Información Importante

La Universidad Santo Tomás, informa que el(los) autor(es) ha(n) autorizado a usuarios internos y externos de la institución a consultar el contenido de este documento a través del Catálogo en línea del CRAI-Biblioteca y el Repositorio Institucional en la página Web de la CRAI-Biblioteca, así como en las redes de información del país y del exterior con las cuales tenga convenio la Universidad.

Se permite la consulta a los usuarios interesados en el contenido de este documento, para todos los usos que tengan finalidad académica, nunca para usos comerciales, siempre y cuando mediante la correspondiente cita bibliográfica se le dé crédito al trabajo de grado y a su autor.

De conformidad con lo establecido en el Artículo 30 de la Ley 23 de 1982 y el artículo 11 de la Decisión Andina 351 de 1993, la Universidad Santo Tomás informa que “los derechos morales sobre documento son propiedad de los autores, los cuales son irrenunciables, imprescriptibles, inembargables e inalienables.”

Centro de Recursos para el Aprendizaje y la Investigación, CRAI-Biblioteca
Universidad Santo Tomás, Bucaramanga
Evaluación de modelos de Pronóstico de series temporales para el Índice del mercado colombiano COLCAP

Sandra Viviana Ardila Flórez
Trabajo de grado para optar por el título de Ingeniera Industrial

Director
Pilar Tatiana Parada Mayorga
Magíster en Ingeniería Industrial

Universidad Santo Tomás, Bucaramanga
División de Ingenierías y Arquitectura
Facultad de Ingeniería Industrial
2018
Dedicatoria.

Este trabajo lo dedico primeramente a Dios, por su amor infinito y brindarme la gracia de culminar este proyecto. También a mis padres y a mis hermanos, por su apoyo y amor incondicional a lo largo de mi carrera, por ser mi fortaleza y mi motivación.
Agradecimientos.

Principalmente a mi directora de proyecto Pilar Tatiana Parada, quien me dio la oportunidad de trabajar en este estudio y su interés por el desarrollo de esta investigación. Mil gracias.

Además, quiero agradecer a mis padres, a mis hermanos y a todas aquellas personas que me acompañaron durante este proceso, brindándome su cariño y la motivación requerida para poder llevar a cabo este sueño, donde una vez más puedo comprender, que con esfuerzo y perseverancia se logran nuestros objetivos.
Tabla de Contenido

<table>
<thead>
<tr>
<th>Tema</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introducción</td>
<td>11</td>
</tr>
<tr>
<td>1. Generalidades Del Proyecto</td>
<td>13</td>
</tr>
<tr>
<td>1.1 Descripción del Problema</td>
<td>13</td>
</tr>
<tr>
<td>1.2 Pregunta de investigación</td>
<td>18</td>
</tr>
<tr>
<td>1.3 Justificación</td>
<td>19</td>
</tr>
<tr>
<td>1.4 Alcance</td>
<td>20</td>
</tr>
<tr>
<td>1.5 Objetivos</td>
<td>21</td>
</tr>
<tr>
<td>1.5.1 Objetivo General</td>
<td>21</td>
</tr>
<tr>
<td>1.5.2 Objetivos específicos</td>
<td>21</td>
</tr>
<tr>
<td>2. Revisión de la literatura</td>
<td>22</td>
</tr>
<tr>
<td>3. Marco Referencial</td>
<td>27</td>
</tr>
<tr>
<td>3.1 Marco Teórico</td>
<td>27</td>
</tr>
<tr>
<td>3.2 Marco Conceptual</td>
<td>30</td>
</tr>
<tr>
<td>3.3 Marco Legal</td>
<td>33</td>
</tr>
<tr>
<td>3.3.1 Bolsa de Valores de Colombia</td>
<td>33</td>
</tr>
<tr>
<td>3.3.2 Código de Ética y Conducta Bolsa Mercantil de Colombia S.A.</td>
<td>34</td>
</tr>
<tr>
<td>3.4 Marco Histórico</td>
<td>36</td>
</tr>
<tr>
<td>4. Estado del Arte</td>
<td>39</td>
</tr>
<tr>
<td>4.1 Estudios del Índice General de la Bolsa de Valores de Colombia</td>
<td>40</td>
</tr>
<tr>
<td>4.2 Estudios de Pronósticos con series de tiempo de la Energía Eléctrica</td>
<td>43</td>
</tr>
<tr>
<td>5. Metodología</td>
<td>44</td>
</tr>
<tr>
<td>5.1 Error de Medición de Pronóstico</td>
<td>47</td>
</tr>
<tr>
<td>5.2 Evaluación del Pronóstico</td>
<td>49</td>
</tr>
<tr>
<td>6. Evaluación de modelos Autorregresivos al COLCAP</td>
<td>51</td>
</tr>
<tr>
<td>6.1 Identificación de modelos Autorregresivos a ajustar</td>
<td>51</td>
</tr>
<tr>
<td>6.2 Ajuste del modelo Autorregresivo al COLCAP</td>
<td>53</td>
</tr>
<tr>
<td>6.2.1 Serie de tiempo seleccionada</td>
<td>53</td>
</tr>
<tr>
<td>6.2.2 Análisis técnico de la serie de tiempo del COLCAP</td>
<td>54</td>
</tr>
<tr>
<td>6.2.3 Análisis de los Rendimientos del COLCAP</td>
<td>59</td>
</tr>
<tr>
<td>6.2.4 Autocorrelogramas Simple y Parcial</td>
<td>64</td>
</tr>
</tbody>
</table>
6.2.5. Ajuste del modelo ARMA (p, q). ..66
6.2.6 Prueba de los residuos de los Logaritmos. ...68
6.2.7. Ajuste del modelo ARMA-GARCH. ..74
6.3. Evaluación de Pronóstico. ...78
 6.3.1 Pronóstico Estático. ..78
 6.3.2 Pronóstico modelo AR (1) AR (4) MA (4). ...79
 6.3.3 Pronóstico modelo ARMA-GARCH (1, 1) ...80
7. Conclusiones. ...85
8. Recomendaciones. ..87
Referencias Bibliográficas ..88
Apéndices ...93
Anexos ..132
Lista de Tablas

- Tabla 1. Estudios realizados al IGBC y al COLCAP ... 52
- Tabla 2. Parámetros teóricos de FAC y FACP ... 66
- Tabla 3. Modelos ajustados a la media del COLCAP ... 66
- Tabla 4. Modelos ajustados a la media del COLCAP y sus criterios estadísticos 67
- Tabla 5. Estadísticos de los residuos de los modelos ajustados a la media del COLCAP 69
- Tabla 6. Test de Hipótesis Simple a los residuos del los modelos ajustados al COLCAP .. 70
- Tabla 7. Modelos ajustados a la varianza del COLCAP y sus criterios estadísticos 76
- Tabla 8. Medidas de error de pronóstico de los modelos ARMA y ARMA-GARCH 81
PRONÓSTICO DE SERIES TEMPORALES

Lista de Figuras

pág.

Figura 1. Variación porcentual y variación absoluta con respecto al día hábil anterior............ 37
Figura 2. Canasta 39 del COLCAP para el trimestre de agosto a octubre de 2017.................. 39
Figura 3. Gráfica de los datos diarios de cierre del COLCAP del 15/01/2008 al 12/01/2018..... 54
Figura 4. Gráfica de los rendimientos del COLCAP transformados a través de LogReturn desde el 15/01/2008 al 12/01/2018. .. 60
Figura 5. Histograma y Estadísticos de los rendimientos del COLCAP del 15/01/2008 al 12/01/2018. .. 61
Figura 6. Curtosis leptocúrtica de la serie de rendimientos del COLCAP. 62
Figura 7. Prueba de estacionariedad Dickey and Fuller Aumentada (DFA), aplicada a la serie de rendimientos del COLCAP... 63
Figura 8. Correlogramas simple y parcial de la serie de rendimientos del COLCAP. 65
Figura 9. Residuos del modelo AR (1) AR (4) MA (4) ajustado a la serie de rendimientos del COLCAP... 71
Figura 10. Histograma y Estadísticos de los residuos del modelo AR (1) AR (4) MA (4) ajustado a la serie de rendimientos del COLCAP... 72
Figura 11. Gráfico de los Residuos del modelo AR (1) AR (4) MA (4) ajustado a la serie de rendimientos del COLCAP.. 73
Figura 12. Resultado prueba Quantil-Quantil de los Residuos del modelo AR (1) AR (4) MA (4).. 74
Figura 13. Correlogramas simple y parcial de los residuos al cuadrado del modelo AR (1) AR (4) MA (4) ajustado a la serie de rendimientos del COLCAP................................. 75
Figura 14. Test ARCH de los residuos al cuadrado del modelo AR (1) AR (4) MA (4) del COLCAP.. 76
Figura 15. Varianza condicional del modelo ajustado a la varianza del COLCAP GARCH (1, 1) ... 78
Figura 16. Pronóstico Estático del modelo AR (1) AR (4) MA (4)... 80
Figura 17. Pronóstico Estático del modelo ARMA – GARCH (1, 1). 81
Figura 18. Rendimientos reales y Rendimientos de Pronóstico del modelo AR (1) AR (4) MA (4) .. 83
Figura 19. Rendimientos reales y Rendimientos de Pronóstico del modelo GARCH (1, 1)...... 84
PRONÓSTICO DE SERIES TEMPORALES

Lista de Apéndices

Apéndice A. Tabla de estudios encontrados en la revisión de literatura, acerca de pronósticos del COLCAP.. 93
Apéndices B. Resultados de ajuste de los modelos ARMA a la serie de rendimientos........ 94
Apéndices C. Correlogramas y Estadísticos de los residuos de los modelos ajustados a los Rendimientos del COLCAP.. 98
Apéndices D. Prueba de Hipótesis Simple a los residuos de cada modelo ajustado a la serie de Rendimientos del COLCAP.............................. 113
Apéndices E. Ajuste de las diferentes combinaciones de modelos GARCH, con la respectiva gráfica de la Varianza Condicional y Correlograma................................. 116
Resumen

El objetivo principal de esta investigación se centra en la selección y ajuste de dos modelos autorregresivos a la serie de los rendimientos del índice COLCAP, siguiendo la metodología Box-Jenkins o metodología ARIMA. Se escogen y se ajustan los modelos ARMA (p, q) y ARMA (p, q) – GARCH (p, q). Los resultados obtenidos, muestran que ésta serie se puede representar con un modelo autorregresivo de orden cuatro, además dada la presencia de heterocedasticidad y del efecto ARCH en los residuos al cuadrado del modelo, se realizó el ajuste del modelo GARCH (p, q). Finalmente se evalúa el desempeño de pronóstico mediante medidas de error, en lo cual el modelo ARMA presenta un menor valor de desacierto.

Palabras Clave: COLCAP, GARCH, ARMA, Pronóstico, Volatilidad, Rendimientos.

Abstract

The main objective of this research to focus on the selection and adjustment of two autoregressive models of the COLCAP index performance series, following the Box-Jenkins methodology or the ARIMA methodology. The ARMA (p, q) and ARMA (p, q) – GARCH (p, q) models are chosen and adjusted. The obtained results show that these series can be represented with an autoregressive model of order four. Besides, by the given the presence of heterocedasticity and the ARCH effect in the squared residuals of the model, the adjustment of the GARCH model (p, q) was performed. Finally, the forecast performance is evaluated by means of error measurement, in which the ARMA model presents a lower error value.
Introducción

Debido a la importancia de los mercados bursátiles por su aporte en el desarrollo económico de los países y en la captación ordenada de recursos financieros, diferentes analistas e inversionistas han intentado estudiar el comportamiento que siguen los principales índices de las Bolsas de Valores a nivel mundial, con el propósito de tomar decisiones basadas en la información que reflejan los activos dentro de este mercado. La Hipótesis de mercado eficiente afirma que los precios de los activos financieros pueden variar cuando la información se incorpora de manera instantánea, generalmente asociada a caminatas aleatorias o martingalas y, por lo tanto, el comportamiento de los activos es impredecible. Además, se han creado distintas metodologías y herramientas para realizar predicciones acertadas sobre la volatilidad o los rendimientos de los activos financieros. En Colombia, los estudios que se han desarrollado respecto a los pronósticos del índice COLCAP son muy pocos comparados con los que se han llevado a cabo en otros países, por lo cual surge el interés de ampliar información relevante que contribuya a la toma de decisiones de los inversionistas.

El índice general de la Bolsa de Valores de Colombia representa el comportamiento que sigue un conjunto determinado de acciones en el mercado bursátil del país, por lo cual se realiza este estudio basado principalmente en la selección y ajuste de dos modelos autorregresivos a la serie de los rendimientos del índice COLCAP, con el fin de evaluar su desempeño en el pronóstico. Inicialmente se efectúa la revisión de la literatura para seleccionar los dos modelos econométricos...
a ajustar, posteriormente se realiza la estimación y ajuste del modelo siguiendo la metodología Box-Jenkins o metodología ARIMA, la cual se basa en el análisis de las propiedades probabilísticas o estocásticas de las series de tiempo económicas. De acuerdo con la revisión de literatura, se escogen los modelos ARMA (p, q) y ARMA (p, q) – GARCH (p, q) como los más utilizados en las series de tiempo financieras. Los resultados obtenidos de la aplicación de estos modelos a la serie de rendimientos del COLCAP, muestran que ésta serie se puede representar con un modelo autorregresivo de orden cuatro, así como la presencia de heterocedasticidad y del efecto ARCH en los residuos al cuadrado del modelo, permite el ajuste del modelo GARCH (p, q) que modela la volatilidad de la serie a través de los últimos años. Por último, se compara el desempeño en el pronóstico de los modelos ajustados mediante medidas de error como son: MAPE, MAE, RMSE y RMSPE, en donde el modelo AR (1) AR (4) MA (4) presenta un mejor ajuste que el modelo GARCH (1, 1) a la serie de retornos del indicador del mercado bursátil colombiano.
1. Generalidades Del Proyecto.

1.1 Descripción del Problema.

Los mercados bursátiles son de gran importancia para el desarrollo económico de los países, ya que contribuyen en la distribución eficiente de los recursos derivados del sector productivo, además en la captación de recursos financieros logrando avanzar continuamente. Por lo anterior, estudios realizados a nivel mundial han intentado determinar el comportamiento y el tipo de eficiencia de estos mercados, por medio de modelos estadísticos aplicados a series financieras de países Latinoamericanos como México, Perú, Chile, Brasil y Colombia [1]. Las variaciones del comportamiento y el crecimiento de los mercados financieros, exige de manera continua que se estén evaluando e implementando métodos y herramientas de valoración de activos, los cuales contribuyan a reflejar cada vez más información a quienes actúan dentro de los mercados de valores, siendo de gran importancia y como aporte a la disminución de anomalías de información, contribuyendo a una mayor eficiencia en la toma de decisiones que permite a los inversionistas cubrir sus expectativas y mejorar el nivel de confianza respecto a la relación riesgo-rentabilidad [2]. En 1933 Alfred Cowles de forma empírica fue uno de los primeros en estudiar la eficiencia de los mercados, con el fin de evaluar el nivel de acierto que en su tiempo tenían los analistas de bolsa. Llegó a la conclusión que los pronósticos de estos realmente no podían predecir sistemáticamente el mercado, afirmando la teoría de eficiencia del mercado norteamericano para esa época [3]. Otro de los pioneros fue Mandelbrot en 1963, quien realizó estudios acerca de la naturaleza de las series de tiempo financieras y sus propiedades estadísticas [4].
Más adelante, Samuelson en 1965 publicó que el mercado es difícil de predecir, pues algunos inversionistas de bienes futuros conocen las posibilidades del precio de esos bienes, además de que ambos de acuerdo con esta ley utilizan modelos matemáticos como criterio para proponer el precio del bien futuro, obteniendo algunas veces resultados muy bajos. Sin embargo, cuando obtienen buenos resultados, otro grupo de inversionistas siguen sus predicciones, lo cual hace que el mercado cambie sus características y comportamiento [5]. Luego de esto, Fama en 1965 y 1970 agrupó en sus publicaciones las teorías y fundamentos empíricos que se habían desarrollado hasta la fecha, en las cuales analiza el modelo de recorrido aleatorio como la herramienta que permite describir los mercados bursátiles, destacando el reto que enfrentan analistas intentando predecir los precios de las acciones en presencia de aleatoriedad [6].

Por lo general el mercado de valores norteamericano es asumido como pertinente para la evaluación de eficiencia del mercado, debido a su liquidez y el nivel económico de los índices S&P500, Dow Jones, NYSE, Nasdaq y S&P/TSX de Canadá, que representan a nivel mundial. Sin embargo, debido a la eficiencia débil de estos mercados en algunos periodos, han sido diferentes los resultados obtenidos por otras metodologías de pronóstico y aleatoriedad como es el estudio de Brock y otros autores en 1992 [7]. Por otra parte, en el año 2007 otros investigadores lograron demostrar eficiencia para distintos periodos de tiempo entre el año 1962 y 2011 [8]. Todo lo anterior, desde la década de los sesentas del siglo anterior, hace parte de los diferentes estudios que se han llevado a cabo y logrado comprobar de manera amplia la eficiencia de los mercados bursátiles, en mercados desarrollados (como los de Norteamérica y Europa), y en mercados considerados como en emergentes (Asia, Oceanía, África y Latinoamérica).

El mercado europeo ha arrojado resultados similares a los del mercado norteamericano en cuanto a la eficiencia del mercado, por medio de herramientas y metodologías como algunos

En cuanto al mercado asiático, se ha analizado por separado el mercado de China de los demás países del Oriente, dada la relevancia económica que ha tenido este país en los últimos años y el número significativo de trabajos de investigación sobre su eficiencia de mercado.

En China según el estudio de Martínez (2001) [13], su economía ha presentado cambios gradualmente, mostrando que el modelo de desarrollo chino ha generado resultados excelentes sobre sus mercados bursátiles en los últimos años. Un importante trabajo realizado fue el de Chong y otros autores [14], quienes por subperiodos analizaron este mercado y encontraron que las reformas planteadas por el gobierno de ese país contribuyeron a la mejora de su eficiencia de mercado. Respecto a la crisis asiática del 97, se llevó a cabo un estudio destacado en el cual se evaluaron tres periodos precrisis y postcrisis, donde se logró concluir que la crisis tuvo un impacto negativo en la eficiencia de la mayoría de los mercados asiáticos, debido a la reacción de los inversionistas, pero al final estas economías pudieron recuperarse luego de ese trance [15].

De pocos trabajos que se han llevado a cabo sobre la eficiencia del mercado Africano, se han podido concluir algunas tendencias las cuales son: los mercados de Egipto y Marruecos han sido los más eficientes de la región desde la década de los 90 hasta el 2006; otro resultado hallado es un progreso de la eficiencia de los mercados de Nigeria y Sudáfrica en el año 1995, posiblemente
por el incremento de sus exportaciones hacia China y la India en la última década; por otra parte, Kenia pasó de ser un mercado bursátil eficiente desde el 90 al 95, a ser no eficiente del 95 al 2006, probablemente puede ser por los desequilibrios económicos y de seguridad que soportó el país en la época de los noventa [16].

Algunos estudios realizados al continente de Oceanía arrojaron un contraste en el mercado neozelandés encontrando un cambio positivo en su eficiencia a partir del año 1992, de acuerdo con la implementación de reformas en los años 80 y 90. Por otro lado, en el mercado australiano los hallazgos son contradictorios, pues en un estudio se encontró aleatoriedad [17] y en otro trabajo, estacionariedad en los precios y no linealidad [18].

