APLICACIÓN EJEMPLO DE DIGITALIZACIÓN INDUSTRIAL MEDIANTE LA INTEGRACIÓN DE MATLAB / SIMULINK Y TIA PORTAL EN TIEMPO REAL BASADA EN UN SISTEMA DE CONTROL DE TEMPERATURA SIMULADO

DANIELA FORERO HERNÁNDEZ

UNIVERSIDAD SANTO TOMÁS DE AQUINO
FACULTAD DE INGENIERÍA ELECTRÓNICA
PROYECTO DE GRADO
BOGOTÁ D.C.
2018
APLICACIÓN EJEMPLO DE DIGITALIZACIÓN INDUSTRIAL MEDIANTE LA INTEGRACIÓN DE MATLAB / SIMULINK Y TIA PORTAL EN TIEMPO REAL BASADA EN UN SISTEMA DE CONTROL DE TEMPERATURA SIMULADO

PRESENTADO POR:
DANIELA FORERO HERNÁNDEZ

PRESENTADO A:
COMITÉ DE GRADO
FACULTAD DE INGENIERÍA ELECTRÓNICA

DIRECTOR DE PROYECTO
ING. ARMANDO MATEUS ROJAS

MONOGRAFÍA PARA OPTAR POR EL TÍTULO DE INGENIERA ELECTRÓNICA

UNIVERSIDAD SANTO TOMÁS DE AQUINO
FACULTAD DE INGENIERÍA ELECTRÓNICA
PROYECTO DE GRADO
BOGOTÁ D.C.
2018
CONTENIDO

TÍTULO ..........................................................................................................................5
1.  INTRODUCCIÓN .......................................................................................................6
2.  PLANTEAMIENTO DEL PROBLEMA .........................................................................7
3.  ESTADO DEL ARTE .....................................................................................................8
3.1.  INDUSTRIA 4.0 EN COLOMBIA ........................................................................8
3.2.  INTEGRACIÓN MATLAB Y TIA PORTAL ..........................................................9
4.  JUSTIFICACIÓN ........................................................................................................11
5.  OBJETIVOS ................................................................................................................12
   5.1.  OBJETIVO GENERAL .......................................................................................12
   5.2.  OBJETIVOS ESPECÍFICOS ...........................................................................12
6.  MARCO TEÓRICO .....................................................................................................13
   6.1.  INDUSTRIA 4.0 ...............................................................................................13
   6.2.  DIGITALIZACION ............................................................................................13
   6.3.  CONTROLADOR PID .....................................................................................14
   6.4 BLOQUE PARA SIMULACIÓN DE SISTEMAS DE CONTROL CON TIA
       PORTAL .................................................................................................................15
   6.5 TARGET 1500S ...................................................................................................15
   6.6 OPEN CONTROLLER ........................................................................................16
7.  DISEÑO Y EJECUCIÓN DEL PROYECTO ................................................................16
   7.1 Respuesta temporal de la planta y diseño del controlador .................................16
   7.2 Configuración de comunicación .........................................................................18
   7.2.1 Modelo Simulink ........................................................................................18
   7.2.2 Codificación con Target S ............................................................................19
   7.2.3 Configuración Web Server ..........................................................................20
   7.2.4 Cargar el modelo en TIA Portal ....................................................................21
   7.3 Programa en TIA Portal .....................................................................................23
   7.3.1 Creación de variables ..................................................................................23
   7.3.2 Bloques de programa ...................................................................................24
   7.3.4 Tabla de forzado de variables .....................................................................27
   7.4 Utilidad y adaptabilidad del sistema ..................................................................27
TÍTULO

APLICACIÓN EJEMPLO DE DIGITALIZACIÓN INDUSTRIAL MEDIANTE LA INTEGRACIÓN DE MATLAB / SIMULINK Y TIA PORTAL EN TIEMPO REAL BASADA EN UN SISTEMA DE CONTROL DE TEMPERATURA SIMULADO.
1. INTRODUCCIÓN

La competitividad en el mercado industrial ha incrementado considerablemente dados los avances tecnológicos en el transcurso de los años. La cuarta revolución industrial trajo consigo un nuevo concepto en el manejo de la información y en la forma de hacer ingeniería, incrementando la productividad con procesos más rápidos, más flexibles y más eficientes. La integración del mundo físico y el mundo digital en todas las etapas del proceso productivo trae un impacto positivo para el sector industrial en cuanto a costos, tiempos, alcance y calidad.

