo actual en la mayoría de productos y esto se debe a que existe un solo valor para los CIF y la mano de obra y este valor es poco significativo para la realidad de los mismos, mientras que en el costeo propuesto si se especifican la mano de obra para cada producto, así como el desglose de cada uno de los costos indirectos de fabricación que intervienen específicamente en cada producto evitando así posibles subsidios entre ellos.
Para la línea bajo en grasa posee un comportamiento diferente al doble crema, aunque también existe un solo valor para los CIF y mano de obra, en los insumos específicamente la leche, como se necesita leche descremada al valor de esta le hicieron una aproximación de lo que ellos creían que era su costo, el cual se encuentra por encima del valor real de esta. En la siguiente tabla se observa los valores de leche actual y los propuestos para queso bajo en grasa x 2500g.

Tabla 15

Valores de leche queso bajo en grasa x 2500g

<table>
<thead>
<tr>
<th>Forma actual</th>
<th>Forma propuesta</th>
</tr>
</thead>
<tbody>
<tr>
<td>LECHE ENTRERA</td>
<td>$ 5.760,0</td>
</tr>
<tr>
<td>LECHE DESCREMADA</td>
<td>$ 23.040,0</td>
</tr>
<tr>
<td>Costo total leche</td>
<td>$ 28.800,0</td>
</tr>
</tbody>
</table>

Fuente Autor del proyecto
Para la línea de queso costeño pasa igual que en la línea doble crema donde en valor único de CIF y mano de obra no es significativo con la realidad de la empresa generando así las diferencias que se observaron en la tabla 16.

Para la línea de otros sucede lo mismo que en costeño y doble crema donde los CIF y mano de obra no son del todo acertados puesto que se toma un solo valor para todos, mientras que el Deslactosado tiene el mismo comportamiento que el de bajo en grasa ya que para este también se necesita leche descremada por lo tanto tiene la misma aproximación del valor que realizo la empresa. Ya en la tabla 17 se ve el comparativo de cada producto del costeo actual con el propuesto.
Tabla 17

Comparativo costo de producción línea otros

<table>
<thead>
<tr>
<th>Producto</th>
<th>Costo actual</th>
<th>Costo propuesto</th>
<th>Diferencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESLACTOSADO COPROLAC X 500GRS</td>
<td>$6.120,10</td>
<td>$5.994,87</td>
<td>125,23</td>
</tr>
<tr>
<td>BLOQUE QUESO DESLACTOSADO COPROLAC 3 LBS</td>
<td>$17.074,50</td>
<td>$16.992,75</td>
<td>81,75</td>
</tr>
<tr>
<td>QUESILLO COPROLAC X 350G</td>
<td>$3.993,20</td>
<td>$4.302,49</td>
<td>309,28</td>
</tr>
<tr>
<td>QUESO CAMPESINO COPROLAC X 300GRS</td>
<td>$3.534,06</td>
<td>$3.928,18</td>
<td>394,12</td>
</tr>
<tr>
<td>QUESO CHITAGA COPROLAC X 500GRS</td>
<td>$5.560,90</td>
<td>$5.647,87</td>
<td>86,97</td>
</tr>
<tr>
<td>QUESO HOLANDES X 250G</td>
<td>$3.363,00</td>
<td>$4.103,22</td>
<td>740,22</td>
</tr>
<tr>
<td>QUESO HOLANDES X 500G</td>
<td>$6.081,40</td>
<td>$7.152,86</td>
<td>1.071,46</td>
</tr>
<tr>
<td>QUESILLO QUESALAC X 350G</td>
<td>$3.990,60</td>
<td>$4.146,47</td>
<td>155,87</td>
</tr>
<tr>
<td>QUESO CHITAGA MAS POR MENOS X 500GRS</td>
<td>$5.511,00</td>
<td>$5.685,53</td>
<td>174,53</td>
</tr>
<tr>
<td>QUESILLO MAS POR MENOS X 350G</td>
<td>$4.116,30</td>
<td>$4.312,98</td>
<td>196,68</td>
</tr>
</tbody>
</table>

Fuente: Autor del proyecto
7 Recomendaciones

- Para realizar el pago de la leche se recomienda realizar la muestra de laboratorio a cada lechero y hacer el pago de acuerdo a los resultados de las muestras de esta manera en promedio se ahorra 50 pesos por litro de leche (1 litro de leche alcanza para 125 gramos de queso aprox.).
- Hacer la entrega de bolsas y etiquetas fechadas al área de empaque a tiempo para de esta manera evitar cuellos de botella y retrasos en las actividades de sellado.
- Planificar de manera más eficiente la producción específicamente en los tiempos de recepción de leche ya que no se tiene un control exacto de este y en muchas ocasiones los operarios se quedan sin hacer nada.
- Se recomienda la puesta en marcha y seguimiento del modelo propuesto, ya que como se ha evidenciado a lo largo del proyecto este se ajusta a las necesidades que posee actualmente la empresa.
- Se recomienda realizar un estudio para la actualización de algunas maquinarias las cuales se pueden llegar a considerar algo obsoletas.

8 Conclusiones

- Los diagramas de flujo y operaciones permiten a la empresa tener el conocimiento del proceso de producción de una manera más sencilla.
• Con el estudio de métodos y tiempos realizado se logró estandarizar los tiempos de producción así como los métodos implementados permitiendo obtener un conocimiento más fácil sobre los inductores de costo de mano de obra y CIF.

• Con la elaboración del proyecto se vio de una manera más específica el comportamiento de los costos de producción en sus diferentes líneas, y evidencio los vacíos que posee el costeo actual de la empresa.

• El proyecto permitió observar la rentabilidad existente de cada producto, facilitando la toma de decisiones estratégicas de ventas.

• Para la línea de costeño en el sellado al vacío se usa una selladora bastante antigua lo cual hace que los tiempos de mano de obra y de algunos CIF se incrementen más en comparación con las otras máquinas selladoras al vacío, generando sobrecostos.

• La leche representa un 75% del valor del costo del producto, por lo cual es indispensable tener un buen manejo de este.
Bibliografía

http://www.gestiopolis.com/sistema-de-costos-basado-en-las-actividades-abc/

http://www.gerencie.com/costos-abc.html

[16] HICK, Douglas T. El sistema de costos basado en actividades (ABC) Guía para su

Definición de método inductivo, disponible en: http://definicion.de/metodo-inductivo/

Barcelona.

[19] MORILLO MORENO, Marysela. Diseño de sistemas de costeo: fundamentos teóricos. :

[20] PATIÑO VANEGAS, Marcos A. (2014); Diagnóstico, formulación e implementación de la
estructura de costos para la cooperativa de transportes de San Gil, Cotrasangil a partir del sistema
de costeo ABC. Tesis de pregrado Ingeniería Industrial. universidad industrial de Santander,
Bucaramanga, Colombia. 124 p.

Editor | apuntes, 2012.

[22] PÉREZ FALCO, Grisel. Análisis e interpretación del estado financiero de la empresa de
estructuras metálicas "Paco Cabrera" de Las Tunas, Cuba. Córdoba, AR: El Cid Editor | apuntes,
2009.
[23] QUINTERO COSTEA, Diana M. (2004); Diseño de un sistema de costos ABC en la empresa distribuciones pastor julio delgado y Cia. Ltda. Tesis de pregrado Ingeniería Industrial. universidad industrial de Santander, Bucaramanga, Colombia. 305 p.