Reuniendo los principales estudios realizados en Latinoamérica, se encuentra que uno de los primeros fue el de Urrutia en el año 1995 en el cual, por medio de pruebas de aleatoriedad, halló no eficiencia en los mercados de países como Argentina, Chile y México entre los años 1975 a 1991 [19]. En el índice de la Bolsa de Valores de Medellín de Colombia para el periodo de 1987 a 1994, Harvey y Viscanta (1997), obtuvieron resultados similares a los de los otros países analizados. En contraste, Ojah y Karemera, no descartaron eficiencia en los mercados de Argentina, Brasil Chile y México, para el periodo 1987 a 1997 [20]. Para el país mexicano, Valdivieso en el 2004, realizó un estudio a la eficiencia del mercado durante el periodo de 1994 a 1999 encontrando rechazo al recorrido aleatorio [21]. Para ese mismo año, Maya y Torres efectuaron un estudio relacionado con el de Harvey y Viscanta (1997) para el mercado de Colombia, pero en un periodo diferente (1999), encontrando aceptación del recorrido aleatorio en este mercado [22].

En otros dos trabajos de investigación de Tabak (2007) y Freitas et al. (2009), evaluaron la eficiencia del mercado de Brasil para el periodo entre 1998 y 2007, mediante raíces unitarias y
modelos de pronósticos correspondientemente, obteniendo como resultado que este mercado presenta ineficiencia en su forma débil [23] [24].

Entre algunos estudios destacados mundialmente, están el de Bastos y Caiado en el 2011; también el de Eom y otros autores desarrollado en el año 2008, quienes encontraron importantes resultados en sus investigaciones, uno de ellos es la relación entre el nivel de eficiencia y de desarrollo de un mercado, por otra parte, lograron concluir que son menos predecibles y más eficientes los mercados desarrollados en comparación de los emergentes.

Por parte de Colombia, los estudios que se han desarrollado referente a la predicción del índice del mercado bursátil han sido muy pocos en comparación de los que se han llevado a cabo a nivel mundial. Esto puede estar influenciado por ser considerado un país con economía emergente o subdesarrollado, además de las largas épocas de violencia que han afectado la imagen al exterior del país.

El estudio que realizó Inghelbrecht y otros autores en el 2012, fue una evaluación de las técnicas de negociación utilizadas por los inversionistas en diferentes mercados considerados emergentes, dentro de estos el de Argentina, Brasil, Colombia, Chile, Ecuador, México y Venezuela. Los autores llegaron a la conclusión de al ajustar las reglas a los costos de negociación, no se hace posible prevalecer la estrategia de comprar y mantener; pero, durante la crisis presentada en el 2008 aparecieron no eficiencias en varios mercados, permitiendo demostrar que las condiciones externas pueden afectar la eficiencia de los rendimientos de las acciones [25]. De los estudios más recientes, Duarte y Mascareñas en el 2014 tomaron un periodo de estudio del 2002-2012, para evaluar si se cumplía la caminata aleatoria en los mercados bursátiles de Latinoamérica; encontraron mejora en la eficiencia de los activos de México, Brasil y Colombia desde 2007 hasta 2012, pero evidenciaron un menor nivel de aleatoriedad en Perú y Chile [1].
En Colombia el comportamiento accionario en la Bolsa de Valores de Colombia es medido por el índice COLCAP, reflejando los cambios de los precios de las 20 acciones con mayor liquidez, con una participación máxima de cada acción del 20%. Colombia en los últimos años ha venido presentando un aumento en su participación en los mercados de valores, sin embargo, presenta variaciones en estos resultados, como es el caso en el que una de las crisis financieras más importantes a nivel global ocurrida durante 2007-2008, trajo como consecuencia una profunda crisis de liquidez también al mercado colombiano; golpeando fuertemente a los intermediarios financieros y a los inversionistas de valores, los cuales sintieron quedarse sin alternativas innovadoras de inversión y generando un mayor grado de incertidumbre para estos.

Algunos estudios que se han desarrollado anteriormente han aplicado métodos estadísticos y econométricos a series de tiempo al Índice General de la Bolsa de valores de Colombia (IGBC), el cual antes del 1 de noviembre del 2013 era el principal indicador del comportamiento del mercado colombiano, luego de esta fecha fue reemplazado por el COLCAP. Los estudios que se encuentran principalmente se han desarrollado a unidades de análisis como el Petróleo, el oro, Energía Eléctrica, IGBC, por lo cual surge la importancia de llevar a cabo una investigación con base a estos estudios con un periodo actualizado del COLCAP. Con este estudio se pretende evaluar el comportamiento del mercado colombiano con algunos de los modelos implementados en diferentes investigaciones desarrolladas, mediante un ajuste de los modelos y la selección de dos de estos para realizar el pronóstico con una serie temporal de la rentabilidad del índice de capitalización bursátil de la Bolsa de Valores de Colombia.

1.2 Pregunta de investigación.
¿Cuál ha sido el comportamiento del mercado bursátil colombiano en los últimos años?

1.3 Justificación.

La información bursátil está libremente disponible para todos los participantes en un mercado eficiente, estos intentan predecir el comportamiento futuro de los precios del mercado, lo cual puede implicar que en un instante de tiempo los precios reflejen toda la información relevante para que los inversores decidan con base en eventos pasados y que se espera puedan ocurrir en eventos futuros, según la Hipótesis de mercados Eficientes de Fama. Esto hace referencia a que, en un mercado eficiente, el precio actual del activo sea un buen estimador de su valor intrínseco y solo puede variar si ingresa aleatoriamente nueva información al mercado, lo cual hace imposible su pronóstico sistemático. Pero diferentes investigadores han afirmado que los inversores no siempre son racionales, sino que toman decisiones influenciados por la psicología y el entorno en el que se encuentran. Esto puede generar, que en el mercado se produzcan tendencias, crisis, variaciones y otros fenómenos que no pueden ser explicados por la hipótesis de mercados eficientes y que podrían permitir la predicción y obtención de rendimientos sistemáticos por parte de los inversores que sepan explotar las anomalías del mercado. Por lo anterior, diferentes estudios de investigación acerca de los mercados bursátiles se han realizado a nivel mundial, intentado describir el comportamiento y la eficiencia del mercado en las distintas bolsas de valores a nivel global. En cuanto a los resultados empíricos, de estas investigaciones se han encontrado posibilidades de predicción sistemática, ya sea usando análisis técnico o modelos de predicción.

Los índices generales de la bolsa permiten representar el comportamiento que sigue un conjunto determinado de acciones en el mercado. En el caso colombiano, el comportamiento
accionario en la Bolsa de Valores de Colombia es medido por el índice COLCAP, que desde el año 2008 refleja las variaciones de los precios de las 20 acciones con mayor liquidez, contemplando un limitante de participación de cada acción a un máximo de 20% y que a partir del 1 de noviembre del año 2013 se estableció como el principal indicador del mercado colombiano. El comportamiento de los precios se puede relacionar con la información que llega al mercado cada día y que puede influir en las decisiones de los inversionistas. Es por esto por lo que, en esta investigación, se desea evaluar dos modelos de pronóstico implementados en estudios anteriores, aplicados al índice COLCAP, utilizando información histórica pública disponible; con el fin de identificar el mejor ajuste para el mercado colombiano, lo cual permita a los inversionistas obtener información actualizada de las empresas con un comportamiento bursátil más atractivo, que les permita lograr ser más asertivos en sus decisiones de inversión.

1.4 Alcance.

Diferentes estudios realizados han aplicado métodos estadísticos y econométricos con respecto al COLCAP o el Índice General de la Bolsa de valores de Colombia (anteriormente el principal indicador del comportamiento del mercado colombiano). Estas investigaciones muestran diferentes factores que influyen en las variaciones de este indicador y definen el tipo de mercado del país de acuerdo con la Hipótesis de Mercado Eficiente de Fama.

Este proyecto se centra en realizar la selección de dos modelos autorregresivos que se puedan adaptar a la serie de tiempo de los rendimientos del índice general colombiano, para ello se utilizarán herramientas cuantitativas las cuales se construyen con base a la autocorrelación definida como “correlación entre miembros de series de observaciones ordenadas en el tiempo”.
Por lo tanto, la metodología a implementar consiste en el ajuste de los modelos para obtener series de residuos no autocorrelacionados. La importancia de esta investigación es generar resultados que reflejen el pronóstico del índice COLCAP y hacer una comparación de los modelos para determinar el mejor ajuste al mercado colombiano, lo cual sirva como fuente de información a los inversionistas en la toma de decisiones.

El aporte principal de este proyecto es poder concluir el tipo de eficiencia del mercado accionario colombiano, según la información que se obtenga a través de los resultados del ajuste de los dos modelos autorregresivos ARIMA y GARCH. Además de definir la factibilidad de predecir retornos futuros basados en un conjunto de datos históricos, mediante la estimación del error de pronóstico.

1.5 Objetivos.

1.5.1 Objetivo General.

Evaluar dos modelos de pronóstico aplicados al índice COLCAP, con el fin de identificar el mejor ajuste para el mercado colombiano.

1.5.2 Objetivos específicos.

- Identificar los modelos autorregresivos a ajustar mediante la revisión de la literatura.
- Ajustar al índice COLCAP los dos modelos autorregresivos a la serie de los rendimientos.
• Comparar mediante una medida de error el desempeño de pronóstico de los modelos en el periodo, con el fin de detectar diferencias significativas entre los diferentes modelos escogidos.

2. Revisión de la literatura.

El economista estadounidense Eugene Fama en 1970 publicó un artículo muy reconocido en la economía financiera titulado “Mercado de Capitales Eficiente: Una Revisión del Trabajo teórico y Práctico”, lo cual ha causado un gran impacto por los conceptos propuestos en su Hipótesis de mercados eficientes (HME), dando inicio a las discusiones que se han desarrollado acerca de la eficiencia de los mercados. Fue galardonado con el Premio Nobel de Economía en el año 2013 “For their empirical analysis of asset prices” (por su análisis empírico sobre los precios de los activos financieros). Además de defender la eficiencia de los mercados, siendo esta teoría uno de los supuestos básicos de modelos de valoración de activos como es el Capital Asset Pricing Model (CAPM), demostró que esta no puede ser rechazada, pues su rechazo implicaría la invalidez de estos modelos [6]. Según Fama, en un mercado eficiente es imposible predecir los movimientos de los precios a partir de un conjunto de información disponible. Además, propuso tres tipos de eficiencia:

• **Forma débil:** La información que se usa para la evaluación de precios viene únicamente de datos históricos. Por lo tanto, los inversores no pueden obtener rendimientos superiores a los del mercado basado en un análisis técnico de las series de tiempo pasadas, pues los participantes han aprendido a detectar señales que estas series pueden mostrar.
• **Forma semi-fuerte:** La información se encuentra públicamente disponible y los precios reflejan toda esta información, la cual incluye precios pasados (análisis técnico), noticias públicas acerca de la empresa y su entorno, tales como informe de resultados, balances, dividendos, previsión de ganancias, etc.

• **Forma fuerte:** Los precios de las acciones reflejan toda la información que se obtiene a través de fuentes de información pública y privada, como bases de datos del gobierno o información empresarial, dando una base robusta y bien respaldada de los precios.

Suponiendo que el mercado es eficiente las variaciones en los precios sólo se pueden producir por la incorporación de información anticipada, si esto se cumple, no se puede hacer alguna predicción de comportamientos futuros, dado que la nueva información ya ha sido ingresada en el precio del activo. Formalmente la hipótesis de mercado se define como:

\[
 f(P_t|H_{t-1}) = f_m(P_t|H_{t-1}^m) \quad (1)
\]

Donde \(f \) es la función de densidad que indica el vector de precios en el instante de tiempo \(t \) y que depende de toda la información disponible con la que se cuente en el momento \(t-1 \); esta es igual a la función de densidad que genera el vector de precios basado en la información usada por el mercado en el momento \(t-1 \).

Duarte y Mascareñas (2014), hacen una revisión de literatura empírica sobre la eficiencia de mercados, en la cual mencionan dos conceptos importantes para tener en cuenta con respecto a la teoría de Fama, los cuales son
• “Juego justo” (Fair Game): Se refiere a que la igualdad de condiciones con la información disponible para los participantes hace que el mercado de valores sea “un juego justo”, en el cual ningún inversor puede obtener sistemáticamente ganancias por encima de lo normal a partir de cualquier tipo de información disponible en un momento (t).

• “Modelo del recorrido aleatorio” (Random Walk Model). Supone que los retornos de un periodo son sucesivos y que están idénticamente distribuidos en el tiempo. Es una versión restringida del modelo del juego justo, pues este último no requiere distribuciones con rendimiento idéntico en las series de tiempo, ni tampoco que los rendimientos sean independientes en los periodos. Si se cumple la hipótesis del recorrido aleatorio, también se debe cumplir la hipótesis del mercado eficiente con respecto a los rendimientos históricos (pero no en sentido contrario) [1].

En Colombia, es poca la investigación que se ha realizado acerca de la eficiencia del mercado bursátil. En un estudio Maya y Torres (2004) encuentran que el mercado bursátil tal como lo afirma Samuelson es micro-eficiente, pero macro-ineficiente, es decir, que la hipótesis de la eficiencia del mercado se cumple mejor para acciones individuales que para los índices de precios agregados del mercado, encontrando aceptación del recorrido aleatorio en este mercado [22]. Harvey y Viskanta (1997) buscan determinar si el mercado accionario colombiano es eficiente, de lo contrario, explicar las causas de la alta correlación serial de sus rendimientos. Rechazan el comportamiento de recorrido aleatorio para el índice de la Bolsa de Valores de Medellín de Colombia en el periodo 1987 a 1994, usando como criterio de decisión la correlación serial y la prueba de rachas. En el 2007 Uribe encuentra que el mercado colombiano, aunque sigue siendo pequeño en comparación con el mercado de otros países, ha venido creciendo un poco en los
últimos años. Además, indica que no se puede afirmar que el mercado bursátil de Colombia cumpla con la Hipótesis de mercados eficientes en el sentido débil, dado que al momento de fijar los precios de las acciones en bolsa no incluyen información fundamental de la serie de tiempo [26]. En ese mismo año Agudelo y Uribe realizan un análisis técnico de las acciones colombianas, en encontrando la eficiencia del mercado en sentido débil dado que no se pueden obtener beneficios económicos a partir del comportamiento histórico de los precios de las acciones. Por último, Pérez y Mendoza (2010), rechazan la hipótesis de mercado eficiente en su forma débil para el mercado colombiano, por medio de la anomalía del efecto día utilizando el Índice general de la bolsa de valores de Colombia IGBC.

El valor del COLCAP fue calculado por primera vez el 15 de enero de 2008. Es un índice de capitalización que muestra las variaciones de los precios de las 20 acciones más líquidas de la Bolsa de Valores de Colombia (BVC), donde la participación de cada acción en el índice está determinada por el valor de capitalización bursátil ajustada de cada compañía (peso de cada acción). A partir del 1 de noviembre de 2013, el COLCAP reemplazó al IGBC como el principal indicador. La canasta de este índice está compuesta de mínimo 20 acciones cada una de un emisor diferente [27].

En 1970 G.P.E Box y G.M. Jenkins publicaron “Times Series Analysis: Forecasting and Control” en la cual desarrollaron una metodología para estimar y diagnosticar modelos dinámicos usando series de tiempo, en donde la variable tiempo es fundamental. Esta combinación de herramientas de predicción, se llamó metodología Box-Jenkins o también técnicamente conocida como metodología ARIMA. Se basa en el análisis de las propiedades probabilísticas o estocásticas de las series de tiempo económicas en sí mismas, pues una variable Y_t puede expresarse como una función de sus valores pasados, algunas veces se les denomina modelos ateoícos, donde no existe
relación causal alguna a diferencia de los modelos clásicos de regresión [28]. El precio de las acciones, tasas de cambio, tasas de inflación, entre otras, son series de tiempo financieras que constantemente presentan fenómenos de acumulación de volatilidad, es decir, tienen lapsos en donde los precios revelan amplias variaciones durante largos periodos y posteriormente muestran intervalos de una calma relativa. La familia de modelos GARCH (Generalized Autorregresive Conditional Heterocedasticity) son modelos con heteroscedasticidad condicional autorregresiva generalizada, representan la anterior mencionada acumulación de volatilidad. Algunos de estos modelos son: GARCH-M (GARCH en la media), TGARCH (umbral GARCH) y EGARCH (GARCH exponencial). Una de las investigaciones para el caso de Colombia es la de Fernández [29], en la cual ajusta los modelos GARCH y EGARCH al IGBC en un periodo de 2003 a 2008; encontrando que el modelo EGARCH es de gran utilidad describiendo la volatilidad de series financieras y se ajusta mejor a este mercado.

Los modelos ARCH y GARCH además de ser simétricos reúnen todas las propiedades de distribuciones de colas gruesas y de agrupamiento de volatilidades, además de considerar la varianza condicional que depende de la magnitud de las innovaciones retardadas, pero no de su signo. El modelo GARCH \((p, q) \) en el que existen \(p \) términos rezagados del término de error al cuadrado y \(q \) términos de las varianzas condicionales rezagadas. El modelo presenta procesos autorregresivos y de media móvil en los rezagos de los residuos al cuadrado, equivalente a los representados por los rezagos de la rentabilidad en los ajustes ARMA \((p, q) \). Estos ajustes además de usarse como filtros para pruebas posteriores también pueden emplearse para ajustar la serie a un modelo lineal; mientras que el ajuste sea bueno, no es necesario utilizar un modelo de mayor complejidad para explicar el comportamiento de la serie [30]. El modelo GARCH \((1,1) \) es el más sencillo propuesto por Bollerslev [31], lo expresa como:
\[
\sigma_t^2 = \alpha_0 + \alpha_1 u_{t-1}^2 + \alpha_2 \sigma_{t-1}^2 \tag{2}
\]

Donde la varianza condicional de \(u \) en el tiempo \(t \) no sólo depende del término de error al cuadrado del periodo anterior, sino también de su varianza condicional en el periodo anterior [32].

Dado que el 1 de noviembre de 2013 el COLCAP reemplazó al IGBC como el principal indicador principal, no se han encontrado investigaciones que realicen el pronóstico del índice COLCAP usando una serie de tiempo desde el primer cálculo de este índice (2008) hasta una fecha actual a este proyecto. Los modelos utilizados en algunas investigaciones corresponden a modelos estadísticos como son: Mapas Autoorganizativos de kohonen (SOM), Tres factores de Fama -French, Mínimos Cuadrados Ordinarios (MCO) y modelos ARIMA y GARCH con ventanas de tiempo desde 1991 hasta los más recientes en el año 2014. Se encontraron cinco proyectos y artículos relacionados con la implementación de modelos de pronóstico de series de tiempo del índice COLCAP en Colombia. Además, de algunos estudios a los mercados de valores en Latinoamérica y otros pronósticos, como el caso del precio de la Energía, el Petróleo, entre otros.

3. Marco Referencial.

3.1 Marco Teórico.

Eugene Fama en su artículo “Mercado de Capitales Eficiente: Una Revisión del Trabajo teórico y Práctico”, plantea una Hipótesis de mercados eficientes (HME) [6], lo cual ha generado diferentes
opiniones acerca de la eficiencia de los mercados. Fue galardonado con el Premio Nobel de Economía en el año 2013 “For their empirical analysis of asset prices” (por su análisis empírico sobre los precios de los activos financieros). Este economista defiende la eficiencia de los mercados, lo cual hace esta teoría uno de los supuestos básicos de modelos de valoración de activos como es el Capital Asset Pricing Model (CAPM), demostrando que esta no puede ser rechazada, pues de ser así implicaría la invalidez de estos modelos.