El desarrollo de aplicaciones que utilicen herramientas de software innovadoras permite darle un valor agregado al proceso enmarcándolo en el concepto de industria 4.0 y poder integrar herramientas de software alejadas del ámbito industrial como MATLAB abre las puertas a soluciones más robustas.

El desarrollo de una aplicación ejemplo de digitalización industrial integrando MATLAB y TIA Portal permite estimar y visualizar la respuesta del sistema en tiempo real, lo que es necesario en algunos procesos industriales. Por ejemplo, donde exista criticidad en el control de temperatura es ahora posible modelar, simular y monitorear la respuesta del sistema como se propone en este trabajo.
2. PLANTEAMIENTO DEL PROBLEMA

La Industria 4.0 es el término otorgado por el Gobierno Alemán a la cuarta revolución industrial en la que estamos inmersos y no es más que la digitalización de las empresas industriales para ser más competitivas [1].

Cuando se analiza el producto interno bruto de Colombia se observa que el sector agropecuario, la industria manufacturera, el sector comercio y el sector financiero representan aproximadamente un 60% de este indicador [2]. A pesar de los altos costos de producción y los retrasos en la entrega de los productos finales, la industria colombiana ha sabido dar respuesta a las demandas de procesos, sin embargo, esto ha elevado considerablemente el costo del bien adquirido por el cliente final, afectando negativamente el desarrollo industrial del país.

En el marco de la Industria 4.0 y en respuesta a las problemáticas de la industria colombiana existe la necesidad por parte de la empresa Siemens de realizar una integración entre su software TIA Portal y el software de Mathworks MATLAB ya que actualmente existen procesos que TIA Portal, software reconocido en el ámbito industrial, no puede ejecutar debido a la complejidad de los modelos matemáticos de los mismos, dichos procesos pueden incluir optimización, control numérico y en algunos casos inteligencia artificial. Esta limitante se solventa mediante herramientas externas como MATLAB que al trabajar en conjunto con TIA Portal mejoran significativamente la capacidad de este para el desarrollo de procesos robustos.

Es necesario resaltar en este punto que pese a que Siemens provee una herramienta que facilita la conectividad TIA Portal – MATLAB, no existen casos reales de éxito de la misma. Por tal motivo, se propone un proyecto cuya aplicación permita desarrollar un sistema de control simulado de temperatura en lazo cerrado visualizando el comportamiento de la planta en tiempo real y su respuesta al controlador implementado.
3. ESTADO DEL ARTE

3.1. INDUSTRIA 4.0 EN COLOMBIA

A nivel mundial existen muchos casos de éxito en aplicaciones reales donde el acercamiento de la Industria 4.0 ha beneficiado a las empresas productoras de bienes y servicios, incrementando la productividad. Desde que este concepto se viene implementando en Colombia existen varios proyectos ya desarrollados, encontrando entre los más destacados:

- **GESTIÓN DEL AIRE EN LA CIUDAD DE LA ETERNA PRIMAVERA CON TECNOLOGÍA DE DIGITALIZACIÓN** [3].

Esta aplicación realiza el tele monitorio de gases en las calderas y chimeneas de termogeneradoras de 5 empresas de producción industrial en Medellín. Se monitorean 8 variables en tiempo real en cada uno de los puntos de medición y se realiza una base de datos con el registro de estas variables para su análisis y procesamiento. En los puntos se colocan medidores de gases, PLC Siemens S7-1200 y una estación de visualización con WinCC. La información recolectada es enviada mediante GPRS al sistema de monitoreo central.

**Figura1.** Izquierda, Arquitectura del sistema. Derecha, Mímico del proceso [3].

- **IMPRESORA 3D GRAN FORMATO CONCONCRETO** [4].