En la Hipótesis de mercados eficientes se define: “Un mercado en el que los precios reflejan la totalidad de la información existente es denominado eficiente” [Fama, 1970], lo cual propone que un mercado es “informacionalmente eficiente” si los precios de los títulos que se negocian en un mercado financiero reflejan libremente la información existente para todos los participantes, quienes intentan predecir los valores futuros de los activos del mercado. Fama afirma, que en un mercado eficiente es imposible predecir los movimientos de los precios a partir de un conjunto de información disponible. También propuso tres tipos de eficiencia:

- **Forma débil**: Esta forma hace referencia a que la información que se usa para la evaluación de precios viene únicamente de datos históricos. Por lo tanto, los inversores no pueden obtener rendimientos superiores a los del mercado basado en un análisis técnico de las series de tiempo pasadas, pues de acuerdo con esas estrategias los participantes han aprendido a detectar señales que estas series pueden mostrar. En muchos estudios se ha demostrado que existe una forma de eficiencia débil. En un estudio de Grossman y Stiglitz se fundamentan en que la información es costosa, lo cual no rechazaría los tipos de eficiencia débil y semifuerte, para las cuales la información por lo general se publica sin coste, de igual manera lo afirma Fama en 1991.
Un importante estudio realizado por Duarte en 2013 [2], en el cual identifica las pruebas o metodologías más utilizadas en los diferentes estudios que se han desarrollado a cabo a nivel mundial para probar la eficiencia débil, semifuerte y fuerte; clasificó 371 pruebas empíricas que se aplicó a 179 trabajos de investigación que se han publicado desde 1997. Los resultados obtenidos en su estudio arrojaron que las pruebas de recorrido aleatorio han sido las más usadas para verificar la eficiencia débil de los mercados con un 59,1%; encontrando que la metodología de Ljung-Box; BDS y Rachas como las más empleadas para comprobar este tipo de eficiencia. Por otro lado, coincide que la forma débil es la de mayor verificación con un 85,71%, confirmando lo planteado por Grossman y Stiglitz en 1980.

- **Forma semi-fuerte:** En este tipo de estrategia, la información se encuentra públicamente disponible y los precios reflejan toda esta información, la cual incluye precios pasados (análisis técnico), noticias públicas acerca de la empresa y su entorno, tales como informe de resultados, balances, dividendos, previsión de ganancias, etc. De acuerdo con el estudio de fama en 1970 [6], plantea que las investigaciones se enfocan principalmente en contrastar la forma semifuerte y débil. En un estudio que desarrollaron Busse y Clifton en 2002 [33] comprobaron la eficiencia semifuerte del mercado americano (NYSE, NASDAQ y AMEX). Otra investigación fue desarrollada por Lobe y Rieks en 2011 comprobando la eficiencia semifuerte para los mercados de Alemania y Londres [12].

- **Forma fuerte:** Los precios de las acciones reflejan toda la información que se obtiene a través de fuentes de información pública y privada, como bases de datos del gobierno o información empresarial, dando una base robusta y bien respaldada de los precios. Sin embargo, ningún
inversor puede generar rendimientos superiores a los del mercado, de no ser por azar. Dado que ningún mercado es totalmente eficiente en el sentido fuerte, sólo aquellos que tengan acceso a información privilegiada pueden lograr obtener retornos superiores.

Kawakatsu y Morey (1999), evalúan la mejora de la eficiencia ante una liberalización del mercado, encontrando que los mercados ya eran eficientes antes de la liberalización real, lo cual lleva a pensar que los inversores actúan desde el anuncio de apertura económica, llevando a que el mercado bursátil se haga más eficiente [2].

Otras teorías encontradas en la revisión de la literatura son: la Hipótesis de Mercado Fractal propuesta por Peters en 1994, la cual se caracteriza por ineficiencia, memoria de largo plazo, y aleatoriedad local. Esta teoría sustenta que los precios dependen del manejo que le da el inversor a la información según su horizonte de inversión, lo cual produce un comportamiento caótico en los mercados al perder los inversores la confianza en la información que se presenta a largo plazo y prefieren invertir a corto plazo o dejar de participar en el mercado [34].

A partir de la teoría de Mercados eficientes de Fama se han generado diferentes discusiones, la cual ha tenido aceptación por algunos investigadores que la toman como base para sus estudios de eficiencia de los mercados, y por otra parte en algunos trabajos la rechazan. Sin embargo, teniendo en cuenta que esta teoría fue galardonada con un premio Nobel en el año 2013, se aplicará en este proyecto para establecer la eficiencia del mercado bursátil colombiano.

3.2 Marco Conceptual.

- **Revisión de literatura**: La revisión de la literatura consiste en buscar, seleccionar y consultar la bibliografía que pueda ser útil para el estudio. De ésta se seleccionará la información
relevante y necesaria relacionada con el problema de investigación. Sin embargo, la enorme cantidad de información científica existente y la continua aparición y difusión de nuevas publicaciones dificultan en gran medida identificar la más relevante. A este hecho se le añade otro componente, como puede ser que quien va a realizar la investigación sea un investigador en formación, y por lo tanto con escasa o nula experiencia, la situación se torna más compleja e implica una mayor inversión de tiempo y recursos [35].

- **COLCAP**: El COLCAP es un índice de capitalización que refleja las variaciones de los precios de las acciones más líquidas de la Bolsa de Valores de Colombia (BVC), donde la participación de cada acción en el índice está determinada por el correspondiente valor de la capitalización bursátil ajustada (flotante de la compañía multiplicado por el último precio). La canasta del índice COLCAP estará compuesta por mínimo 20 acciones de 20 emisores diferentes. A partir del 1 de noviembre de 2013, el COLCAP reemplazó al IGBC como el principal indicador del comportamiento del mercado accionario colombiano [27].

- **Modelos Autorregresivos**: La palabra ARIMA significa Modelos Autorregresivos Integrados de Medias Móviles. Se define un modelo como autorregresivo si la variable endógena de un período \(t \) es explicada por las observaciones de ella misma correspondientes a períodos anteriores añadiéndose, como en los modelos estructurales, un término de error. En el caso de procesos estacionarios con distribución normal, la teoría estadística de los procesos estocásticos dice que, bajo determinadas condiciones previas, toda \(Y_t \) puede expresarse como una combinación lineal de sus valores pasados (parte sistemática) más un término de error (innovación) [36].
• **Hipótesis de mercados eficientes:** Eugene Fama define un mercado eficiente como una competencia equitativa en la cual la información está libremente disponible para los participantes, quienes intentan predecir el comportamiento futuro de los precios del mercado. La hipótesis de mercado eficiente afirma que los precios de un activo financiero dependen de la información pública y privada que se incorpora al mercado de manera instantánea, asociadas generalmente a caminatas aleatorias o martingalas, por tanto, no pueden ser predichos [37].

• **Mercado Bursátil:** Bursátil proviene del latín bursa que significa ‘bolsa’. El mercado bursátil, por lo tanto, es un tipo particular de mercado, el cual está relacionado con las operaciones o transacciones que se realizan en las diferentes bolsas alrededor del mundo. En este mercado, dependiendo de la bolsa en cuestión, se realizan intercambios de productos o activos de naturaleza similar, por ejemplo, en las bolsas de valores se realizan operaciones con títulos valores como lo son las acciones, los bonos, los títulos de deuda pública, entre otros, pero también existen bolsas especializadas en otro tipo de productos o activos [38].

• **Rendimiento de un activo:** (LogReturn): Se utiliza para crear un marco comparable que permita la evaluación de las relaciones entre dos o más activos, a pesar de que estos procedan de series de precios de valores desiguales [39].

\[l_r = \ln \left(\frac{P_t}{P_{t-1}} \right) \]
• **Volatilidad:** La volatilidad es la variabilidad de la rentabilidad de una acción respecto a su media en un periodo de tiempo determinado. Cuando esa volatilidad se compara con la volatilidad del mercado se le denomina beta (β). La volatilidad de una acción calculada en base a datos históricos es la volatilidad histórica y coincide con la desviación estándar de sus rentabilidades continuas. La desviación estándar es una variable estadística que, en este caso, mide el grado de dispersión de la rentabilidad diaria respecto a la rentabilidad promedio en ese periodo [40].

3.3 **Marco Legal.**

3.3.1 **Bolsa de Valores de Colombia.**

En Colombia el comportamiento accionario en la Bolsa de Valores de Colombia es medido por el índice COLCAP, reflejando los cambios de los precios de las 20 acciones con mayor liquidez, con una participación máxima de cada acción del 20. La BVC recopila las Leyes que reglamentan el Mercado de Valores en la norma más relevante, la cual es la Ley 964 de 2005 [41]. En el capítulo Primero, Artículo 1°, se establecen los objetivos y criterios de intervención del Gobierno nacional; uno de estos es que “el mercado de valores esté provisto de información oportuna, clara y exacta”. En el Artículo 3° se definen las actividades del mercado de valores, siendo una de estas “El suministro de información al mercado de valores, incluyendo el acopio y procesamiento de esta”. En el Artículo 4° se establece la intervención en el mercado de valores, el cual “el gobierno nacional, deberá solicitar a las personas que ejerzan actividades de intermediación en el mercado de valores, que suministren a sus clientes información necesaria para lograr mayor transparencia.
en las operaciones que realicen, de suerte que les permita a estos, a través de elementos de juicio claros y objetivos, escoger las mejores opciones del mercado y poder tomar decisiones informadas”.

3.3.2 Código de Ética y Conducta Bolsa Mercantil de Colombia S.A.

La Bolsa Mercantil de Colombia se encuentra inscrita como uno de los emisores de la Bolsa de Valores de Colombia. De acuerdo con el Código de Ética y Conducta, aprobado por la junta directiva de la Bolsa Mercantil de Colombia S.A. en el año 2010, se estableció en el título II las Reglas de conducta relacionadas con el manejo de información, definidas en los siguientes artículos extraídos de dicho documento [42]:

- **ARTICULO 2.1. DIVULGACIÓN DE LA INFORMACIÓN:** “La divulgación de información a clientes, usuarios, autoridades y accionistas, incluidos los resultados, la situación financiera, el Gobierno Corporativo de la Bolsa, deberá realizarse de manera oportuna, completa, precisa y clara”.

- **ARTICULO 2.2. INFORMACIÓN PRIVILEGIADA:** “Entendiendo como información privilegiada aquella información de carácter concreto, bien sea de la Bolsa, de sus clientes, proveedores, accionistas y directivos, que no ha sido dada a conocer al público y que, de serlo, la habría tenido en cuenta una persona medianamente diligente o prudente para tomar una decisión, los funcionarios deberán abstenerse de:
1. Realizar cualquier operación en provecho propio o de terceros utilizando información privilegiada de la Bolsa, de sus clientes, proveedores, accionistas y directivos.

2. Suministrar a un tercero información que éste no tenga derecho a recibir.

3. Aconsejar la realización de una operación con base en información privilegiada que conozca en razón de su cargo”.

- **ARTICULO 2.3. CONFLICTO DE INTERÉS:** Establece que “Cuando se presenten conflictos de interés los funcionarios deberán abstenerse de:

 a. Participar en actividades, negocios u operaciones contrarios a la ley, los intereses de la Bolsa o que puedan perjudicar el cumplimiento de sus deberes y responsabilidades o afectar el buen nombre de la Organización.

 b. Realizar cualquier negocio u operación con fundamento en sentimientos de amistad o enemistad.

 c. Abusar de su condición de directivo, empleado, funcionario o colaborador de la Bolsa para obtener beneficios, para sí o para terceros, relacionados con los productos o servicios que presta la Bolsa, ni para obtener beneficios personales de proveedores, contratistas, terceros, clientes o usuarios”.

- **ARTICULO 2.5. CONFIDENCIALIDAD:** “Los empleados de LA BOLSA deberán abstenerse de divulgar en cualquier forma o de utilizar en provecho propio o ajeno, la información de carácter confidencial que hayan conocido en ejercicio de sus funciones, a menos que el desarrollo de su actividad lo requiera o dicha información sea solicitada por empleados o directivos autorizados para ello”.
3.4 Marco Histórico.

En Colombia el mercado accionario tuvo sus inicios en 1928 con la Bolsa de Bogotá, con el Índice de precios de acciones de la Bolsa de Bogotá (IBB). En 1961 se crea la bolsa de Medellín, y posteriormente la de Occidente (Cali-1983), con sus respectivos índices. El 3 de julio de 2001 los índices de las bolsas de Bogotá, Medellín y Occidente se consolidan en el Índice General de la Bolsa de Valores de Colombia (IGBC), el cual representaba el comportamiento de los precios de las acciones en el mercado. La Bolsa de valores de Colombia siendo un proveedor de infraestructura y emisor de valores es vigilada por la Superintendencia Financiera. Desde el 1 de noviembre de 2013, el COLCAP remplazó al IGBC como el principal indicador del comportamiento del mercado accionario colombiano.

En uno de los primeros estudios realizados al mercado accionario colombiano como el de Bastidas (2008) [43] en el período de 1991-2007 las acciones de Colombia frente a otras décadas se desenvolvieron en un entorno con mayor movimiento del capital, con nuevas reglas en la transacción de acciones, además de la consolidación de las tres bolsas existentes (Bogotá, Medellín, Occidente) lo que produjo cambios en su estructura y que podrían llegar a afectar la dinámica de su incertidumbre.

Los índices históricos del COLCAP se encuentran disponibles en las páginas web del Banco de la República y de la Bolsa de Valores de Colombia (BVC).
De acuerdo con la gráfica anterior, se evidencia que en el periodo del 15/01/2008 al 01/10/2008 el mercado se mueve lateralmente, donde al parecer los inversionistas se encontraron en un punto de indecisión, en el cual el punto de resistencia en la fecha del 23/05/2008 donde los precios tienden a subir y el punto de soporte es el 15/01/2008 que es cuando inicia el rango. Posteriormente, el 01/10/2008 presenta una tendencia bajista debido a la inestabilidad financiera que presentó la economía mundial para ese periodo. A partir del 05/12/2008 al 29/09/2010 se presenta una tendencia alcista tal como lo indica la tasa IBR, la cual es la tasa de interés indicativa de la liquidez del mercado monetario, que durante el año 2009 y hasta finales del año 2010 presentó los índices más bajos. Durante el periodo del 03/12/2010 hasta el 25/10/2011 se observa una tendencia bajista, reflejando que los precios bajaron cuando se daba la postulación del mandato del presidente Juan
Manuel Santos. A partir del 29/12/2011 y hasta el 19/11/2014 se presenta nuevamente un comportamiento lateral en el mercado bursátil colombiano, donde la economía del país empieza a sufrir puntos muertos y estancamiento como por ejemplo hacia 31/10/2013 donde se presenta la mayor alza de los precios en el rango de tiempo. Desde el 27/01/2015 hasta el 22/12/2015 la tendencia del mercado tiende a la baja, dado que las operaciones del mercado de renta fija y variable durante el 2015 disminuyeron con respecto al año anterior. Del 26/02/2016 al 03/05/2016 el mercado presentó una tendencia al alza, pues la operación del mercado en la bolsa de valores ascendió un 7,5%. Finalmente, para el rango del 08/07/2016 hasta el 24/03/2017 vuelve a presentar una tendencia lateral donde los inversionistas se mantienen indecisos ante la opción de realizar negociaciones y para el 31/05/2017 el mercado accionario vuelve a sufrir una tendencia al alza debido al retroceso que presentó la bolsa de valores en el primer trimestre de este año.

La canasta N° 39 del COLCAP correspondiente al trimestre de agosto a octubre de 2017, estaba conformada por las 24 empresas más líquidas del mercado bursátil colombiano para aquella temporada, las cuales son:
Figura 2. Canasta 39 del COLCAP para el trimestre de agosto a octubre de 2017. Adaptado de la Bolsa de Valores de Colombia (BVC).

Se evidencia que la organización financiera BANCOLOMBIA identificada con el Nemotécnico PFBCOLOM, fue la empresa colombiana de mayor participación en el mercado bursátil con un 13,119%. La Bolsa de Valores de Colombia (BVC) fue la de menor participación con un 0,229%.

4. Estado del Arte.
4.1 Estudios del Índice General de la Bolsa de Valores de Colombia.

Las investigaciones basadas en modelos de Pronóstico de series temporales para el Índice del mercado colombiano COLCAP no han sido amplias en nuestro país. Uno de estos estudios más reciente fue desarrollado con el objetivo de valorar los riesgos con mayor influencia en los retornos del mercado accionarios en Colombia, bajo el modelo de tres factores de Fama & French, para un periodo de 2009 a 2012. Presentando que son los factores mercado y tamaño de las empresas (SMB), los más influyentes en el comportamiento de los retornos. El Small Minus Big (SMB), es un indicador que computa la diferencia en el retorno entre las empresas de baja capitalización bursátil y las de alta capitalización bursátil [44].

Otra investigación evalúa el Efecto Día en los retornos del índice del mercado colombiano COLCAP, utilizando el modelo de mapa autoorganizado de Kohonen (Self Organizing Maps SOM), la cual es una red neuronal artificial usada principalmente para cuantificación vectorial, agrupamiento (clustering) y visualización de datos. Este se entrena y visualiza por medio de cada componente del vector de entrada para que relacione gráficamente las anomalías del efecto día respecto con el valor del retorno del COLCAP. Los datos históricos del COLCAP fueron tomados desde el 14/01/2008 al 30/05/2014. Como resultados arrojó una mayor existencia de pesos negativos para los lunes y predominancia de valores positivos para los días martes, en comparación con los demás días de la semana. Para los días miércoles y jueves se detecta mayores valores positivos, aunque no son tan altos. Con respecto a los días viernes se obtuvo, los valores más negativos de todos los días de la semana [45].

El estudio realizado en 2015 por Katherine Sierra, Juan benjamín Duarte y otro autor evalúa la predictibilidad de los retornos en el mercado de Colombia bajo la hipótesis de mercado adaptativo. Esta investigación se desarrolló en 3 etapas: primero efectúan un análisis estadístico a
las series; posteriormente aplican el test Ratio de varianza automático para verificar la dinámica de la eficiencia del mercado y en la tercera etapa realizan un ajuste de modelos autorregresivos integrados de media móvil, para determinar la predictibilidad de la serie. En este trabajo toman el IBC como índice de la bolsa de Colombia, la unión del Índice de la Bolsa de Bogotá (IBB) desde 1991 hasta 2001 y del IGBC desde el segundo semestre de 2001 hasta 2014. Los resultados de las observaciones arrojan que el nivel de predictibilidad del índice varía en el tiempo; pudiendo afirmar que el nivel de eficiencia es dinámico. Para el IBC se encuentra que durante el periodo de operación de la bolsa de Bogotá el mercado era ineficiente, especialmente para los años 1995 a 1997. También destacan que para el periodo de 2006-2008 el mercado era poco predecible [46].

Por otra parte, en el 2013 Katherine Sierra y Juan benjamín Duarte [30] en otro estudio buscan probar el comportamiento caótico en bolsa de valores de Colombia, mediante el ajuste de modelos autorregresivos ARIMA Y GARCH para obtener series de residuos no autocorrelacionados, usando datos históricos del IGBC. Los resultados arrojaron que los activos de Colombia muestran indicios de comportamiento caótico para periodos de alza y aleatorio para periodos a la baja, afirmando la hipótesis de mercado fractal.

Una investigación desarrollada por Hermilson Velásquez y Jorge Humberto Restrepo [47], en la cual analizan el índice general de la bolsa de valores de Colombia (IGBC) y sus rendimientos desde la teoría del caos, para un periodo de 2001 a 2011. El análisis que utilizan estos autores para contrastar la posible existencia de estructuras caóticas y fractal está basado en una estructurada de Restrepo (2011), la cual contiene elementos centrales para realizar estos análisis que son: pruebas de normalidad, no linealidad, autosimilitud utilizando métodos gráficos y métodos formales como la dimensión fractal y la dimensión de lagunaridad, persistencia que requiere el cálculo del exponente de Hurst, y para verificar la existencia de caos se utiliza el exponente de Lyapunov. Los
resultados de esta investigación son similares a los obtenidos en otros estudios con índices financieros, los cuales aportan evidencia de estructuras caóticas y la inexistencia de comportamientos aleatorios como lo sugieren otras teorías. También concluyen estos autores que existe la urgencia de construir nuevos procedimientos de análisis para estudiar la dinámica del mercado de capitales, que por su naturaleza es altamente compleja, dado que pueden coexistir procesos estocásticos, caos y fractales.

La aplicación del modelo ANFIS para predicción de series de tiempo es otra de las investigaciones encontradas, realizada por Gabriel Correa y Lina maría Montoya en el año 2013 [48], desarrollada bajo la metodología de Redes Neuro-Difusas aplicadas para la predicción de series de tiempo en el mercado de capitales de corto plazo. Estas proporcionan criterios de referencia para inversión especulativa en la bolsa de valores de Colombia, en la medida que complementan la realización de análisis técnicos y fundamentales. Utilizaron una herramienta basada en el modelo ANFIS (Adaptive Neuro-Based Fuzzy Inference System) la cual está disponible en lenguaje MATLAB, con utilidad en el pronóstico de series de tiempo. Se obtuvo que entre el 14 de enero de 2008 y el 25 de septiembre de 2013 (el COLCAP vigente), la Bolsa de Valores de Colombia presenta una altísima volatilidad, debido a la crisis económica mundial en el mes de octubre del año 2008.

Otro importante estudio fue presentado por Gustavo Adolfo Vásquez y Jorge Muñoz [49] en el 2012, en el cual desarrollan un diseño y evaluación de un modelo de pronóstico para el índice COLCAP mediante filtros de señal y redes neuronales artificiales. Los autores ilustran los modelos de redes neuronales Backpropagation y NARX, así como los métodos DWT y DFT para el modelado y filtrado de señales. A partir de la evidencia empírica, identifican uno con buen ajuste para el análisis y pronóstico de la serie de tiempo del COLCAP. La selección del modelo según su
ajuste lo realizaron a través de estadísticos como el MAPE, NSME, y el R2. Llegaron a la conclusión de que dicho análisis muestra el modelo NARX con mayor ajuste y brinda una mejor explicación sobre el comportamiento de las series de tiempo compuestas por el precio de cierre de los índices financieros.

Otra investigación encontrada en la revisión de la literatura es la evaluación de modelos de pronósticos para los principales mercados bursátiles Latinoamericanos, en el cual se estudia el comportamiento de los principales índices bursátiles de Latinoamérica: IGBC, MERVAL, IPC, IGPA y BOVEPSA, mediante la metodología de dividir las series de tiempo en intervalos de tendencia alcista y bajista, posteriormente se ajustan los modelos autorregresivos GARCH, EGARCH, TGARCH y una red neuronal artificial autorregresiva, para determinar el modelo que realice el mejor pronóstico de los rendimientos de los índices. Los resultados arrojan cuatro tendencias, dos al alza y dos a la baja [50].

4.2 Estudios de Pronósticos con series de tiempo de la Energía Eléctrica.

También se han desarrollado investigaciones relacionadas con la predicción de precios y demanda de la energía en Colombia. Uno de estos estudios lo realizó Víctor Daniel Gil, quien plantea un pronóstico de la demanda mensual de Electricidad con series de tiempo. El autor presenta un modelo basado en series de tiempo y toma como base los valores de la demanda de energía eléctrica en el Sistema Interconectado Nacional (SIN) de Colombia en el período 2008-2014. Puede concluir que las series de tiempo aplicadas al pronóstico de la demanda de electricidad permiten predecir con un alto grado de exactitud demandas futuras de energía eléctrica (GWh),
información que puede generar ventajas a productores, distribuidores y grandes consumidores a la hora de establecer estrategias, optimizar su operación y realizar contratos bilaterales [51].

Por otro lado, Rolando Rincón y Alberth Paba realizan un análisis y modelado del precio de la energía eléctrica para la administración de recursos energéticos locales, mediante el ajuste de un modelo ARIMA al precio de la bolsa de la energía eléctrica, para poder pronosticar el precio de cuarenta y ocho horas futuras y luego realizan una comparación de los datos de predicción con los datos reales. Logran concluir que el modelo ARIMA es útil para la predicción, pues los precios futuros no son posibles de predecir exactamente [52].

5. Metodología.

La metodología de investigación para llevar a cabo este estudio es de tipo descriptiva, dado que se tiene como objetivo seleccionar un modelo autorregresivo que mejor se ajuste al índice general de la Bolsa de Valores de Colombia para realizar su pronóstico usando series temporales. Se selecciona esta metodología en base a que la investigación descriptiva se vale de técnicas estadísticas descriptivas para observar, organizar, ordenar, visualizar, comparar y presentar los datos de estudio, lo cual cumple con los objetivos propuestos en este trabajo.

Por otro lado, en 1970 G.P.E Box y G.M. Jenkins publicaron “Times Series Analysis: Forecasting and Control” en la cual desarrollaron una metodología para estimar y diagnosticar modelos dinámicos usando series de tiempo, en donde la variable tiempo es fundamental. Esta combinación de herramientas de predicción, se llamó metodología Box- Jenkins o también técnicamente conocida como metodología ARIMA [36], la cual forma parte integral de la
Econometría. Este método de predicción se basa en el análisis de las propiedades probabilísticas o estocásticas de las series de tiempo económicas en sí mismas, pues una variable \(Y_t \) puede ser expresada como una función de sus valores pasados, razón por la que algunas veces se les denomina modelos ateóricos, donde no existe relación causal alguna a diferencia de los modelos clásicos de regresión.

Para pronosticar valores de la serie de tiempo, la estrategia básica de Box-Jenkins es la siguiente:

a) Examine primero si la serie es estacionaria. Esto se logra al calcular la función de autocorrelación (FAC) y la función de autocorrelación parcial (FACP), o mediante un análisis formal de raíz unitaria. Los correlogramas asociados a FAC y FACP son, con frecuencia, buenas herramientas de diagnóstico visual.

b) Si la serie de tiempo es no estacionaria, debe diferenciarse una o más veces para alcanzar la estacionariedad.

c) Se calculan entonces la FAC y la FACP de la serie de tiempo estacionaria para determinar si la serie es autorregresiva pura, del tipo de promedios móviles puro, o una mezcla de las dos.

d) Entonces se estima el modelo tentativo.

e) Se examinan los residuos de este modelo tentativo para establecer si son de ruido blanco. Si lo son, el modelo tentativo es quizás una buena aproximación al proceso estocástico subyacente. Si no lo son, el proceso se inicia de nuevo. Por consiguiente, el método de Box-Jenkins es iterativo.

f) El modelo finalmente seleccionado sirve para pronosticar.

Las etapas que se deben seguir para la elaboración de los modelos y realizar una predicción son [36]:

\[\text{PLATEA} \]
1. Identificación: La cual consiste en encontrar los valores apropiados de p, d y q del modelo ARIMA y GARCH. Para este paso se usan herramientas principales como el correlograma muestral y el correlograma parcial muestral. La serie que se va a ajustar es la de los LogReturn, la cual es estacionaria, puesto que tiene las siguientes transformaciones que estabilizan la media y la varianza de la serie:

\[l_r = \ln \left(\frac{p_t}{p_{t-1}} \right) \]

Donde:
Pt es el precio del COLCAP (el actual / el anterior)

2. Estimación: Se estiman los coeficientes de los términos autorregresivos y de promedios móviles incluidos en el modelo. En algunos casos pueden estimarse por mínimos cuadrados lineales, pero otras veces se realiza por estimación no lineal de los parámetros.

3. Verificación del Diagnóstico: Una vez se seleccione el modelo ARIMA particular y GARCH, debe haberse estimado sus parámetros, se revisa si el modelo seleccionado se ajusta razonablemente bien a los datos, pues otro modelo ARIMA puede que también lo haga. Para esta etapa se siguen unos subpasos:

- Análisis de los coeficientes
- Bondad de Ajuste
- Análisis de los residuos
4. Pronóstico: Al pronosticar un periodo futuro a partir del modelo seleccionado (el que mejor se ajusta), debe considerarse si fue diferenciada la variable original. En este estudio, la unidad de análisis que se trabajará son los datos diarios de cierre del COLCAP desde el 15/01/2018 (la primera vez que se calculó) hasta el año actual (2017).

El modelo GARCH \((p, q)\) propuesto por Bollerslev es descrito de la siguiente manera:

\[
a_t = \sigma_t \epsilon_t
\]

\[
\sigma^2_t = \alpha_0 + \sum_{i=1}^{p} \alpha_i a_{t-i}^2 + \sum_{j=1}^{q} \beta_j \sigma_{t-j}^2
\]

Donde \(\alpha_0 > 0\); \(\alpha_i \geq 0\); \(i = 1, \ldots, r\); \(\beta_j \geq 0\); \(j = 1, \ldots, p\). La variable aleatoria \(\epsilon_t\) es independiente e idénticamente distribuida con media cero, varianza 1, distribución de probabilidad normal. \(\alpha_0, \alpha_i, \beta_j\) son los parámetros para hallar, por medio empleando el criterio Akaike las posibles combinaciones de \(p\) y \(q\) de GARCH \((p, q)\), luego debe comprobarse que no quede heterocedasticidad en los residuos al cuadrado [50].

Por último, para la identificación del modelo superior frente al otro se realizará por medio del test de Diebold y Mariano, comparando las diferencias significativas entre los dos modelos y cuál de estos es el que presenta el menor valor de error de pronóstico mediante el MAPE, RMSPE y FPE.

5.1 Error de Medición de Pronóstico.
Una forma de saber si el pronóstico arrojará buenos resultados es mediante la medición de sus errores. El error de pronóstico mide el desempeño que tiene el modelo seleccionado, al compararlo consigo mismo usando datos históricos. La medida que se aplicará para calcular el error de pronóstico en este proyecto será MAPE (Mean Absolute Percentage error; Error Porcentual Absoluto Medio), el cual es un indicador del desempeño del Pronóstico que mide el tamaño del error (absoluto) en términos porcentuales. La fórmula que se utiliza para calcularlo es:

\[
MAPE = \frac{100 \%}{n} \sum_{i=1}^{n} \frac{|Real_i - Pronóstico_i|}{Real_i}
\]

Donde \(n \) es el número de muestras. La función de pérdida de la medida es la del error absoluto.

Evaluar la calidad del modelo de pronóstico es un punto importante para la credibilidad de la predicción. Por lo tanto, también se implementarán las medidas de evaluación de pronósticos RMSPE (Root Mean Square Percentage Error) y FPE (Final Prediction Error). RMSPE es definida como la raíz cuadrada del promedio de los errores en términos de porcentaje al cuadrado.

\[
RMSPE = \sqrt{\frac{1}{n} \sum_{t=1}^{n} \left(\frac{y_t - \hat{y}_t}{y_t} \right)^2}
\]

Donde \(n \) es el número de muestras, \(y_t \) es el valor actual y \(\hat{y}_t \) es la estimación. La función de pérdida de la medida es la cuadrática o error al cuadrado [53].

Para la elección del criterio de ajuste, se utilizará el FPE (Error Final de Predicción de Akaike), el cual utiliza una función de pérdida mínima en combinación con un número mínimo de parámetros estimados. Puede expresarse de la siguiente manera:
Donde:

\[FPE = \min_{n, \theta} \frac{1 + \frac{n}{N}V}{1 - \frac{n}{N}} \]

\(n \) es el número total de parámetros estimados, \(N \) es el número de datos y \(V \) es la función que mide el acuerdo entre el modelo y los datos, es una función de pérdida, típicamente un ajuste cuadrático de la estructura [54].

5.2 Evaluación del Pronóstico.

La evaluación del desempeño del pronóstico de los dos modelos que serán ajustados en este estudio se realizará por medio de la aplicación del test de comparación desarrollado por Diebold y Mariano en 1965 [55], en el cual \(Y_t \) es el conjunto de datos de la serie a pronosticar y:

\[y_{t+h/t}^1 \quad \text{Pronóstico del modelo 1 de } Y_t \]

\[y_{t+h/t}^2 \quad \text{Pronóstico del modelo 1 de } Y_t \]

Los errores de pronóstico para los dos modelos están dados por:

\[\varepsilon_{t+h/t}^1 = y_{t+h} - y_{t+h/t}^1 \quad \text{errores del modelo 1} \]

\[\varepsilon_{t+h/t}^2 = y_{t+h} - y_{t+h/t}^2 \quad \text{errores del modelo 2} \]

Donde \(h \) es el paso futuro que pronosticar; si se tienen \(T \) pronósticos para \(t = t_0, t_1, \ldots, T \) entonces validando ambos modelos se pueden establecer las series de errores como [50]:

\[\{\varepsilon_{t+h/t}^1\}_{t_0}^T; \{\varepsilon_{t+h/t}^2\}_{t_0}^T \]
Para medir la capacidad de cada pronóstico se utilizará como función residual \(L() \) el error cuadrático de la siguiente forma:

\[
L(\varepsilon_{t+h,t}^i) = (\varepsilon_{t+h,t}^i)^2
\]

La prueba estadística DM se basa en residuos diferenciales dados por:

\[
d_t = L(\varepsilon_{t+h,t}^1) - L(\varepsilon_{t+h,t}^2)
\]

Los modelos de pronóstico comparados poseen igual habilidad de pronóstico si satisfacen la hipótesis nula:

\[
H_0: E[d_t] = 0
\]

El estadístico de la prueba será:

\[
\tilde{d} = \frac{1}{T} \sum_{t=1}^{T} d_t
\]

Donde:

\[
\frac{\tilde{d}}{\left[LR V_{\tilde{d}} \right]^{1/2}}
\]

Siendo \(LR V_{\tilde{d}} \) la varianza asintótica de largo plazo.

Los \(\tilde{d} \) están seriamente correlacionados si:

\[
S \to N(0,1)
\]

Y para rechazar la hipótesis de igualdad en los pronósticos con un nivel de significancia del 5%.

\[
|S| > 1.96
\]
Esta prueba debe ser aplicada a las series de pronóstico de los modelos autorregresivos ARIMA y GARCH. Si el estadístico S es mayor a 1,96 se deduce que los modelos comparados son estadísticamente diferentes y se verifica dependiendo de cuál de los dos modelos tiene el menor valor de error de pronóstico mediante el MAPE, RMSPE y FPE para la selección del modelo de mejor ajuste.

6. Evaluación de modelos Autorregresivos al COLCAP.

6.1 Identificación de modelos Autorregresivos a ajustar.

Durante la revisión de la literatura se encontraron algunos estudios realizados al índice general de la Bolsa de Valores de Colombia IGBC, el cual antes del 01 de noviembre del año 2013 era el principal indicador del mercado de valores; luego de esta fecha se estableció el COLCAP como el índice general. Aunque no existe un número significativo de investigaciones sobre aplicaciones de modelos Autorregresivos para realizar pronósticos al COLCAP, a continuación, se relacionan los modelos utilizados y las principales características de cada estudio, con el fin de identificar los dos modelos que se deben emplear para el ajuste y pronóstico en esta investigación, dando cumplimiento al primero objetivo establecido.
<table>
<thead>
<tr>
<th>TÍTULO</th>
<th>AUTOR</th>
<th>UNIDAD DE ANÁLISIS</th>
<th>MODELO UTILIZADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluación de factores de riesgo con influencia en los retornos de los activos de la canasta COLCAP en Colombia, 2009-2012</td>
<td>D.M. Carmona, M. Vera (2015)</td>
<td>COLCAP</td>
<td>➢ Tres factores de Fama -French ▶️ Mínimos Cuadrados Ordinarios (MCO) ▶️ ARCH</td>
</tr>
<tr>
<td>El Efecto día en los retornos del índice COLCAP analizado con mapas Autoorganizados</td>
<td>J. D. Ortiz Sandoval, D. R. Peña Cuéllar, H. E. Espitia Cuchango (2016)</td>
<td>COLCAP</td>
<td>➢ Mapas Autoorganizativos de kohonen (SOM)</td>
</tr>
<tr>
<td>Predictibilidad de los retornos en el mercado de Colombia e Hipótesis de Mercado Adaptativo</td>
<td>K. J. Sierra Suárez, J.B. Duarte Duarte, V.A. Rueda Ortiz (2015)</td>
<td>IBB, IGBV y COLCAP</td>
<td>➢ Test Ratio de Varianza Automático (AVR) ▶️ ARIMA</td>
</tr>
<tr>
<td>Comprobación del Comportamiento Caótico en el Índice General de la Bolsa de Colombia</td>
<td>K. J. Sierra Suárez (2012)</td>
<td>IGBC</td>
<td>➢ Prueba BDS (Brock, Dechert y Scheinkman) ▶️ ARIMA ▶️ ARCH ▶️ Exponente de Hurst y exponente de Lyapunov</td>
</tr>
<tr>
<td>Análisis del Índice General de la Bolsa de Valores de Colombia y sus rendimientos desde la teoría del caos</td>
<td>H. Velásquez Ceballos, J. H. Restrepo Restrepo (2012)</td>
<td>IGBC</td>
<td>➢ Prueba BDS (Brock, Dechert y Scheinkman) ▶️ ARIMA ▶️ ARCH ▶️ Exponente de Hurst y exponente de Lyapunov</td>
</tr>
<tr>
<td>Aplicación del modelo ANFIS para predicción de series de tiempo</td>
<td>G.J. Correa Henao, L.M. Montoya Suárez (2013)</td>
<td>COLCAP</td>
<td>➢ Redes Neuro-Difusas ▶️ modelo ANFIS</td>
</tr>
<tr>
<td>Evaluación de modelos de pronósticos para los principales mercados bursátiles Latinoamericanos</td>
<td>P.T Parada Mayorga (2015)</td>
<td>IGBC, Merval, IGPA, IPC, IGV, BOVESPA</td>
<td>➢ GARCH ▶️ EGHARCH ▶️ TGARCH ▶️ Red neuronal artificial</td>
</tr>
</tbody>
</table>

Fuente. Elaboración propia.

Como se evidencia en la tabla anterior, los modelos ARIMA y GARCH, son implementados en la mayoría de los estudios encontrados, lo cual indica la viabilidad de utilizar estos dos modelos para el ajuste y pronósticos de la serie de tiempo del COLCAP, en el presente estudio.
6.2 Ajuste del modelo Autorregresivo al COLCAP.

6.2.1 Serie de tiempo seleccionada.

El COLCAP es el principal indicador de la Bolsa de Valores de Colombia (BVC) desde el 01 de noviembre del año 2013, que refleja las variaciones de los precios de las 20 acciones más líquidas del país, donde el valor de Capitalización Bursátil ajustada de cada empresa determina su participación dentro del índice. El valor base del COLCAP es de 1.000 puntos, registrados al inicio desde el 15 de enero de 2008, fecha en la cual se calculó por primera vez. Un emisor puede tener una participación máxima dentro de la canasta al momento del rebalanceo del 20%. Si excede el límite, será ajustada al 20% y su excedente se repartirá proporcionalmente entre los demás emisores de la canasta. La fórmula para calcular el COLCAP es la siguiente [56]:

\[I^K(t) = E \sum_{i=1}^{n} W^K_i P_i(t) \]

Donde,

\[I^K(t) \] = Valor del índice para \(t \).

\(t \) = Día o instante en el cual se calcula el índice

\(K \) = Identifica el trimestre en el que \(W^K_i \) está vigente.

\(E \) = Factor mediante el cual se da continuidad al índice cuando se presente un rebalanceo o en caso de darse eventos corporativos que lleven a variaciones al índice.

\(n \) = número de acciones en el índice en el momento \(t \).
\[W_i^k = \text{Peso o ponderación para la acción } i, \text{ fijo durante } k. \]

\[P = \text{Precio de cierre vigente de la acción } i \text{ en } t. \]

La ventana de tiempo que se seleccionó para este trabajo, fue desde el 15 de enero de 2008 al 12 de enero de 2018, es decir, desde la fecha en la que se calculó inicialmente el COLCAP, hasta los primeros 12 días del año 2018. Estos datos se obtuvieron de la página web de la Bolsa de Valores de Colombia y corresponden a 2438 datos diarios de cierre del COLCAP.

6.2.2 Análisis técnico de la serie de tiempo del COLCAP.

Es importante como primera medida conocer el comportamiento de la serie de tiempo de los datos de cierre del COLCAP e identificar su tendencia, por lo cual se presenta en la siguiente figura.