Esta aplicación es una de las innovaciones importantes en este sector, con esta impresora 3D de gran formato se podrán hacer casas, edificios de manera más rápida, y cualquier objeto, hecho de concreto con ahorro de materia prima y menos desperdicios de materiales. Esta impresora utiliza concreto, en vez de tinta, reto que ha llevado a Conconcreto a encontrar la mezcla perfecta que, de llevarla a las obras cumpla con todos los requisitos y las necesidades de seguridad y confiabilidad.

La impresora cuenta con una manguera conectada que suministra la mezcla, un tablero de control, con la tecnología Sinumerik de Siemens, un controlador
numérico computarizado que funciona como un cerebro y realiza diversas formas. Esta tecnología reconoce el software de diseño, interpreta los planos requeridos en lenguaje de programación, envía la señal a la máquina y ejecuta el trabajo programado. Así la máquina “imprime” dosis exactas de concreto con movimientos milimétricos.

- **VARIADOR PCP (Progressive Cavity Pump) PARA APLICACIONES DE PETRÓLEO Y GAS [5].**

Siemens Colombia ha desarrollado, especialmente para el sector de petróleo y gas, un variador con amplias funciones y de fácil manejo como solución a los altos costos energéticos que se generan en los procesos de extracción, ya sea por paradas de la bomba, paradas no controladas y atasques debido a contenido sólido.

Gracias a la versatilidad y a la flexibilidad en el software y hardware, el tablero Wellmaster de Siemens, tiene la versatilidad de operar y controlar cualquiera de las tres aplicaciones de bombeo, como son: bombeo PCP, bombeo mecánico y bombeo electro sumergible, lo cual significa que dese un único equipo, se opera todo el campo.

### 3.2. **INTEGRACIÓN MATLAB Y TIA PORTAL**

En la actualidad no se tiene registro de casos de éxito en la industria para esta integración, sin embargo, se presenta un ejemplo de aplicación.

- **Digitalización con TIA Portal: Puesta en servicio virtual con SIMATIC y Simulink [6].**

El software Simulink de MathWorks se utiliza frecuentemente en las técnicas de automatización y regulación para simular procesos y crear algoritmos. El requisito necesario es simular en pocos pasos el modelo, el algoritmo o la función dentro de un entorno virtual utilizando PLCSIM Advanced o utilizando un controlador software basado en el hardware.

En esta aplicación se simula y optimiza un control para un modelo de un brazo de péndulo impulsado por hélice creado con Simulink en el entorno MATLAB. El lazo de control consiste en un sistema controlado que emula el comportamiento físico del brazo del péndulo y un controlador PID para colocar el brazo del péndulo en el ángulo de deflexión especificado.
Esto puede ser implementado de 3 maneras diferentes:

1. Conexión de modelos Simulink con SIMATIC PLCSIM Advanced a través de API [7].
2. Conexión de modelos Simulink con SIMATIC PLCSIM Advanced a través de OPC UA [8].
3. Aplicación de SIMATIC Target 1500S para la simulación del modelo Simulink basado en el hardware [9].

Figura2. Esquema general: Soluciones para la aplicación [6].
4. JUSTIFICACIÓN

En una visión del futuro de la fabricación, una red omnipresente de personas, elementos y máquinas creará entornos de producción completamente nuevos. Los fabricantes, al igual que investigadores y gobiernos están trabajando en conjunto para explorar y poner en práctica esta visión de la fábrica interconectada del mañana, la cual se materializa en el concepto “Industria 4.0” [10].

Este concepto da como resultado miles de millones de máquinas, sistemas y sensores en todo el mundo que se comunicarán entre sí y compartirán información. Esto no sólo permitirá a las empresas que la producción sea más eficiente, sino que les dará una mayor flexibilidad en términos de adaptación de la producción para satisfacer las necesidades del mercado [10].

En automatización e ingeniería de control, el software de MathWorks: MATLAB/Simulink es utilizado para simular procesos y desarrollar scripts. Al integrar esta herramienta directamente al proceso, no se hablará de simulaciones si no de acciones de control en tiempo real, se podrán implementar controles mucho más complejos y así mismo, dar respuesta a las necesidades individualizadas del cliente, dándole un importante valor agregado al bien o servicio generado ya que en un futuro no muy lejano serán las piezas las que le dirán a las máquinas que hacer y una plataforma de automatización sólida y totalmente integrada es un “deber ser”.