![Figura 3. Gráfica de los datos diarios de cierre del COLCAP del 15/01/2008 al 12/01/2018. Los valores fueron tomados de la página web de la Bolsa de Valores de Colombia (BVC), 2018. Elaboración propia.](image-url)
De la figura anterior se puede evidenciar que, durante el año 2008 en medio de la crisis financiera internacional que inició en Estados Unidos y se extendió rápidamente al resto del mundo, el mercado nacional se vio menos afectado que otros países emergentes, en gran medida debido a políticas catalogadas como impopulares, como el control al ingreso de capital extranjero a las inversiones de portafolio. Algunos sucesos importantes que contribuyeron a la recuperación de la economía colombiana durante el 2008 fueron el aumento de la inversión extranjera, la llegada al país de nuevos almacenes de comercio, una respuesta satisfactoria de la banca y con esto pudo aumentar su solidez, además del inicio de varios proyectos ambiciosos de infraestructura. También, Ecopetrol logró entrar a Wall Street y el aumento en la producción de petróleo.

Sin embargo, a mediados de este mismo año, se observa una tendencia a la baja significativa, explicada principalmente por la devaluación del peso con respecto al dólar, lo cual pudo generar incertidumbre a los inversionistas. También, en el mes de octubre se registra el precio más bajo durante la serie de tiempo.

A finales del año 2008 y hasta inicios del 2010, se presentó una tendencia al alza muy importante, alcanzando su máximo valor para el mes de abril de 2010, lo cual sucedió durante el segundo periodo del entonces presidente Álvaro Uribe Vélez; esto se dio gracias a la recuperación de los precios internacionales del petróleo y la política de seguridad nacional que aumentó la confianza de los inversionistas y esto contribuyó a que mejorara la credibilidad de la economía nacional. No obstante, durante el 2010 y hasta finales del 2011, a pesar del crecimiento del 5.9% de la economía colombiana según el DANE, la inflación tuvo un aumento con respecto a la del año anterior; en el contexto internacional los mercados financieros comenzaron a reaccionar a la baja, logrando una recuperación en la economía inferior a lo esperado para esa época.
Durante el 2012 la economía de Colombia continuó creciendo a lo largo del año, sin embargo, para el segundo trimestre del año se presentó una tendencia a la baja, debido a la desaceleración de las exportaciones, tanto en volumen como en precio y también a que las importaciones se redujeron. Para el segundo trimestre, puede distinguirse una leve tendencia alcista y durante el mes de octubre se prolongó una tendencia al alza en mayor magnitud, pues la inflación logró mantenerse dentro de la meta establecida por el Banco de la República, gracias a factores como: el mejoramiento de las condiciones del clima, se frenaron las alzas de los precios de la canasta familiar, reducción de precios agrícolas y el precio internacional de los combustibles cayeron; razón por la que para el mes de noviembre se presenta una mínima tendencia a la baja, además de que el dinamismo de las inversiones disminuyó al 5.7% con respecto al 18.3% en 2011. Finalizando el 2012 la economía colombiana tuvo un alza, hasta principios del 2013.

Aunque el crecimiento de la economía para el año 2013 creció 4.3%, gracias a que el café incrementó un 22.3%, siendo el principal motor de la agricultura. También mejoraron otros sectores como el sector financiero, la explotación de minas y canteras. En cuanto a la tasa de inversión para ese año, batió récord: 27.7% del PIB. Pero, a pesar, de que la situación fiscal del país se mantuvo dentro de los rangos previstos, a finales del 2013, se observó el deterioro del sector público, disminución de la demanda externa; el valor de las ventas externas de café, carbón y ferrerínquel, lo cual explican la desaceleración de las exportaciones que sucedió en esta época.

Para el 2014, con la reelección del presidente Juan Manuel Santos, se dio continuidad a los programas de inversión, en especial para vivienda y carreteras, además de las negociaciones en la Habana para el proceso de paz, fortaleció la confianza de los inversionistas, promovida por el compromiso del país con reformas para ingresar a la Organización de Cooperación y Desarrollo Económicos (OCDE), por lo cual una tendencia alcista se evidencia hasta aproximadamente el mes
de septiembre. Aunque el buen desempeño de la economía del país no está exento de factores tanto externos como internos; también el precio del petróleo presentaba una tendencia decreciente al igual que los precios de otros productos de exportación, por esto, se refleja una significativa tendencia a la baja para finales del 2014. Según el informe de balance preliminar de la CEPAL, la productividad y la industria, presentaron un débil desempeño.

La tendencia a la baja más importante se prolongó durante el año 2015, pues los resultados de la economía colombiana para ese periodo fueron desalentadores, ya que el comportamiento del sector financiero fue menor con respecto al año anterior. La desaceleración del comercio exterior de bienes y servicios, el alza persistente de los precios, fueron aspectos que se mantuvieron constantes durante todo el año. La reforma tributaria realizada a finales del 2014, para atenuar la disminución de ingresos petroleros y lograr el financiamiento para el presupuesto de 2015, no determinó compensar la reducción de ingresos por dividendos y por impuestos de la actividad petrolera. Además, la depreciación del peso con respecto al dólar que inició en el 2014 fue más intensa en el 2015. Para finales de este año, se presentó una muy pequeña tendencia alcista, debido al incremento del 6.6% de la demanda de energía. Los inversionistas recuperaron un poco la confianza para el segundo semestre del 2015.

El nerviosismo de los inversionistas frente al volátil panorama económico, trasciende a una tendencia un poco a la baja para inicios del año 2016, en parte por el fenómeno del niño y la reducción de demanda de energía. Sin embargo, nuevamente se presenta un desacelerado crecimiento económico a mediados de 2016, ya que la depreciación del peso colombiano logró moderarse en 2016. A pesar de esto, en los siguientes meses se evidencia una corta tendencia a la baja, en razón a que el tipo de cambio nominal descendió. En el segundo semestre de este año, tuvo una apreciación el precio colombiano que mantuvo una tendencia estable, producto de las
expectativas de aumento de tasas en los Estados Unidos y particularmente, por la incertidumbre derivada de los mercados internacionales y la coyuntura colombiana. Aunque se propuso reactivar las exportaciones, no se logró y en septiembre las importaciones cayeron cerca de un 20%, reflejando la pérdida de dinamismo de la actividad económica y una tendencia bajista hasta finales del año, debido a la depreciación del peso. La inversión extranjera directa (IED) fue inferior a la de los años anteriores, excepto por los ingresos de la venta de la participación del gobierno en ISAGEN, pero a pesar de esto, el desempeño de la economía del país en 2016 fue más débil que la del año anterior [57].

La inflación total anual en diciembre de 2016 se ubicó en 5,75%, para marzo de 2017 pasó a 4,7%, por lo cual para esta fecha se refleja una pequeña tendencia al alza. Posterior a esto se llega a una inflación del 5.14%, presentándose una mínima tendencia a la baja. En lo corrido del 2017, las caídas cercanas al 10% anual en los precios de los alimentos perecederos eran una señal de que los efectos del choque climático del fenómeno del niño estaban desapareciendo. También se refleja una tendencia alcista hasta lo corrido del mes de septiembre. La economía del país creció 1.3% en el segundo trimestre del año según lo informó el DANE, el sector del Agro y las finanzas fueron los que impulsaron este comportamiento al alza. De acuerdo con el informe de la Cepal y el informe del banco de la República, se espera que la economía colombiana pase de crecer 1,8% en 2017 a 2,6% en 2018, pues el 2017 finaliza con una tendencia al alza, debido al incremento de los ingresos de la tarifa general del impuesto del valor agregado (IVA) de 16% a 19% [58].

Indiciando el año 2018, las importaciones presentaron un bajo registro, lo cual contribuyó en la reducción del déficit comercial del país como se refleja en la figura, con una tendencia al alza hasta el 5 de enero de este año. Sin embargo, durante los inicios del 2018 la balanza comercial registró una caída de 11.1%, pasando de 583,3 millones de dólares (FOB) en enero del 2017 a
518,4 millones de dólares un año después, generando una tendencia a la baja hasta mediados de enero de 2018. Lo bueno para la economía de Colombia para esa fecha, fue que la rama manufacturera impulsó las importaciones durante el primer mes del año [59].

6.2.3. Análisis de los Rendimientos del COLCAP.

El método para realizar el ajuste de los modelos corresponde a la metodología Box- Jenkins (1976). Su objetivo consiste en identificar y estimar un modelo estadístico que permita ser interpretado a partir de la información de la muestra. El modelo estimado que se usará para la predicción debe cumplir con que las características de la serie sean constantes en el tiempo. De esta forma, la predicción se realiza considerando que el modelo es estacionario o estable [28]. Por lo anterior, la serie que se va a ajustar es la de los LogReturn, la cual es estacionaria, pues se transforma con la siguiente fórmula, estabilizando la media y la varianza de la serie de los rendimientos del COLCAP:

\[l_r = \ln \left(\frac{p_t}{p_t - 1} \right) \]

Donde:
Pt es el precio del COLCAP (el actual / el anterior)
De la figura anterior, se pueden evidenciar dos fuertes fluctuaciones, una al inicio de la serie, es decir, para el mes de enero de 2008 y otra en octubre del mismo año; lo cual puede ser en razón a la crisis financiera mundial que inició en Estados Unidos, y que en gran medida afectó la economía colombiana para el 2008. En formal general, el volumen de la serie de rendimientos transformada a estacionaria del COLCAP, reflejan una tendencia y una agrupación constante a lo largo del tiempo.
Para analizar la estacionariedad de la serie de rendimientos del COLCAP, se generó el Histograma y los Estadísticos de esta, los cuales son muy importantes para el análisis estadístico de la serie de tiempo. El Histograma, el cual se encuentra en la parte izquierda, nos muestra gráficamente la distribución de los datos de la serie de rendimientos. De acuerdo con los Estadísticos (en la parte derecha del gráfico), se muestra el valor de la Media por valor de 0.000175, el valor de la Mediana, Máximo, Mínimo, la Desviación Estándar, el Sesgo, la Curtosis y la significancia del estadístico Jarque-Bera. Se evidencia en la gráfica 5, que el sesgo presenta un valor negativo, lo cual indica que existe la probabilidad de que aun tenga valores negativos extremos la serie de tiempo. La curtosis, es mayor a tres, lo que quiere decir que, existe una gran concentración en la media y también valores extremos, pero aún con esto, la serie continúa siendo leptocúrtica, lo que significa que es más apuntada que la normal (ver figura 6), una característica de las series financieras.
El estadístico Jarque Bera (JB) el cual según Gujarati [60], este nos sirve para probar la normalidad de los términos y cuanto mayor sea el valor de este estadístico, mayor será la probabilidad de que la serie se encuentre distribuida normalmente.

El logaritmo de los precios o tasas son datos estacionarios transformados en los rendimientos de estos. Las investigaciones financieras, consideran estacionarias a las series de los retornos, sin embargo, esto debe comprobarse. Por lo tanto, es necesario realizar una prueba estadística para confirmar que la serie de los rendimientos del COLCAP sea estacionaria. Con este fin, se utilizó la prueba de Dickey and Fuller Aumentada (DFA) [61], la cual confronta dos hipótesis acerca de la serie de tiempo.

Hipótesis nula (Ho): afirma que existe raíz unitaria, es decir, que la serie02 (como llamamos los datos de rendimientos del COLCAP) es no estacionaria.

Hipótesis alternativa (Ha): La serie de los rendimientos de COLCAP estacionaria.
Si se rechaza la Ho, se afirma que los datos de los rendimientos del COLCAP son estacionarios, lo cual con ayuda del software Eviews se realiza esta prueba. El número de los rezagos se definieron calculando el Ln de 2438, el cual es el valor de los datos que conforman la serie de tiempo seleccionada, el valor de los retardos es 8.

Null Hypothesis: SERIES02 has a unit root
Exogenous: Constant, Linear Trend
Lag Length: 0 (Automatic - based on SIC, maxlag=8)

<table>
<thead>
<tr>
<th></th>
<th>t-Statistic</th>
<th>Prob. *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Augmented Dickey-Fuller test statistic</td>
<td>-44.55975</td>
<td>0.0000</td>
</tr>
<tr>
<td>Test critical values:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1% level</td>
<td>-3.961810</td>
<td></td>
</tr>
<tr>
<td>5% level</td>
<td>-3.411652</td>
<td></td>
</tr>
<tr>
<td>10% level</td>
<td>-3.127700</td>
<td></td>
</tr>
</tbody>
</table>

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(SERIES02)
Method: Least Squares
Date: 05/12/18 Time: 21:31
Sample (adjusted): 1/16/2008 1/12/2018
Included observations: 2437 after adjustments

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERIES02(-1)</td>
<td>-0.897762</td>
<td>0.020147</td>
<td>-44.55975</td>
<td>0.0000</td>
</tr>
<tr>
<td>C</td>
<td>0.000473</td>
<td>0.000425</td>
<td>1.113404</td>
<td>0.2656</td>
</tr>
<tr>
<td>@TREND("1/15/2008")</td>
<td>-2.53E-07</td>
<td>3.02E-07</td>
<td>-0.837395</td>
<td>0.4025</td>
</tr>
</tbody>
</table>

R-squared 0.449269 Mean dependent var 7.68E-06
Adjusted R-squared 0.448816 S.D. dependent var 0.014117
S.E. of regression 0.010480 Akaike info criterion -6.277375
Sum squared resid 0.267351 Schwarz criterion -6.270237
Log likelihood 7651.981 Hannan-Quinn criter. -6.274780
F-statistic 992.7883 Durbin-Watson stat 2.007154
Prob(F-statistic) 0.000000

Figura 7. Prueba de estacionariedad Dickey and Fuller Aumentada (DFA), aplicada a la serie de rendimientos del COLCAP. Elaboración propia.
Lo primero que se analizó fue la existencia de Autocorrelación, lo cual se realiza mirando el estadístico Durbin-Watson, el cual arrojó un valor de 2.007154. Si es mayor de 2, los datos están correlacionados negativamente [62]. Luego de confirmar que no existe correlación entre los datos, se compara el t-estadístico (-44.55975); con el valor crítico del 5% (-3.411652), en donde se obtiene que el estadístico, es mayor con respecto al valor crítico; por lo tanto, se rechaza la Ho, es decir, la serie de retornos del COLCAP es estacionaria, con una probabilidad nula (0%) de no rechazar la Ho [63].

6.2.4 Autocorrelogramas Simple y Parcial.

Algunas investigaciones empíricas sobre economía financiera han encontrado que ocasionalmente, una serie de tiempo toma valores que muestran cierta dependencia entre estos a través del tiempo, es decir, un valor definido que depende de valores anteriores. Para esto, existen dos formas de medir la dependencia de las variables [64]:

- Función de Autocorrelación Simple (FAC): Mide la correlación entre dos variables separadas por k periodos. La FAC en el rezago k, denotada por ρ_k, se define como [65]:

\[
\rho_k = \frac{y_k}{\gamma_0} = \frac{\text{covarianza en el rezago } k}{\text{varianza}}
\]

Si $k = 0$, entonces $\rho_0 = 1$
Función de Autocorrelación Parcial (FACP): Mide la correlación entre dos variables separadas k periodos cuando no se considera la dependencia creada por los retardos intermedios existentes entre ambas. Su fórmula es:

\[
\pi_j = corr (X_j, X_{j-k}/X_{j-1}X_{j-2} \ldots X_{j-k+1})
\]

\[
\pi_j = \frac{cov(X_j - \bar{X}_j, X_{j-k} - \bar{X}_{j-k})}{\sqrt{V(X_j - \bar{X}_j)} \sqrt{V(X_{j-k} - \bar{X}_{j-k})}}
\]

A continuación, se presenta la función de autocorrelación simple y parcial, realizado en el software Eviews:

![Figura 8. Correlogramas simple y parcial de la serie de rendimientos del COLCAP. Elaboración propia.](image-url)

De la figura de los correlogramas, se evidencia el diagrama de Autocorrelación (a la izquierda), la línea vertical representa el eje cero, los valores que están por arriba de la línea son positivos y los que están por debajo son negativos [66]. Las autocorrelaciones de mayor valor se encuentran en el rezago 1, lo cual quiere decir, que el rendimiento de hoy, depende del valor anterior. Además, se muestra que después del rezago 1, la función FAC y FACP se cortan, por lo tanto, aún no puede
definirse un proceso AR (p) o MA (q). También se puede notar, que luego del rezago 3, los coeficientes presentan valores más negativos. A partir, de lo anterior, se generan diferentes combinaciones de los parámetros (p, q) para el ajuste del modelo ARMA, desde el 15/01/2008 hasta el 05/01/2018 y teniendo en cuenta los patrones sugeridos por Gujarati.

6.2.5. Ajuste del modelo ARMA (p, q).

<table>
<thead>
<tr>
<th>Modelo</th>
<th>Coeficiente</th>
<th>Std. Error</th>
<th>t-statistic</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR (1)</td>
<td>0.102596</td>
<td>0.020159</td>
<td>5.089422</td>
<td>0.0000</td>
</tr>
<tr>
<td>MA (1)</td>
<td>0.096164</td>
<td>0.020181</td>
<td>4.765092</td>
<td>0.0000</td>
</tr>
<tr>
<td>AR (1)</td>
<td>0.479358</td>
<td>0.126892</td>
<td>3.777674</td>
<td>0.0002</td>
</tr>
<tr>
<td>MA (1)</td>
<td>-0.395302</td>
<td>0.132990</td>
<td>-2.972425</td>
<td>0.0030</td>
</tr>
<tr>
<td>AR (1)</td>
<td>0.099959</td>
<td>0.020161</td>
<td>4.958091</td>
<td>0.0000</td>
</tr>
<tr>
<td>MA (1)</td>
<td>-0.058914</td>
<td>0.020252</td>
<td>-2.90987</td>
<td>0.0037</td>
</tr>
<tr>
<td>AR (1)</td>
<td>-0.055858</td>
<td>0.020165</td>
<td>-2.770023</td>
<td>0.0056</td>
</tr>
<tr>
<td>MA (1)</td>
<td>-0.051878</td>
<td>0.020197</td>
<td>-2.568581</td>
<td>0.0103</td>
</tr>
<tr>
<td>AR (1)</td>
<td>0.085651</td>
<td>0.020216</td>
<td>4.236805</td>
<td>0.0000</td>
</tr>
<tr>
<td>MA (1)</td>
<td>-0.626017</td>
<td>0.092593</td>
<td>-6.760920</td>
<td>0.0000</td>
</tr>
<tr>
<td>AR (1)</td>
<td>0.600253</td>
<td>0.095988</td>
<td>6.253440</td>
<td>0.0000</td>
</tr>
<tr>
<td>AR (1)</td>
<td>0.422041</td>
<td>0.124631</td>
<td>3.386311</td>
<td>0.0007</td>
</tr>
<tr>
<td>AR (1)</td>
<td>-0.063688</td>
<td>0.018212</td>
<td>-3.496988</td>
<td>0.0005</td>
</tr>
<tr>
<td>MA (1)</td>
<td>-0.341495</td>
<td>0.129929</td>
<td>-2.628313</td>
<td>0.0086</td>
</tr>
<tr>
<td>AR (1)</td>
<td>0.084289</td>
<td>0.016458</td>
<td>5.121429</td>
<td>0.0000</td>
</tr>
</tbody>
</table>
De la tabla 3 se puede evidenciar que los diferentes modelos ajustados a la media del COLCAP son significativos, dado que el p-valor es menor de 0.05. Sin embargo, algunos modelos presentan coeficientes negativos, como el caso del AR (1) MA (1), en el cual el proceso MA (1) tiene un coeficiente de -0.395302; también se muestra la misma situación en los demás modelos. En cuanto al modelo AR (1) y MA (1), indican mayor significancia, pues sus coeficientes son positivos. A pesar de estos resultados, no son suficientes para determinar el modelo de mejor ajuste; por lo cual se deben tener en cuenta los criterios de información estadística Akaike y Schwarz.

Fuente: Elaboración propia.

<table>
<thead>
<tr>
<th>Modelo</th>
<th>Coeficiente</th>
<th>Std. Error</th>
<th>t-statistic</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR (4)</td>
<td>-0.637907</td>
<td>0.069614</td>
<td>-9.163432</td>
<td>0.0000</td>
</tr>
<tr>
<td>MA (4)</td>
<td>0.621859</td>
<td>0.072329</td>
<td>8.597587</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Tabla 4.
Modelos ajustados a la media del COLCAP y sus criterios estadísticos.

<table>
<thead>
<tr>
<th>ARMA (p, q)</th>
<th>SCHWARZ</th>
<th>AKAIKE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARMA (1, 0)</td>
<td>-6.274891</td>
<td>-6.277274</td>
</tr>
<tr>
<td>ARMA (0, 1)</td>
<td>-6.273151</td>
<td>-6.275533</td>
</tr>
<tr>
<td>ARMA (1, 1)</td>
<td>-6.273454</td>
<td>-6.278219</td>
</tr>
<tr>
<td>ARMA (1, 4)</td>
<td>-6.275072</td>
<td>-6.279837</td>
</tr>
<tr>
<td>ARMA (4, 0)</td>
<td>-6.274651</td>
<td>-6.277036</td>
</tr>
<tr>
<td>ARMA (4, 1)</td>
<td>-6.278738</td>
<td>-6.283509</td>
</tr>
<tr>
<td>ARMA (4, 4)</td>
<td>-6.286927</td>
<td>-6.291697</td>
</tr>
<tr>
<td>AR (1) AR (4) MA (1)</td>
<td>-6.283322</td>
<td>-6.290477</td>
</tr>
</tbody>
</table>
Según la tabla anterior, el modelo AR (1) AR (4) MA (4) es el que muestra menor valor en los criterios Schwarz (-6.296076) y Akaike (-6.303231), pues mientras más bajos sean estos valores, mejor será el modelo. Una ventaja del criterio Akaike (CIA) y el criterio de información Schwarz (CIS), es que son útiles para comparar el desempeño del pronóstico dentro y fuera de la muestra de un modelo [67]. Por lo anterior, se propone este modelo AR (1) AR (4) MA (4) de mejor ajuste al índice COLCAP, con su respectiva fórmula y los valores de sus coeficientes.

\[R_t = \ln \left(\frac{P_t}{P_{t-1}} \right) \]

\[R_t = C_1 R_{t-1} + C_4 R_{t-4} + \alpha_4 \epsilon_{t-4} \]

\[R_t = 0.084289 R_{t-1} - 0.637907 R_{t-4} + 0.621859 \epsilon_{t-4} \]

6.2.6 Prueba de los residuos de los Logaritmos.

Con los resultados anteriores, es necesario realizar una prueba a los residuos de la serie de Rendimientos del COLCAP. Por lo tanto, se realizó la validación de si los residuos estimados a
partir del modelo pertenecen a un proceso puramente aleatorios (técnicamente conocido como ruido blanco), ya que, si el modelo es adecuado, los residuos deben ser de ruido blanco. En razón a lo anterior, a continuación, se presenta la tabla de los estadísticos de los residuos generados en el ajuste de cada modelo propuesto en la tabla 3.

<table>
<thead>
<tr>
<th>Modelo</th>
<th>Media</th>
<th>Desviac. Estándar</th>
<th>Sesgo</th>
<th>Curtosis</th>
<th>J-B</th>
<th>p - valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR (1)</td>
<td>0.000171</td>
<td>0.010484</td>
<td>-0.176459</td>
<td>12.31344</td>
<td>8805.919</td>
<td>0.000000</td>
</tr>
<tr>
<td>MA (1)</td>
<td>0.000166</td>
<td>0.010493</td>
<td>-0.205318</td>
<td>12.24278</td>
<td>8681.018</td>
<td>0.000000</td>
</tr>
<tr>
<td>AR (1) MA (1)</td>
<td>0.000173</td>
<td>0.010475</td>
<td>-0.114445</td>
<td>12.00817</td>
<td>8231.594</td>
<td>0.000000</td>
</tr>
<tr>
<td>AR (1) MA (4)</td>
<td>0.000182</td>
<td>0.010466</td>
<td>-0.253822</td>
<td>12.52246</td>
<td>9218.532</td>
<td>0.000000</td>
</tr>
<tr>
<td>AR (4)</td>
<td>0.000233</td>
<td>0.010484</td>
<td>-0.444136</td>
<td>11.69404</td>
<td>7733.000</td>
<td>0.000000</td>
</tr>
<tr>
<td>AR (4) MA (1)</td>
<td>0.000215</td>
<td>0.010446</td>
<td>-0.297598</td>
<td>12.65037</td>
<td>9465.250</td>
<td>0.000000</td>
</tr>
<tr>
<td>AR (4) MA (4)</td>
<td>0.000215</td>
<td>0.010403</td>
<td>-0.414662</td>
<td>10.83310</td>
<td>6282.073</td>
<td>0.000000</td>
</tr>
<tr>
<td>AR (1) AR (4) MA (1)</td>
<td>0.000224</td>
<td>0.010405</td>
<td>-0.173319</td>
<td>11.86260</td>
<td>7964.908</td>
<td>0.000000</td>
</tr>
<tr>
<td>AR (1) AR (4) MA (4)</td>
<td>0.000202</td>
<td>0.010340</td>
<td>-0.304836</td>
<td>11.26896</td>
<td>6960.677</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

La tabla 5 muestra los estadísticos de los residuos de los modelos que se ajustaron a la media del índice COLCAP, los cuales todos tienen una media cerca de 0, el sesgo de estos es un valor negativo, indicando la probabilidad de que aun queden valores negativos en los extremos de la serie. La curtosis, de todos los residuos es mayor a tres, por lo que puede decirse que existe una gran concentración de datos en la media y también algunos valores extremos; sin embargo, con esto la
serie continúa siendo leptocúrtica. El estadístico Jarque Bera (JB) prueba la normalidad de los términos y cuanto mayor sea el valor de este estadístico, mayor será la probabilidad de que la serie se encuentre distribuida normalmente. Sin embargo, es necesario validar formalmente que los residuos del modelo ajustado y seleccionado anteriormente de la tabla 3, sean de ruido blanco; por lo cual se realizó la prueba de Hipótesis simple [68]. Se efectuó este test a cada uno de los residuos de los modelos ajustados, donde se contrasta la Hipótesis Nula de que la media es igual a cero, con la Hipótesis alternativa de que la media es diferente de cero.

\[H_0: \mu = 0 \]
\[H_a: \mu \neq 0 \]

Tabla 6.
Test de Hipótesis Simple a los residuos de los modelos ajustados al COLCAP.

<table>
<thead>
<tr>
<th>Modelo</th>
<th>t-statistic</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR (1)</td>
<td>0.806344</td>
<td>0.4201</td>
</tr>
<tr>
<td>MA (1)</td>
<td>0.779408</td>
<td>0.4358</td>
</tr>
<tr>
<td>AR (1) MA (1)</td>
<td>0.815438</td>
<td>0.4149</td>
</tr>
<tr>
<td>AR (1) MA (4)</td>
<td>0.859249</td>
<td>0.3903</td>
</tr>
<tr>
<td>AR (4)</td>
<td>1.095829</td>
<td>0.2733</td>
</tr>
<tr>
<td>AR (4) MA (1)</td>
<td>1.012470</td>
<td>0.3114</td>
</tr>
<tr>
<td>AR (4) MA (4)</td>
<td>1.017807</td>
<td>0.3089</td>
</tr>
<tr>
<td>AR (1) AR (4) MA (1)</td>
<td>1.059004</td>
<td>0.2897</td>
</tr>
</tbody>
</table>
Con estos resultados, se comprueba que el modelo seleccionado AR (1) AR (4) MA (4), tiene una media igual a cero, con una probabilidad del 0.3348, la cual es superior al 0.05, lo cual es suficiente evidencia para aceptar la Hipótesis nula. Posterior a esto, se realizó el gráfico de los residuos de este modelo, con el fin de confirmar si la varianza es constante.

La anterior figura, muestra la agrupación de los valores de los residuos hacia la media de la serie de rendimientos del COLCAP. Visualmente se puede inferir, que el modelo ajustado, pertenece a

<table>
<thead>
<tr>
<th>Modelo</th>
<th>t-statistic</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR (1) AR (4) MA (4)</td>
<td>0.964740</td>
<td>0.3348</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Figura 9. Residuos del modelo AR (1) AR (4) MA (4) ajustado a la serie de rendimientos del COLCAP. Elaboración propia.
un proceso aleatorio o de ruido blanco, el cual debe tener una media igual a cero, una varianza constante σ^2 y no está serialmente correlacionado. En la siguiente figura, se relacionan los estadísticos y el Histograma de los residuos del modelo ajustado a la serie del COLCAP.

Figura 10. Histograma y Estadísticos de los residuos del modelo AR (1) AR (4) MA (4) ajustado a la serie de rendimientos del COLCAP. Elaboración propia.

Se puede evidenciar en la Figura 10, que los residuos del modelo ajustado a la serie de rendimientos del índice COLCAP, presentan un comportamiento de distribución normal, ya que el estadístico Jarque-Bera es bastante significativo. La Curtosis es superior a tres, lo que significa que la serie es un poco más apuntada que la normal, debido a la concentración de valores en la media y también en los extremos. Presenta un sesgo negativo muy bajo, lo cual es una propiedad deseable de las estimaciones. Adicionalmente, los estadísticos del modelo indican que los residuos de este cumplen con las características de un proceso de ruido blanco.
De acuerdo con la metodología implementada, se busca que del ajuste de los modelos se obtenga una serie de residuos no autocorrelacionados. Es por esto, que con la anterior gráfica se puede evidenciar la no correlación entre los valores de los residuos del modelo ajustado. Sin embargo, se realiza otra prueba para confirmar que los residuos del modelo sean de ruido blanco, por lo cual se efectuó la prueba Quantil-Quantil [52].
La anterior figura muestra que los datos se encuentran a lo largo de la recta, es decir, se apuntan muy cercanos a la media, salvo por algunos valores atípicos. Además, no hay evidencia de dependencia serial, lo cual es un buen indicio de la estimación del modelo y de que los residuos siguen un proceso de ruido blanco.

6.2.7. Ajuste del modelo ARMA-GARCH.

Luego del ajuste del modelo AR (1) AR (4) MA (4) a la media de la serie de rendimientos del COLCAP, se analizaron los residuos generados y se efectuó la función de autocorrelación simple
y parcial de los residuos al cuadrado, para establecer si existen variaciones o volatilidad en la serie financiera, lo que podría indicar cambios en la varianza a través del tiempo.

Figura 13. Correlogramas simple y parcial de los residuos al cuadrado del modelo AR (1) AR (4) MA (4) ajustado a la serie de rendimientos del COLCAP. Elaboración propia.

Se observa en la figura 13, autocorrelación en los primeros rezagos de la serie de residuos al cuadrado y presenta correlaciones significativas distintas de cero. Además, se muestra que la varianza de los residuos no es constante, con rachas de mayor variabilidad que otras. La propiedad de los modelos con una varianza condicionada a los valores pasados de la serie no es continua, pues depende de estos; por lo cual se les conoce como modelos con varianza condicional heterocedástica (no constante) o modelos de heterocedasticidad condicional. El modelo ARCH (AutoRegressive Conditional Heteroscedastic), supone que la varianza condicional depende de las innovaciones pasadas con una estructura autorregresiva [69]. Por lo anterior, se realizó el test ARCH para confirmar la presencia de heterocedasticidad en la serie, que se muestra en la siguiente figura.
Heteroskedasticity Test: ARCH

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>Prob.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F-statistic</td>
<td>1000.277</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Obs*R-squared</td>
<td>708.9222</td>
<td>0.0000</td>
<td></td>
</tr>
</tbody>
</table>

Test Equation:
Dependent Variable: RESID^2
Method: Least Squares
Date: 05/13/18 Time: 21:11
Sample (adjusted): 1/22/2008 1/05/2018
Included observations: 2429 after adjustments

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>4.96E-05</td>
<td>5.87E-06</td>
<td>8.445854</td>
<td>0.0000</td>
</tr>
<tr>
<td>RESID^2(-1)</td>
<td>0.517773</td>
<td>0.016371</td>
<td>31.62716</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

R-squared | 0.291858 | Mean dependent var | 0.000105 |
Adjusted R-squared | 0.291566 | S.D. dependent var | 0.000328 |
S.E. of regression | 0.000276 | Akaike info criterion | -13.55110 |
Sum squared resid | 0.000185 | Schwarz criterion | -13.54633 |
Log likelihood | 16459.81 | Hannan-Quinn criter. | -13.54937 |
F-statistic | 1000.277 | Durbin-Watson stat | 1.957596 |
Prob(F-statistic) | 0.000000 | | |

Figura 14. Test ARCH de los residuos al cuadrado del modelo AR (1) AR (4) MA (4) del COLCAP. Elaboración propia.

Se puede evidenciar que el p-valor es menor a 0.05, por lo cual se rechaza la hipótesis nula de que la serie de residuos al cuadrado sea homocedástica, confirmando así la heterocedasticidad para poder ajustar un modelo GARCH (p, q). Para esto, se realizó el ajuste a varias combinaciones del modelo GARCH, las cuales se relacionan en la siguiente tabla.

Tabla 7.
Modelos ajustados a la varianza del COLCAP y sus criterios estadísticos.
<table>
<thead>
<tr>
<th>MODELO</th>
<th>AKAIKE</th>
<th>SCHWARZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>GARCH (0, 1)</td>
<td>-6,326415</td>
<td>-6,314489</td>
</tr>
<tr>
<td>GARCH (1, 0)</td>
<td>-6,478136</td>
<td>-6,466211</td>
</tr>
<tr>
<td>GARCH (1, 1)</td>
<td>-6,598955</td>
<td>-6,584645</td>
</tr>
<tr>
<td>GARCH (2, 0)</td>
<td>-6,528938</td>
<td>-6,514628</td>
</tr>
<tr>
<td>GARCH (0, 2)</td>
<td>-6,325663</td>
<td>-6,311353</td>
</tr>
<tr>
<td>GARCH (2, 2)</td>
<td>-6,597335</td>
<td>-6,578254</td>
</tr>
<tr>
<td>GARCH (6, 0)</td>
<td>-6,585393</td>
<td>-6,561543</td>
</tr>
<tr>
<td>GARCH (0, 6)</td>
<td>-6,326573</td>
<td>-6,302723</td>
</tr>
<tr>
<td>GARCH (6, 1)</td>
<td>-6,601041</td>
<td>-6,574805</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

De acuerdo con los resultados de la tabla 7, se muestra que el modelo mejor ajustado a la varianza del COLCAP, es el modelo GARCH (1, 1), pues presenta los menores valores de los criterios de información Akaike y Schwarz. La fórmula de este modelo es la siguiente:

\[
\sigma_t^2 = \alpha_0 + \alpha_1 e_{t-1}^2 + \beta_1 \sigma_{t-1}^2
\]

\[
\sigma_t^2 = 4.49E-06 + 0.154275 e_{t-1}^2 + 0.802596 \sigma_{t-1}^2
\]

Adicionalmente, se muestra el gráfico de la varianza condicional de este modelo.
Se puede evidenciar en la anterior figura, que el modelo GARCH (1,1) describe bien la volatilidad de la serie de tiempo financiera, que para el año 2008 presentó una fuerte variación y valores atípicos durante ese año.

6.3. Evaluación de Pronóstico.

6.3.1 Pronóstico Estático.

La previsión estática realiza una serie de pronósticos de un paso adelante de la variable dependiente. Para cada observación en la muestra de pronóstico, Eviews calcula:
Donde, siempre se utiliza el valor real de la variable endógena rezagada.

El método Estático realiza el pronóstico utilizando los valores reales de la serie en lugar de los valores pronosticados para las variables dependientes rezagadas. Este método de un paso adelante es más preciso que el dinámico, pues para cada período de predicción, toma valores conocidos de la serie y genera el pronóstico, mediante un gráfico con dos errores estándar, por debajo y por encima de este, así como su respectiva evaluación [68]. El modelo ARMA-GARCH fue ajustado con los datos desde el 15/01/2008 hasta el 05/01/2018, al igual que el modelo ARMA. Se pronostica la segunda semana del mes de enero de 2018, es decir, a partir del 09/01/2018 hasta el 12/01/2018.

6.3.2 Pronóstico modelo AR (1) AR (4) MA (4).

6.3.3 Pronóstico modelo ARMA-GARCH (1, 1)
Luego de generar el pronóstico Estático para los dos modelos como se muestra en las figuras 17 y 18, se realiza la evaluación de pronóstico mediante las medidas de error de desempeño de predicción presentadas en la siguiente tabla:

Tabla 8.
Medidas de error de pronóstico de los modelos ARMA y ARMA-GARCH.
De acuerdo con los resultados obtenidos del error de pronóstico que se relacionan en la tabla anterior, se puede evidenciar que el modelo ARMA obtiene un MAPE (Error Porcentual Absoluto Medio) del 54.16%, el cual es inferior con respecto al valor arrojado por el modelo ARMA-GARCH de 61.83%; de igual manera se muestra un resultado de error menor de este modelo con el indicador que mide el promedio de los valores absolutos de los errores (MAE). En cuanto al valor del RMSE (Root Mean Square Error) o raíz cuadrada de la media de los errores, también conocido como desviación cuadrática media, es utilizado con frecuencia para medir la diferencia entre los valores pronosticados con los reales y del cual el modelo ARMA obtuvo igualmente un menor valor de error. Por lo anterior, se puede inferir que el modelo de mejor ajuste a los rendimientos del índice COLCAP es el modelo AR (1) AR (4) MA (4). Adicionalmente, se validó el desempeño de predicción de los dos modelos, con los cuales se pronosticó la segunda semana del mes de enero de 2018, es decir, los cuatro días hábiles de la semana; se comparan los valores del error de los días pronosticados con respecto al valor real en términos porcentuales y se presentan los resultados en la siguiente figura.

<table>
<thead>
<tr>
<th>Modelo</th>
<th>Medidas de Error de pronóstico</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAPE</td>
</tr>
<tr>
<td>AR (1) AR (4) MA (4)</td>
<td>54.16</td>
</tr>
<tr>
<td>GARCH (1, 1)</td>
<td>61.83</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.
Con los resultados que muestra la anterior figura, se obtiene que para los días 2 y 3 de la segunda semana de enero de 2018 pronosticada con el modelo AR (1) AR(4) MA(4), los valores de error se alejan un poco más de la realidad, en comparación con el primer y último día de esa semana, debido a la incertidumbre de los inversionistas al iniciar un nuevo año, quienes esperan obtener rendimientos con inversiones a corto plazo y sin una estrategia específica. Además, debe tenerse en cuenta que, para los primeros días del año, se presentó una tendencia al alza y a la baja en este mercado, reflejado por los indicadores financieros; presentándose, así como un panorama complejo a la hora de predecir su comportamiento.
En la figura anterior, se muestran resultados del error de desempeño de pronóstico del modelo GARCH (1, 1) un poco más alto que los obtenidos con el modelo AR(1) AR(4) MA(4), dado que los modelos GARCH (p, q) se ajustan a la volatilidad que puedan presentar las acciones y los indicadores bursátiles, siendo de gran importancia pues con estos modelos se pretende encontrar información adicional sobre el comportamiento que puedan seguir las series económicas; sin embargo estas pueden tener perturbaciones cuando se dan tendencias a la baja, generando mayor volatilidad y con esto una menor capacidad de predicción. Se evidencia un resultado similar con este modelo GARCH (1,1) al obtenido con el modelo AR (1) AR(4) MA(4), pues los valores de error de pronóstico de los días 1 y 4 de la semana del 9 al 12 de enero, se acercan más al valor real de los rendimientos con respecto a los días 2 y 3.
7. Conclusiones.

El pronóstico estático usa toda la información del conjunto de datos del COLCAP, mientras que el pronóstico dinámico usa sólo información a través del inicio de la muestra de estimación. Por lo anterior, en esta investigación se implementó el pronóstico estático, el cual usa la mejor información disponible dentro de la serie, por lo que es probable que sea más preciso. Deduciendo sobre los resultados obtenidos del error de pronóstico, estos muestran que la serie de los retornos del COLCAP puede representarse con un modelo autorregresivo de orden cuatro como es el AR (1) AR (4) MA (4). En cuanto al modelo GARCH (1, 1), este pudo ajustarse luego de validar en la serie la presencia de heterocedasticidad y del efecto ARCH en los residuos al cuadrado del modelo. Esto puede darse en razón a que algunas series financieras muestran un fenómeno de caminata aleatoria, lo que quiere decir, que el precio o el rendimiento de una acción, es igual a su valor actual más un choque puramente aleatorio; lo cual podría determinar como ineficiente el pronóstico de los precios y/o rendimientos de este tipo de acciones del mercado bursátil.