MATLAB como herramienta para la implementación de sistemas de control es un software pionero a nivel mundial debido a la gran cantidad de prestaciones y la robustez que lo caracteriza, razón por la cual es la mejor elección para integrarlo a un proceso productivo y, mediante el desarrollo de una aplicación que simule un control de temperatura en lazo cerrado visualizando el comportamiento de la planta en tiempo real y su respuesta al controlador, se evidenciará una mejora en las aplicaciones y la ampliación de la gama de soluciones a nivel industrial.

Así mismo se brindará una constante adaptación a la demanda reduciendo costos de producción y tiempos de entrega, objetivos enmarcados en la Industria 4.0 y que abrirá puertas en Colombia a la digitalización.
5. OBJETIVOS

5.1. OBJETIVO GENERAL

Desarrollar una aplicación que permita mostrar la integración de MATLAB/Simulink y TIA Portal realizando la simulación de un sistema de control de temperatura en tiempo real como ejemplo de digitalización industrial.

5.2. OBJETIVOS ESPECÍFICOS

4.2.1 Simular en MATLAB/Simulink la respuesta temporal de la función de transferencia de una planta, y determinar las constantes proporcional, integral y derivativa para el controlador de la misma.

4.2.2 Establecer la comunicación de MATLAB/Simulink con un controlador lógico programable PLC marca Siemens, integrando bloques de función al TIA Portal y configurando el external mode de MATLAB.

4.2.3 Desarrollar el programa en el controlador, de manera que se pueda acceder a los parámetros del modelo desarrollado en Simulink y muestre la respuesta del proceso mediante el monitoreo de las variables presentes.

4.2.4 Demostrar la utilidad del sistema, evidenciando la adaptabilidad y dinamismo que pueden tener los procesos industriales mediante el desarrollo de esta aplicación.
6. MARCO TEÓRICO

6.1. INDUSTRIA 4.0

El término Industria 4.0 significa la cuarta revolución industrial. Esta incorpora nuevas técnicas avanzadas para mejorar la industria y dar respuesta a los desafíos globales. La idea principal de la industria 4.0 es usar las tecnologías de la información emergentes para implementar IoT y servicios de tal manera que la administración del proceso y la ingeniería están profundamente integradas haciendo de la producción un proceso flexible, eficiente y amigable con el medio ambiente, manteniendo la alta calidad y bajo costos. Las principales características de esta cuarta revolución incluyen (1) integración horizontal por medio de cadenas de valor que faciliten la colaboración entre compañías, (2) integración vertical de los subsistemas dentro del proceso productivo para una producción flexible y reconfigurable, e (3) integración total de ingeniería en la cadena de valor para permitir la personalización del producto. En la Figura 4 se muestra la relación entre estos 3 tipos de integración [11].

![Diagrama de integración horizontal, vertical y End-to-end](image)


6.2. DIGITALIZACION

Una producción eficiente y libre de errores es de gran importancia para el éxito económico de una empresa. Para asegurar esto, una buena calidad y administración de recursos es indispensable. Una importante parte de estas áreas es el registro de los parámetros del proceso en las plantas de producción [12].

Los datos de máquina son información sobre el estado del sistema. Ellos brindan información de los tiempos en marcha, tiempos de conversión y números de producción. Los datos de proceso son valores como temperaturas, presiones y velocidades. Estos pueden ser para determinar problemas de calidad en el tiempo o para realizar posteriormente un análisis de errores. Los
datos de operación pueden ser utilizados para hacer análisis del uso y rentabilidad de las plantas de producción [12].

Si esta información es enviada a tiempo al sistema MES (manufacturing execution system), este tendrá la posibilidad de aplicar mejoras al proceso de producción, a la eficiente operación de los equipos, etc [12].

La digitalización termina siendo la integración de todos los sub-sistemas del proceso al sistema de gestión de datos MES, en donde se puede monitorear y tomar acción, en tiempo real, sobre el proceso productivo. Es fundamental en el concepto de Industria 4.0.