Diversos estudios realizados a nivel mundial en relación a los pronósticos de las series de tiempo financieras, han motivado a diferentes profesionales e inversionistas a desarrollar métodos y herramientas de previsión que les permita mejorar la exactitud en los resultados de los modelos de predicción implementados a lo largo del tiempo, contribuyendo en la toma de decisiones de manera más acertada y con base a la disminución de anomalías en la información que se genera del comportamiento del mercado bursátil. Lo anterior, con el fin de que los inversionistas puedan cubrir sus expectativas y tener un mayor nivel de confianza respecto a la relación riesgo-rentabilidad; además de conocer el tipo de eficiencia del mercado en el cual están incursionando. Sin embargo, los estudios desarrollados en Colombia en cuanto a la predicción de los precios y/o
rendimientos del principal indicador del mercado de valores del país han sido muy pocos, comparaado con las investigaciones que se han llevado a cabo en el resto del mundo. En parte, esto puede darse, ya que Colombia es considerado como un país con economía emergente o subdesarrollado y que su imagen se ha visto afectada por la época de violencia que ha vivido en décadas anteriores. A pesar de esto, durante los últimos años ha mejorado su posición y confianza ante inversionistas extranjeros. Adicionalmente, en este estudio pudo evidenciarse que el índice principal del mercado bursátil colombiano COLCAP, presenta valores atípicos dentro de la serie de tiempo seleccionada, pues desde que se inició a calcular este indicador en el año 2008, la economía del país se vio afectada en gran medida por la crisis mundial financiera, lo cual refleja la varianza en los rendimientos condicionada a estos factores de la economía global.

Esta investigación es un aporte al estudio del mercado bursátil de Colombia, pues pretende contribuir a que diferentes investigadores realicen nuevos trabajos donde puedan ajustar otros modelos de la familia GARCH (modelos asimétricos), tales como: EGARCH, TGARCH, FGARCH. Además, teniendo en cuenta los cambios estructurales en la media y en la varianza de la serie; así como realizar el ajuste de modelos no lineales. Lo anterior, en razón a que, en Colombia es poca la información y los estudios acerca de los modelos de pronóstico aplicados al indicador general COLCAP, reflejando la importancia de ampliar este campo de investigación.

Durante la revisión de la literatura, las investigaciones para el caso del mercado bursátil colombiano, muestran que los modelos ARMA y GARCH, han sido de gran utilidad para los analistas e investigadores, debido al comportamiento del mercado colombiano y las fuertes variaciones que ha presentado, por diferentes factores tanto internos como externos a este, definiéndolo como un mercado con eficiencia débil según la Hipótesis de Mercado eficiente de Fama, pues sólo puede evaluarse el comportamiento del mercado de valores con datos históricos,
y por ser considerado un país con economía que aún no alcanza el estatus de desarrollada. De igual manera, este estudio puede servir de ayuda para el diseño de portafolios de inversión, pues reúne información importante sobre el mercado de valores de Colombia en los últimos años, desde que se creó su indicador general.

8. Recomendaciones.

El pronóstico estático usa la mejor información disponible, siendo probable que sea más preciso. Pero, también puede emplearse la opción de predicción dinámica. Por lo tanto, se recomienda desarrollar otras investigaciones con base a este tipo de previsión. Por otra parte, es importante recomendar nuevos estudios, en los cuales se tenga en cuenta y se determinen cuáles son los cambios estructurales en la media y en la varianza de la serie de Rendimientos del COLCAP, a través de pruebas estadísticas, con el fin de seleccionar modelos de acuerdo a esta característica, donde los modelos que se elijan representen de manera más eficiente el comportamiento de las series financieras, tomando información reciente obtenida en esta investigación. También se podrían llevar a cabo otros trabajos similares al presente, tomando datos intradiarios de los rendimientos del COLCAP, con el fin de obtener más información respecto al comportamiento diario que presenta este indicador, para realizar pronósticos con base en esos datos. Adicionalmente, puede recomendarse llevar a cabo otros estudios con modelos de la familia GARCH asimétricos, que durante la revisión de la literatura se ha encontrado que presentan mayor capacidad de pronóstico de la volatilidad de las series financieras.
Referencias Bibliográficas

RONÓSTICO DE SERIES TEMPORALES

Apéndices

Apéndice A. Tabla de estudios encontrados en la revisión de literatura, acerca de pronósticos del COLCAP.

<table>
<thead>
<tr>
<th>TITULO</th>
<th>AUTOR</th>
<th>UNIDAD DE ANÁLISIS</th>
<th>MODELO UTILIZADO</th>
<th>VARIABLE A PRONOSTICAR</th>
<th>VENTANA DE TIEMPO</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVALUACIÓN DE MODELOS DE PRONÓSTICOS PARA LOS PRINCIPALES MERCADOS BURSÁTILES LATINOAMERICANOS</td>
<td>P.T Parada Mayorga (2015)</td>
<td>IGBC, MERVAL, IGBA, IPC, IGVL, BOVESPA</td>
<td>GARCH, EGARCH, TGARCH; Red neuronal artificial</td>
<td>Rentabilidad</td>
<td>2001-2013</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.
Apéndices B. Resultados de ajuste de los modelos ARMA a la serie de los rendimientos.

1. Ajuste modelo AR (1)

Dependent Variable: SERIES02
Method: Least Squares
Date: 05/12/18 Time: 21:58
Sample (adjusted): 1/16/2008 1/05/2018
Included observations: 2433 after adjustments
Convergence achieved after 2 iterations

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR(1)</td>
<td>0.102596</td>
<td>0.020159</td>
<td>5.089422</td>
<td>0.0000</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.010218</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.010218</td>
<td>S.D. dependent var</td>
<td>0.010539</td>
<td></td>
</tr>
<tr>
<td>S.E. of regression</td>
<td>0.010485</td>
<td>Akaike info criterion</td>
<td>-6.277274</td>
<td></td>
</tr>
<tr>
<td>Sum squared resid</td>
<td>0.267378</td>
<td>Schwarz criterion</td>
<td>-6.274891</td>
<td></td>
</tr>
<tr>
<td>Log likelihood</td>
<td>7637.304</td>
<td>Hannan-Quinn criter.</td>
<td>-6.276408</td>
<td></td>
</tr>
<tr>
<td>Durbin-Watson stat</td>
<td>2.007018</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inverted AR Roots ..10

Fuente: Elaboración propia.

2. Ajuste modelo MA (1)

Dependent Variable: SERIES02
Method: Least Squares
Date: 05/12/18 Time: 22:35
Sample: 1/15/2008 1/05/2018
Included observations: 2434
Convergence achieved after 6 iterations
MA Backcast: 1/14/2008

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA (1)</td>
<td>0.096164</td>
<td>0.020181</td>
<td>4.765092</td>
<td>0.0000</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.0109577</td>
<td>Mean dependent var</td>
<td>0.000181</td>
<td></td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.009577</td>
<td>S.D. dependent var</td>
<td>0.010545</td>
<td></td>
</tr>
<tr>
<td>S.E. of regression</td>
<td>0.010494</td>
<td>Akaike info criterion</td>
<td>-6.275533</td>
<td></td>
</tr>
<tr>
<td>Sum squared resid</td>
<td>0.267954</td>
<td>Schwarz criterion</td>
<td>-6.273151</td>
<td></td>
</tr>
<tr>
<td>Log likelihood</td>
<td>7638.324</td>
<td>Hannan-Quinn criter.</td>
<td>-6.274067</td>
<td></td>
</tr>
<tr>
<td>Durbin-Watson stat</td>
<td>2.007018</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inverted MA Roots -.10

Fuente: Elaboración propia.
3. Ajuste modelo AR (1) MA (1)

Dependent Variable: SERIES02
Method: Least Squares
Date: 05/12/18 Time: 23:01
Sample (adjusted): 1/16/2008 1/05/2018
Included observations: 2433 after adjustments
Convergence achieved after 15 iterations
MA Backcast: 1/15/2008

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR (1)</td>
<td>0.479358</td>
<td>0.126892</td>
<td>3.777674</td>
<td>0.0002</td>
</tr>
<tr>
<td>MA (1)</td>
<td>-0.395302</td>
<td>0.132990</td>
<td>-2.972425</td>
<td>0.0030</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.011966</td>
<td></td>
<td></td>
<td>0.000190</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.011559</td>
<td>S.D. dependent var</td>
<td>0.010539</td>
<td></td>
</tr>
<tr>
<td>S.E. of regression</td>
<td>0.010478</td>
<td>Akaike info criterion</td>
<td>-6.278219</td>
<td></td>
</tr>
<tr>
<td>Sum squared resid</td>
<td>0.266906</td>
<td>Schwarz criterion</td>
<td>-6.273454</td>
<td></td>
</tr>
<tr>
<td>Log likelihood</td>
<td>7639.454</td>
<td>Hannan-Quinn criter.</td>
<td>-6.276487</td>
<td></td>
</tr>
<tr>
<td>Durbin-Watson stat</td>
<td>1.971981</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inverted AR Roots .48
Inverted MA Roots .40

Fuente: Elaboración propia.

4. Ajuste modelo AR (1) MA (4)

Dependent Variable: SERIES02
Method: Least Squares
Date: 03/31/18 Time: 23:16
Sample (adjusted): 1/16/2008 12/28/2017
Included observations: 2429 after adjustments
Convergence achieved after 4 iterations
MA Backcast: 1/12/2008 1/15/2008

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR(1)</td>
<td>0.099594</td>
<td>0.020176</td>
<td>4.936227</td>
<td>0.0000</td>
</tr>
<tr>
<td>MA(4)</td>
<td>-0.059467</td>
<td>0.020264</td>
<td>-2.934583</td>
<td>0.0034</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.013591</td>
<td>Mean dependent var</td>
<td>0.000181</td>
<td></td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.013185</td>
<td>S.D. dependent var</td>
<td>0.010544</td>
<td></td>
</tr>
<tr>
<td>S.E. of regression</td>
<td>0.010475</td>
<td>Akaike info criterion</td>
<td>-6.278907</td>
<td></td>
</tr>
<tr>
<td>Sum squared resid</td>
<td>0.266283</td>
<td>Schwarz criterion</td>
<td>-6.274136</td>
<td></td>
</tr>
<tr>
<td>Log likelihood</td>
<td>7627.733</td>
<td>Hannan-Quinn criter.</td>
<td>-6.277173</td>
<td></td>
</tr>
<tr>
<td>Durbin-Watson stat</td>
<td>2.006427</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inverted AR Roots .10
Inverted MA Roots .49 .49i -.00-.49i -.49

Fuente: Elaboración propia.
5. Ajuste modelo AR (4) MA (0)

Dependent Variable: SERIES02
Method: Least Squares
Date: 05/12/18 Time: 23:35
Sample (adjusted): 1/19/2008 1/05/2018
Included observations: 2430 after adjustments
Convergence achieved after 3 iterations

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR (4)</td>
<td>-0.055858</td>
<td>0.020165</td>
<td>-2.770023</td>
<td>0.0056</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.002698</td>
<td>Mean dependent var</td>
<td>0.00023</td>
<td></td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.002698</td>
<td>S.D. dependent var</td>
<td>0.010501</td>
<td></td>
</tr>
<tr>
<td>S.E. of regression</td>
<td>0.010487</td>
<td>Akaike info criterion</td>
<td>-6.277036</td>
<td></td>
</tr>
<tr>
<td>Sum squared resid</td>
<td>0.267111</td>
<td>Schwarz criterion</td>
<td>-6.274651</td>
<td></td>
</tr>
<tr>
<td>Log likelihood</td>
<td>7627.599</td>
<td>Hannan-Quinn criter.</td>
<td>-6.276169</td>
<td></td>
</tr>
<tr>
<td>Durbin-Watson stat</td>
<td>1.803779</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inverted AR Roots: .34-.34i .34-.34i -.34+.34i -.34+.34i

Fuente: Elaboración propia.

6. Ajuste modelo AR (4) MA (1)

Dependent Variable: SERIES02
Method: Least Squares
Date: 05/12/18 Time: 23:55
Sample (adjusted): 1/19/2008 1/05/2018
Included observations: 2430 after adjustments
Convergence achieved after 5 iterations
MA Backcast: 1/18/2008

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR (4)</td>
<td>-0.051878</td>
<td>0.020197</td>
<td>-2.568581</td>
<td>0.0103</td>
</tr>
<tr>
<td>MA (1)</td>
<td>0.085651</td>
<td>0.020216</td>
<td>4.236805</td>
<td>0.0000</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.009947</td>
<td>Mean dependent var</td>
<td>0.00023</td>
<td></td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.009539</td>
<td>S.D. dependent var</td>
<td>0.010501</td>
<td></td>
</tr>
<tr>
<td>S.E. of regression</td>
<td>0.010451</td>
<td>Akaike info criterion</td>
<td>-6.273509</td>
<td></td>
</tr>
<tr>
<td>Sum squared resid</td>
<td>0.265170</td>
<td>Schwarz criterion</td>
<td>-6.278738</td>
<td></td>
</tr>
<tr>
<td>Log likelihood</td>
<td>7636.463</td>
<td>Hannan-Quinn criter.</td>
<td>-6.281774</td>
<td></td>
</tr>
<tr>
<td>Durbin-Watson stat</td>
<td>1.978774</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inverted AR Roots: .34-.34i .34-.34i -.34+.34i -.34+.34i

Inverted MA Roots: -.09

Fuente: Elaboración propia.
7. Ajuste modelo AR (4) MA (4)

Dependent Variable: SERIES02
Method: Least Squares
Date: 05/13/18 Time: 00:05
Sample (adjusted): 1/19/2008 1/05/2018
Included observations: 2430 after adjustments
Convergence achieved after 14 iterations
MA Backcast: 1/15/2008 1/18/2008

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR (4)</td>
<td>-0.626017</td>
<td>0.092593</td>
<td>-6.760920</td>
<td>0.0000</td>
</tr>
<tr>
<td>MA (4)</td>
<td>0.600253</td>
<td>0.095988</td>
<td>6.253440</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

R-squared 0.018020
Adjusted R-squared 0.017616
S.E. of regression 0.010408
Sum squared resid 0.263007
Log likelihood 7646.411
Durbin-Watson stat 1.794783

Inverted AR Roots .63-.63i .63-.63i -.63+.63i -.63+.63i
Inverted MA Roots .62+.62i .62+.62i -.62-.62i -.62-.62i

Fuente: Elaboración propia.

8. Ajuste modelo AR (1) AR (4) MA (1)

Dependent Variable: SERIES02
Method: Least Squares
Date: 05/13/18 Time: 00:19
Sample (adjusted): 1/19/2008 1/05/2018
Included observations: 2430 after adjustments
Convergence achieved after 13 iterations
MA Backcast: 1/15/2008 1/18/2008

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR (1)</td>
<td>0.422041</td>
<td>0.124631</td>
<td>3.386311</td>
<td>0.0007</td>
</tr>
<tr>
<td>AR (4)</td>
<td>-0.063688</td>
<td>0.018212</td>
<td>-3.496988</td>
<td>0.0005</td>
</tr>
<tr>
<td>MA (1)</td>
<td>-0.341495</td>
<td>0.129929</td>
<td>-2.628313</td>
<td>0.0086</td>
</tr>
</tbody>
</table>

R-squared 0.017631
Adjusted R-squared 0.016822
S.E. of regression 0.010412
Sum squared resid 0.263112
Log likelihood 7645.930
Durbin-Watson stat 1.971701

Inverted AR Roots .48-.32i .48+.32i -.27-.34i -.27+.34i
Inverted MA Roots .34
9. Ajuste modelo AR (1) AR (4) MA (4)

Dependent Variable: SERIES02
Method: Least Squares
Date: 05/13/18 Time: 00:41
Sample (adjusted): 1/19/2008 1/05/2018
Included observations: 2430 after adjustments
Convergence achieved after 18 iterations
MA Backcast: 1/15/2008 1/18/2008

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR (1)</td>
<td>0.084289</td>
<td>0.016458</td>
<td>5.121429</td>
<td>0.0000</td>
</tr>
<tr>
<td>AR (4)</td>
<td>-0.637907</td>
<td>0.069614</td>
<td>-9.163432</td>
<td>0.0000</td>
</tr>
<tr>
<td>MA (4)</td>
<td>0.621859</td>
<td>0.072329</td>
<td>8.597587</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

R-squared 0.030081 Mean dependent var 0.000223
Adjusted R-squared 0.029282 S.D. dependent var 0.010501
S.E. of regression 0.010346 Akaike info criterion -6.303231
Sum squared resid 0.259777 Schwarz criterion -6.296076
Log likelihood 7661.426 Hannan-Quinn criter. -6.300630
Durbin-Watson stat 1.967349

Inverted AR Roots .65-.63i .65+.63i -.61+.63i -.61-.63i
Inverted MA Roots .63+.63i .63+.63i -.63+.63i -.63+.63i

Fuente: Elaboración propia.

Apéndices C. Correlogramas y Estadísticos de los residuos de los modelos ajustados a los Rendimientos del COLCAP.
1. Correlogramas de FAC Y FACP

1.1 Modelo AR (1)

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>-0.005</td>
<td>-0.006</td>
<td>0.0524</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0.027</td>
<td>0.027</td>
<td>1.8946</td>
<td>0.189</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>-0.015</td>
<td>-0.015</td>
<td>2.4789</td>
<td>0.290</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>-0.058</td>
<td>-0.059</td>
<td>10.564</td>
<td>0.014</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>-0.028</td>
<td>-0.028</td>
<td>12.494</td>
<td>0.014</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>-0.032</td>
<td>-0.029</td>
<td>14.932</td>
<td>0.011</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0.019</td>
<td>0.018</td>
<td>15.803</td>
<td>0.015</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0.015</td>
<td>0.013</td>
<td>16.351</td>
<td>0.022</td>
</tr>
</tbody>
</table>

1.2 Modelo MA (1)

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0.003</td>
<td>0.003</td>
<td>0.0277</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0.039</td>
<td>0.039</td>
<td>3.7314</td>
<td>0.053</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>-0.014</td>
<td>-0.014</td>
<td>4.2112</td>
<td>0.122</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>-0.052</td>
<td>-0.053</td>
<td>10.749</td>
<td>0.013</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>-0.033</td>
<td>-0.032</td>
<td>13.459</td>
<td>0.009</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>-0.033</td>
<td>-0.020</td>
<td>16.043</td>
<td>0.007</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0.015</td>
<td>0.017</td>
<td>16.625</td>
<td>0.011</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0.015</td>
<td>0.014</td>
<td>17.167</td>
<td>0.016</td>
</tr>
</tbody>
</table>

1.3 Modelo AR (1) MA (1)
1.4 Modelo AR (1) MA (4)

1.5 Modelo AR (4)
1.6 Modelo AR (4) MA (1)

Sample: 1/15/2006 1/05/2010
Included observations: 2430
Q-statistic probabilities adjusted for 2 ARMA terms

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>-0.003</td>
<td>0.0131</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>0.031</td>
<td>2.3253</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>-0.013</td>
<td>2.7660 0.096</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>0.004</td>
<td>2.7985 0.247</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>-0.021</td>
<td>3.9166 0.271</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>-0.028</td>
<td>5.8792 0.208</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>0.019</td>
<td>6.7516 0.240</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>0.015</td>
<td>7.2692 0.207</td>
<td></td>
</tr>
</tbody>
</table>

1.7 Modelo AR (4) MA (4)

Sample: 1/15/2006 1/05/2010
Included observations: 2430
Q-statistic probabilities adjusted for 2 ARMA terms

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>0.092</td>
<td>20.725</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>0.030</td>
<td>22.953</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>-0.008</td>
<td>23.116 0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>-0.024</td>
<td>24.514 0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>-0.033</td>
<td>27.160 0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>-0.034</td>
<td>29.917 0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>0.014</td>
<td>30.384 0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>0.005</td>
<td>30.453 0.000</td>
<td></td>
</tr>
</tbody>
</table>

1.8 Modelo AR (1) AR (4) MA (1)
1.9 Modelo AR (1) AR (4) MA (4)
2. Histogramas y Estadísticos de modelos ARMA ajustados.

2.1 Modelo AR (1)

2.2 Modelo MA (1)

2.3 Modelo AR (1) MA (1)
2.4 Modelo AR (1) MA (4)

2.5 Modelo AR (4)
2.6 Modelo AR (4) MA (1)

2.7 Modelo AR (4) MA (4)
2.8 Modelo AR (1) AR (4) MA (1)

2.9 Modelo AR (1) AR (4) MA (4)
Series: Residuals
Sample 1/19/2008 1/05/2018
Observations 2430

Mean 0.000202
Median 0.000241
Maximum 0.091882
Minimum -0.087352
Std. Dev. 0.010340
Skewness -0.304836
Kurtosis 11.26896
Jarque-Bera 6960.677
Probability 0.000000
3. Gráfica de los Residuos de los modelos ARMA ajustados.