6.3. CONTROLADOR PID

Es un mecanismo de control que, mediante un sistema de realimentación, permite reducir o eliminar el error entre dos valores: valor medido y valor deseado (setpoint), mediante sus tres parámetros de control proporcional, integral y derivativo. Estas acciones deben ser ajustadas de manera correcta para lograr el mejor desempeño del sistema [13].

- Acción proporcional: Esta acción permite reducir el error de estado estacionario en cierto valor, sin embargo, en pocos casos logra llevarlo a cero y en caso de adoptar un valor demasiado alto, puede hacer que el sistema entre en sobreoscilación.

- Acción integral: Esta acción corrige y compensa las perturbaciones, además de mantener la variable controlada en el valor deseado (setpoint).

- Acción derivativa: Mediante esta acción es posible estabilizar de manera más rápida la variable controlada después de cualquier tipo de perturbación.

![Figura 4: Esquema básico de control PID [13]](image)
### 6.4 BLOQUE PARA SIMULACIÓN DE SISTEMAS DE CONTROL CON TIA PORTAL

El bloque “LSim_PT1” simula un elemento PT1. El elemento PT1 es un elemento de transferencia proporcional (PT) con un retraso de primer orden.

**Caso de uso:**

Un elemento PT1 puede ser utilizado, por ejemplo, para simular un sistema de temperatura [14].

**Función de transferencia:**

\[
F(p) = \frac{gain}{tmLag1 \cdot p + 1}
\]

![Figura 5. Bloque “LSim:PT1” en TIA Portal. [14]](image)

### 6.5 TARGET 1500S

Target 1500S es un add on de Simulink que genera un objeto ejecutable para un control compatible con ODK a partir de un modelo Simulink, lo que permite ejecutar un modelo Simulink en un controlador.

Target 1500S genera automáticamente todos los bloques y archivos necesarios para ello. Se crea un archivo SCL y un archivo SO a partir del código C/C++ generado. Este archivo SCL se importa como fuente externa a STEP 7 y contiene los bloques de función generados. El archivo SO contiene la implementación C/C++ y está disponible para la CPU después de la transferencia al servidor web [15].
6.6 OPEN CONTROLLER

La CPU 1515SP PC (F) es un autómata programable basado en PC con el diseño del ET 200SP. Se emplea para realizar tareas de control y visualización. El software IPC DiagBase suministrado proporciona funciones básicas de diagnóstico y le asiste a la hora de manejar la BIOS [16].

**Figura 6.** SIMATIC ET200SP Open Controller [16].

7. DISEÑO Y EJECUCIÓN DEL PROYECTO

7.1 Respuesta temporal de la planta y diseño del controlador

La función de transferencia de la planta corresponde a un sistema continuo PT3, conformado por 3 elementos PT1 que son utilizados en este caso para simular un sistema de temperatura.

Función de transferencia de la planta:

\[ G(s) = \frac{1}{(10s + 1)(10s + 1)(5s + 1)} \]

Teniendo la función de transferencia del sistema, se grafica su respuesta en lazo abierto, con el fin de determinar si es estable y verificar que parámetro mejorar en dicha respuesta, ya sea error en estado estacionario, sobre impulso o tiempo de establecimiento de la señal.
Figura 7. Respuesta de la planta en lazo abierto

Debido a que el sistema presenta estabilidad se define que el parámetro a mejorar es el tiempo de respuesta, por ende, el controlador deberá estabilizar la planta en un tiempo menor.

Para el diseño del controlador se hace uso de la herramienta PID Tuner de MATLAB, con el fin de encontrar las constantes de control (proporcional, integral y derivativa).

Así mismo se realiza la simulación de la respuesta de la planta en lazo cerrado para poder evidenciar, al finalizar la implementación de la aplicación, que el PLC está realizando las acciones deseadas.

Figura 8. Modelo Simulink en lazo cerrado de la planta
7.2 Configuración de comunicación

Para establecer la comunicación entre MATLAB y el PLC es importante codificar el modelo de Simulink e incluirlo en el proyecto de TIA Portal, así mismo se debe configurar el external mode de Simulink para monitorear en tiempo real el sistema.

7.2.1 Modelo Simulink

Con las constantes P, I, D ya determinadas se implementa en Simulink el modelo que va a ser cargado al PLC, configurando así los parámetros del control PID.

![Figura 9. Modelo Simulink controlador PID](image)

![Figura 10. Asignación constantes PID](image)
7.2.2 Codificación con Target S

Para la construcción del modelo de Simulink al TIA Portal se hace uso del Target 1500S, configurando las siguientes propiedades:

- System Target File
- Interface
- Tiempo de simulación
- Parámetros de comportamiento
- Opciones de Target S

Esta configuración se realiza de manera que la aplicación funcione según lo deseado.

![Figura 11. Propiedades asignadas para la construcción del modelo](image-url)
7.2.3 Configuración Web Server

Es necesario hacer la activación del Web Server del equipo para enviar y recibir información además de acceder al archivo generado .SO.

**Figura 12. Configuración de dispositivos y Web Server.**

En la ventana de propiedades de la CPU 1515SP se activa el Web Server del dispositivo en la casilla resaltada, y a continuación ingresa en la opción de User management para continuar con la configuración de permisos.

**Figura 13. Habilitación de permisos de administrador.**
Es importante acceder con permisos de administrador para poder efectuar la recepción y envió de información del equipo de manera online.

Una vez activado el web server el archivo .SO generado por el Target 1500S, que contiene el modelo del controlador, debe ser cargado al web server del equipo de manera que el PLC lo pueda ejecutar.

Para acceder al web server desde el explorador de internet nos conectamos a la IP y puerto del equipo asignados.

![Figura 14. Web Server Open Controller](image)

7.2.4 Cargar el modelo en TIA Portal

El Target 1500S crea un archivo .scl que es agregado al proyecto del TIA Portal como una fuente externa. Los bloques generados y su función se muestran en la Tabla 1.

<table>
<thead>
<tr>
<th>Bloque de Función / Tipo de Variable</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>FB ModelPID_Unload</td>
<td>Elimina el archivo .SO de la memoria de trabajo de la CPU.</td>
</tr>
<tr>
<td>FB ModelPID_Load</td>
<td>Carga el archivo .SO desde el web server a la memoria de trabajo de la CPU.</td>
</tr>
<tr>
<td>FB</td>
<td>Llama el archivo .SO que corresponde al</td>
</tr>
<tr>
<td>Modelo</td>
<td>Descripción</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>ModelPIDOneStep</td>
<td>Modelo original de Simulink.</td>
</tr>
<tr>
<td>FB ModelPIDCallExtMode</td>
<td>Es llamado para utilizar el external mode de Simulink.</td>
</tr>
<tr>
<td>PLC Data Type ModelPIDExtModeStatus</td>
<td>Muestra la salida STATUS del bloque de función ModelPIDCallExtMode.</td>
</tr>
<tr>
<td>FB ModelPIDReadWriteParameters</td>
<td>Permite leer y escribir los parámetros del modelo.</td>
</tr>
<tr>
<td>PLC Data Type ModelPIDParams</td>
<td>Tipo de dato de entrada del bloque ModelPIDReadWriteParameters.</td>
</tr>
</tbody>
</table>

**TABLA1. Bloques de Función generados por Target 1500S. [17]**

TIA Portal genera los bloques y tipos de variables a ser utilizados en el programa por el Target 1500S.

**Figura 15. Bloques y tipos de variables generadas**
7.3 Programa en TIA Portal

Desarrollo e implementación del programa en TIA Portal, mostrando tablas de variables, bloques de función y código escrito en ladder.

7.3.1 Creación de variables.

Las variables que intervienen en el sistema son creadas en un bloque de datos (DB), con tipos de datos LReal, Bool y Word, además de estructuras de datos que permiten visualizar el estado del proceso.

Figura 16. Tabla de variables utilizadas en el programa.
7.3.2 Bloques de programa

Desarrollo de código de programa en TIA Portal, haciendo uso de bloques de organización y demás herramientas que ofrece el software.

Figura 17. Código en Bloque Startup OB100

El OB100 se ejecuta una sola vez cuando el modo de operación del PLC cambia de Stop a Run, en este caso cargando y descargando de la memoria de trabajo el archivo .SO generado por el Target 1500S.
**Figura 18.** Cycling interrupt OB30 (1).

**Figura 19.** Cycling interrupt OB30 (2).
Mediante la sincronización con MATLAB es posible tener el modelo de la planta en el PLC y ejecutar el lazo cerrado de control que se corre en el bloque de organización Cycling Interrupt (OB30).

Se tienen 4 segmentos de programa, donde se desarrolla el sistema de control.

**Network 1:** En este segmento se encuentra un bloque PT3 en el cual se encuentra cargada la función de transferencia del sistema, este bloque consta de 3 bloques PT1.

**Network 2:** Este bloque es generado por el Target 1500S, el cual contiene el modelo del controlador implementado en Simulink.

**Network 3:** Este bloque es generado por el Target 1500S y es llamado para utilizar el external mode de MATLAB.

**Network 4:** En este segmento se llama un bloque generado por el Target 1500S que permite leer y escribir los parámetros del modelo del controlador (Network 2) permitiendo la manipulación del sistema.

![Diagrama de estados](image)

**Figura 20. Máquina de estados**

**OB100**
S0: Start up

**OB30**
S1: Network 1  S3: Network 3
S2: Network 2  S4: Network 4
7.3.4 Tabla de forzado de variables

Se agrega una tabla de forzado de variables, con el fin de cambiar los parámetros de las mismas y modificar la respuesta del controlador en tiempo real.

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Display format</th>
<th>Monitor value</th>
<th>Modify value</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;Parametros&quot;.setpoint</td>
<td></td>
<td>Floating point</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&quot;Parametros&quot;.process</td>
<td></td>
<td>Floating point</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&quot;Parametros&quot;.lowPID</td>
<td></td>
<td>Floating point</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&quot;Parametros&quot;.statusModelPID</td>
<td></td>
<td>Hex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&quot;Parametros&quot;.statusExternalMode_Status_TECV</td>
<td>Hex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&quot;Parametros&quot;.statusExternalMode_Status_TDEND</td>
<td>Hex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&quot;Parametros&quot;.statusExternalMode_Status_ODX</td>
<td>DEC+/-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&quot;Parametros&quot;.statusExternalMode_Status_EndMode</td>
<td>Hex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&quot;Parametros&quot;.paramAccess</td>
<td></td>
<td>Bool</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&quot;Parametros&quot;.writeActive</td>
<td></td>
<td>Bool</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&quot;Parametros&quot;.parameters.PIDController_ID</td>
<td>Floating point</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&quot;Parametros&quot;.parameters.PIDController_D</td>
<td>Floating point</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&quot;Parametros&quot;.parameters.PIDController_LowerSaturation</td>
<td>Floating point</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&quot;Parametros&quot;.parameters.PIDController_I</td>
<td>Floating point</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&quot;Parametros&quot;.parameters.PIDController_P</td>
<td>Floating point</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&quot;Parametros&quot;.parameters.Integrator_lowerLimit</td>
<td>Floating point</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&quot;Parametros&quot;.parameters.Integrator_upperLimit</td>
<td>Floating point</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&quot;Parametros&quot;.parameters.Filter_saturation</td>
<td>Floating point</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&quot;Parametros&quot;.parameters.Filter_IC</td>
<td>Floating point</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&quot;Parametros&quot;.statusParameters</td>
<td></td>
<td>Hex</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Figura 21. Tabla de forzado de variables**

7.4 Utilidad y adaptabilidad del sistema

Al tener acceso a los parámetros del controlador, el sistema se adapta a cualquier requerimiento de control permitiendo modificar los parámetros del controlador PID, lo cual amplía de manera significativa la utilidad. Esto se puede evidenciar gracias al monitoreo en tiempo real desde MATLAB, visualizando gráficamente los cambios efectuados en la respuesta del sistema.
8. RESULTADOS DEL PROYECTO

**Figura 22.** Esquema de la aplicación.

8.1 Respuesta temporal de la planta y diseño del controlador

En la Figura 21 se muestra la sintonización del controlador PID para la planta, encontrando las constantes de control y evidenciándose cómo la respuesta temporal del sistema mejora. Las constantes determinadas son: P=1.9, I=0.065 y D= 8.5.

**Figura 23.** PID Tuner, MATLAB.
Una vez configuradas las constantes en el modelo del controlador la respuesta esperada en lazo cerrado del sistema es simulada en MATLAB siguiendo el modelo de la Figura 8.

![Figura 24. Simulación lazo cerrado de control](image)

8.2 Configuración de comunicación

Al hacer la codificación del modelo con el Target 1500S se crean los archivos .scl y .so. Cuando se ingresa al web server del equipo debe cargarse el .so en la memoria del PLC de manera que pueda ser ejecutado.

![Figura 25. Archivo .so cargado en el PLC](image)
Al finalizar la configuración del External mode y del web server queda preparada la comunicación entre Simulink y TIA Portal. Se verificará la conexión exitosa cuando el programa sea cargado al PLC.

8.3 Programa en TIA Portal

Cuando ha sido cargado el programa en el PLC la manera de visualizar el estado de la comunicación y los valores de las variables del programa es por medio del MODO ONLINE de TIA Portal en la tabla de forzado de variables generada.

Para determinar si el modelo cargado en el equipo es el mismo al diseñado en Simulink realizamos una prueba leyendo los parámetros del modelo. En la Figura 23 se evidencia que las constantes P, I, D corresponden a las configuradas.

![Figura 26. Lectura de parámetros del modelo](image)

Cuando es activado el external mode de MATLAB es posible visualizar en tiempo real la respuesta del sistema en el PLC. Esta respuesta es igual a la esperada en la Figura 22 lo que demuestra que el modelo de Simulink fue cargado con éxito en el PLC.

En el monitoreo en tiempo real se observan las señales del controlador (azul), setpoint (amarillo) y la respuesta en lazo cerrado del sistema (rojo).
8.4 Utilidad y adaptabilidad del sistema

Para evidenciar que el sistema responde a los cambios en los parámetros en tiempo real se realiza una prueba modificando en el TIA Portal la saturación máxima del controlador establecida inicialmente en 100.

Cuando se aplica el cambio inmediatamente en el Scope de MATLAB se visualiza la nueva respuesta del sistema.

**Figura 27. Monitoreo en tiempo real**

**Figura 28. Respuesta en tiempo real al cambio en la saturación del controlador.**
9. IMPACTO SOCIAL

Introducir el concepto de industria 4.0 en Colombia mejora considerablemente la competitividad de la industria del país, incluyendo una mejora en la respuesta a las necesidades de los mercados, reaccionando con velocidad y flexibilidad a los cambios, con lo cual es posible ofrecer una mayor variedad de productos de alta calidad.

El desarrollo de esta aplicación trae consigo un impacto social elevado, ya que optimizar la productividad de las compañías aumenta cuantitativa y cualitativamente los bienes y servicios que se proveen repercutiendo de manera directa en la calidad de vida de las personas.

10. CONCLUSIONES

MATLAB como herramienta de software para el análisis de sistemas de control, ofrece una gran variedad de utilidades entre ellas la sincronización con software del sector industrial, incrementando considerablemente la robustez de los procesos gracias a la capacidad para simular sistemas de control y sintonizarlos.

El nuevo desarrollo de Siemens Target 1500S es una herramienta que amplía significativamente la gama de soluciones para los clientes finales permitiendo realizar la integración entre MATLAB y TIA Portal. Así mismo permite utilizar el Extenal mode de Simulink logrando monitorear gráficamente el estado de un proceso en tiempo real.

Al conocer los bloques generados por el Target 1500S y su funcionalidad es posible desarrollar un programa en el TIA Portal que permita aprovechar al máximo las funcionalidades de esta integración. Poder realizar el monitoreo en tiempo real del proceso y la facilidad para realizar cambios en los parámetros del modelo son funcionalidades que permiten enmarcar las aplicaciones en el concepto de Industria 4.0.

Esta aplicación ejemplo muestra el dinamismo que es posible tener en un proceso gracias a esta integración, agregando un modelo de Simulink en el TIA Portal, permitiendo realizar cambios de los parámetros y visualizando gráficamente la respuesta del sistema en tiempo real.
11. BIBLIOGRAFÍA