3.1 Modelo AR (1)

3.2 Modelo MA (1)
3.3 Modelo AR (1) MA (1)

3.4 Modelo AR (1) MA (4)
3.5 Modelo AR (4)

3.6 Modelo AR (4) MA (1)
3.7 Modelo AR (4) MA (4)
3.8 Modelo AR (1) AR (4) MA (1)

![Graph of LOGRETURN Residuals for AR (1) AR (4) MA (1)]

3.9 Modelo AR (1) AR (4) MA (4)

![Graph of LOGRETURN Residuals for AR (1) AR (4) MA (4)]
Apéndices D. Prueba de Hipótesis Simple a los residuos de cada modelo ajustado a la serie de Rendimientos del COLCAP.

1. Modelo AR (1)

Hypothesis Testing for RESID01
Date: 05/12/18 Time: 22:26
Sample (adjusted): 1/16/2008 1/05/2018
Included observations: 2433 after adjustments
Test of Hypothesis: Mean = 0.000000

<table>
<thead>
<tr>
<th>Method</th>
<th>Value</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>t-statistic</td>
<td>0.806344</td>
<td>0.4201</td>
</tr>
</tbody>
</table>

2. Modelo MA (1)

Hypothesis Testing for RESID01
Date: 05/12/18 Time: 22:56
Sample (adjusted): 1/15/2008 1/05/2018
Included observations: 2434 after adjustments
Test of Hypothesis: Mean = 0.000000

<table>
<thead>
<tr>
<th>Method</th>
<th>Value</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>t-statistic</td>
<td>0.779408</td>
<td>0.4358</td>
</tr>
</tbody>
</table>

3. Modelo AR (1) MA (1)

Hypothesis Testing for RESID01
Date: 05/12/18 Time: 23:13
Sample (adjusted): 1/16/2008 1/05/2018
Included observations: 2433 after adjustments
Test of Hypothesis: Mean = 0.000000

<table>
<thead>
<tr>
<th>Method</th>
<th>Value</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>t-statistic</td>
<td>0.815438</td>
<td>0.4149</td>
</tr>
</tbody>
</table>
4. Modelo AR (1) MA (4)

Hypothesis Testing for RESID01
Date: 05/12/18 Time: 23:26
Sample (adjusted): 1/16/2008 1/05/2018
Included observations: 2433 after adjustments
Test of Hypothesis: Mean = 0.000000

<table>
<thead>
<tr>
<th>Method</th>
<th>Value</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>t-statistic</td>
<td>0.859249</td>
<td>0.3903</td>
</tr>
</tbody>
</table>

Sample Mean = 0.000182
Sample Std. Dev. = 0.010466

5. Modelo AR (4)

Hypothesis Testing for RESID09
Date: 04/16/18 Time: 21:02
Sample (adjusted): 1/19/2008 12/28/2017
Included observations: 2426 after adjustments
Test of Hypothesis: Mean = 0.000000

<table>
<thead>
<tr>
<th>Method</th>
<th>Value</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>t-statistic</td>
<td>1.054439</td>
<td>0.2918</td>
</tr>
</tbody>
</table>

Sample Mean = 0.000225
Sample Std. Dev. = 0.010489

6. Modelo AR (4) MA (1)

Hypothesis Testing for RESID01
Date: 05/13/18 Time: 00:03
Sample (adjusted): 1/19/2008 1/05/2018
Included observations: 2430 after adjustments
Test of Hypothesis: Mean = 0.000000

<table>
<thead>
<tr>
<th>Method</th>
<th>Value</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>t-statistic</td>
<td>1.012470</td>
<td>0.3114</td>
</tr>
</tbody>
</table>

Sample Mean = 0.000215
Sample Std. Dev. = 0.010446
7. Modelo AR (4) MA (4)

Hypothesis Testing for RESID01
Date: 05/13/18 Time: 00:16
Sample (adjusted): 1/19/2008 1/05/2018
Included observations: 2430 after adjustments
Test of Hypothesis: Mean = 0.000000

Sample Mean = 0.000215
Sample Std. Dev. = 0.010403

<table>
<thead>
<tr>
<th>Method</th>
<th>Value</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>t-statistic</td>
<td>1.017807</td>
<td>0.3089</td>
</tr>
</tbody>
</table>

8. Modelo AR (1) AR (4) MA (1)

Hypothesis Testing for RESID02
Date: 05/13/18 Time: 00:39
Sample (adjusted): 1/19/2008 1/05/2018
Included observations: 2430 after adjustments
Test of Hypothesis: Mean = 0.000000

Sample Mean = 0.000224
Sample Std. Dev. = 0.010405

<table>
<thead>
<tr>
<th>Method</th>
<th>Value</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>t-statistic</td>
<td>1.059004</td>
<td>0.2897</td>
</tr>
</tbody>
</table>

9. Modelo AR (1) AR (4) MA (4)

Hypothesis Testing for RESID01
Date: 05/13/18 Time: 15:26
Sample (adjusted): 1/19/2008 1/05/2018
Included observations: 2430 after adjustments
Test of Hypothesis: Mean = 0.000000

Sample Mean = 0.000202
Sample Std. Dev. = 0.010340

<table>
<thead>
<tr>
<th>Method</th>
<th>Value</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>t-statistic</td>
<td>0.964740</td>
<td>0.3348</td>
</tr>
</tbody>
</table>
Apéndices E. Ajuste de las diferentes combinaciones de modelos GARCH, con la respectiva gráfica de la Varianza Condicional y Correlograma.

1. Ajuste de las diferentes combinaciones de modelos GARCH

1.1 Modelo GARCH (0, 1)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>z-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR (1)</td>
<td>0.089434</td>
<td>0.008364</td>
<td>10.69220</td>
<td>0.0000</td>
</tr>
<tr>
<td>AR (4)</td>
<td>-0.643448</td>
<td>0.066700</td>
<td>-9.64855</td>
<td>0.0000</td>
</tr>
<tr>
<td>MA (4)</td>
<td>0.614441</td>
<td>0.070999</td>
<td>8.654173</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Variance Equation

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>z-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>9.78E-06</td>
<td>9.66E-07</td>
<td>10.12803</td>
<td>0.0000</td>
</tr>
<tr>
<td>GARCH (-1)</td>
<td>0.904287</td>
<td>0.009184</td>
<td>98.46645</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

R-squared | 0.029760 | Mean dependent var | 0.000223 |
Adjusted R-squared | 0.028960 | S.D. dependent var | 0.010501 |
S.E. of regression | 0.010348 | Akaike info criterion | -6.326415 |
Sum squared resid | 0.259863 | Schwarz criterion | -6.314489 |
Log likelihood | 7691.594 | Hannan-Quinn criter. | -6.322079 |
Durbin-Watson stat | 1.977478 |

Inverted AR Roots | .66-.63i | .66+.63i | -.61+.63i | -.61-.63i |
Inverted MA Roots | .63+.63i | .63+.63i | -.63+.63i | -.63+.63i |

1.2 Modelo GARCH (1, 0)
1.3 Modelo GARCH (1, 1)

Dependent Variable: SERIES02
Method: ML - ARCH (Marquardt) - Normal distribution
Date: 05/13/18 Time: 22:17
Sample (adjusted): 1/19/2008 1/05/2018
Included observations: 2430 after adjustments
Convergence achieved after 14 iterations
MA Backcast: 1/15/2008 1/18/2008
Presample variance: backcast (parameter = 0.7)
GARCH = C(4) + C(5)*RESID(-1)^2 + C(6)*GARCH(-1)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>z-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR(1)</td>
<td>0.091191</td>
<td>0.021069</td>
<td>4.328263</td>
<td>0.0000</td>
</tr>
<tr>
<td>AR(4)</td>
<td>-0.467847</td>
<td>0.124112</td>
<td>-3.769559</td>
<td>0.0002</td>
</tr>
<tr>
<td>MA(4)</td>
<td>0.427595</td>
<td>0.128405</td>
<td>3.330047</td>
<td>0.0009</td>
</tr>
</tbody>
</table>

Variance Equation

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>z-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>6.67E-05</td>
<td>1.72E-06</td>
<td>38.79978</td>
<td>0.0000</td>
</tr>
<tr>
<td>RESID(-1)^2</td>
<td>0.346071</td>
<td>0.024214</td>
<td>14.29223</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

R-squared 0.016471 Mean dependent var 0.010501
Adjusted R-squared 0.015660 S.D. dependent var 0.010418
S.E. of regression 0.010418 Akaike info criterion -6.478136
Sum squared resid 0.154275 Schwarz criterion -6.466211
Log likelihood 7875.936 Hannan-Quinn criter. -6.473801
Durbin-Watson stat 1.987042

Inverted AR Roots .82 .02-.79i .02+.79i -.77
Inverted MA Roots .82 .00-.82i .00+.82i -.82
1.4 Modelo GARCH (2, 0)

Dependent Variable: SERIES02
Method: ML - ARCH (Marquardt) - Normal distribution
Date: 05/13/18 Time: 22:29
Sample (adjusted): 1/19/2008 1/05/2018
Included observations: 2430 after adjustments
Convergence achieved after 22 iterations
MA Backcast: 1/15/2008 1/18/2008
Presample variance: backcast (parameter = 0.7)
GARCH = C(4) + C(5)*RESID(-1)^2 + C(6)*RESID(-2)^2

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>z-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR(1)</td>
<td>0.108947</td>
<td>0.018912</td>
<td>5.760687</td>
<td>0.0000</td>
</tr>
<tr>
<td>AR(4)</td>
<td>0.410897</td>
<td>0.078513</td>
<td>5.233473</td>
<td>0.0000</td>
</tr>
<tr>
<td>MA(4)</td>
<td>-0.459071</td>
<td>0.073422</td>
<td>-6.252530</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Variance Equation

<table>
<thead>
<tr>
<th></th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>z-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>5.17E-05</td>
<td>1.83E-06</td>
<td>28.19194</td>
<td>0.0000</td>
</tr>
<tr>
<td>RESID(-1)^2</td>
<td>0.246092</td>
<td>0.025499</td>
<td>9.651234</td>
<td>0.0000</td>
</tr>
<tr>
<td>RESID(-2)^2</td>
<td>0.253310</td>
<td>0.024637</td>
<td>10.28170</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

R-squared 0.016008 Mean dependent var 0.000223
Adjusted R-squared 0.015197 S.D. dependent var 0.010501
S.E. of regression 0.014021 Akaike info criterion -6.528938
Sum squared resid 0.263546 Schwarz criterion -6.514628
Log likelihood 7938.659 Hannan-Quinn criter. -6.523735
Durbin-Watson stat 2.013244

Inverted AR Roots .83 .03-.80i .03+.80i -.77
Inverted MA Roots .82 .00-.82i -.00+.82i -.82

1.5 Modelo GARCH (0, 2)
1.6 Modelo GARCH (2, 2)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>z-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR(1)</td>
<td>0.091598</td>
<td>0.021026</td>
<td>4.356510</td>
<td>0.0000</td>
</tr>
<tr>
<td>AR(4)</td>
<td>-0.465420</td>
<td>0.124283</td>
<td>-3.744840</td>
<td>0.0002</td>
</tr>
<tr>
<td>MA(4)</td>
<td>0.424928</td>
<td>0.128894</td>
<td>3.296715</td>
<td>0.0010</td>
</tr>
</tbody>
</table>
1.7 Modelo GARCH (6,0)

Dependent Variable: SERIES02
Method: ML - ARCH (Marquardt) - Normal distribution
Date: 05/13/18 Time: 22:55
Sample (adjusted): 1/19/2008 1/05/2018
Included observations: 2430 after adjustments
Convergence achieved after 15 iterations
MA Backcast: 1/15/2008 1/18/2008
Presample variance: backcast (parameter = 0.7)

GARCH = C(4) + C(5)*RESID(-1)^2 + C(6)*RESID(-2)^2 + C(7)*RESID(-3)^2 + C(8)*RESID(-4)^2 + C(9)*RESID(-5)^2 + C(10)*RESID(-6)^2

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>z-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR(1)</td>
<td>0.092240</td>
<td>0.020014</td>
<td>4.608733</td>
<td>0.0000</td>
</tr>
<tr>
<td>AR(4)</td>
<td>-0.491257</td>
<td>0.105435</td>
<td>-4.659338</td>
<td>0.0000</td>
</tr>
<tr>
<td>MA(4)</td>
<td>0.449946</td>
<td>0.111040</td>
<td>4.052123</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>z-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>3.24E-05</td>
<td>1.83E-06</td>
<td>17.71064</td>
<td>0.0000</td>
</tr>
<tr>
<td>RESID(-1)^2</td>
<td>0.188876</td>
<td>0.022742</td>
<td>8.305037</td>
<td>0.0000</td>
</tr>
<tr>
<td>RESID(-2)^2</td>
<td>0.194959</td>
<td>0.025230</td>
<td>7.727323</td>
<td>0.0000</td>
</tr>
<tr>
<td>RESID(-3)^2</td>
<td>0.093200</td>
<td>0.019979</td>
<td>4.664803</td>
<td>0.0000</td>
</tr>
<tr>
<td>RESID(-4)^2</td>
<td>0.037491</td>
<td>0.014132</td>
<td>2.652916</td>
<td>0.0080</td>
</tr>
<tr>
<td>RESID(-5)^2</td>
<td>0.103723</td>
<td>0.016447</td>
<td>6.306412</td>
<td>0.0000</td>
</tr>
<tr>
<td>RESID(-6)^2</td>
<td>0.074383</td>
<td>0.019758</td>
<td>3.764653</td>
<td>0.0002</td>
</tr>
</tbody>
</table>

R-squared 0.026934 Mean dependent var 0.000223
Adjusted R-squared 0.025361 S.D. dependent var 0.010501
S.E. of regression 0.010367 Akaike info criterion -6.585393
Sum squared resid 0.260826 Schwarz criterion -6.578543
Log likelihood 8023.762 Hannan-Quinn criter. -6.590398
1.8 Modelo GARCH (0, 6)

Dependent Variable: SERIES02
Method: ML - ARCH (Marquardt) - Normal distribution
Date: 05/13/18 Time: 23:04
Sample (adjusted): 1/19/2008 1/05/2018
Included observations: 2430 after adjustments
Convergence achieved after 46 iterations
MA Backcast: 1/15/2008 1/18/2008
Presample variance: backcast (parameter = 0.7)
GARCH = C(4) + C(5)*GARCH(-1) + C(6)*GARCH(-2) + C(7)*GARCH(-3) + C(8)*GARCH(-4) + C(9)*GARCH(-5) + C(10)*GARCH(-6)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>z-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR(1)</td>
<td>0.087771</td>
<td>0.008533</td>
<td>10.28657</td>
<td>0.0000</td>
</tr>
<tr>
<td>AR(4)</td>
<td>-0.671861</td>
<td>0.058658</td>
<td>-11.45383</td>
<td>0.0000</td>
</tr>
<tr>
<td>MA(4)</td>
<td>0.645008</td>
<td>0.062848</td>
<td>10.26298</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Variance Equation

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>1.90E-05</td>
<td>7.10E-06</td>
<td>2.669096</td>
</tr>
<tr>
<td>GARCH(-1)</td>
<td>0.626003</td>
<td>0.201358</td>
<td>3.108909</td>
</tr>
<tr>
<td>GARCH(-2)</td>
<td>0.591950</td>
<td>0.045219</td>
<td>19.94639</td>
</tr>
<tr>
<td>GARCH(-3)</td>
<td>-1.533396</td>
<td>0.234816</td>
<td>-6.530203</td>
</tr>
<tr>
<td>GARCH(-4)</td>
<td>0.406403</td>
<td>0.215473</td>
<td>1.886100</td>
</tr>
<tr>
<td>GARCH(-5)</td>
<td>0.854638</td>
<td>0.079397</td>
<td>10.76415</td>
</tr>
<tr>
<td>GARCH(-6)</td>
<td>-0.440458</td>
<td>0.190362</td>
<td>-2.313800</td>
</tr>
</tbody>
</table>

R-squared 0.029634 Mean dependent var 0.000223
Adjusted R-squared 0.028834 S.D. dependent var 0.010501
S.E. of regression 0.010348 Akaike info criterion -6.326573
Sum squared resid 0.259897 Schwarz criterion -6.302723
Log likelihood 7696.787 Hannan-Quinn criter. -6.317902
Durbin-Watson stat 1.972795

Inverted AR Roots .66-.64i .66+.64i -62+.64i -.62-.64i
Inverted MA Roots .63-.63i .63-.63i -.63+.63i -.63-.63i

1.9 Modelo GARCH (6, 1)
Dependent Variable: SERIES02
Method: ML - ARCH (Marquardt) - Normal distribution
Date: 05/13/18 Time: 23:11
Sample (adjusted): 1/19/2008 1/05/2018
Included observations: 2430 after adjustments
Convergence achieved after 17 iterations
MA Backcast: 1/15/2008 1/18/2008
Presample variance: backcast (parameter = 0.7)
GARCH = C(4) + C(5)*RESID(-1)^2 + C(6)*RESID(-2)^2 + C(7)*RESID(-3)^2
+ C(8)*RESID(-4)^2 + C(9)*RESID(-5)^2 + C(10)*RESID(-6)^2 + C(11)
*GARCH(-1)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>z-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR(1)</td>
<td>0.084663</td>
<td>0.020724</td>
<td>4.085266</td>
<td>0.0000</td>
</tr>
<tr>
<td>AR(4)</td>
<td>-0.540069</td>
<td>0.116872</td>
<td>-4.621050</td>
<td>0.0000</td>
</tr>
<tr>
<td>MA(4)</td>
<td>0.498481</td>
<td>0.121802</td>
<td>4.092537</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Variance Equation

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>z-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>2.27E-06</td>
<td>4.70E-07</td>
<td>4.823411</td>
<td>0.0000</td>
</tr>
<tr>
<td>RESID(-1)^2</td>
<td>0.161366</td>
<td>0.023729</td>
<td>6.800305</td>
<td>0.0000</td>
</tr>
<tr>
<td>RESID(-2)^2</td>
<td>0.055028</td>
<td>0.034901</td>
<td>1.576677</td>
<td>0.1149</td>
</tr>
<tr>
<td>RESID(-3)^2</td>
<td>-0.076030</td>
<td>0.029227</td>
<td>-2.601325</td>
<td>0.0093</td>
</tr>
<tr>
<td>RESID(-4)^2</td>
<td>-0.070356</td>
<td>0.023668</td>
<td>-2.972595</td>
<td>0.0030</td>
</tr>
<tr>
<td>RESID(-5)^2</td>
<td>0.024561</td>
<td>0.022009</td>
<td>1.115972</td>
<td>0.2644</td>
</tr>
<tr>
<td>RESID(-6)^2</td>
<td>-0.000258</td>
<td>0.019743</td>
<td>-0.013079</td>
<td>0.9896</td>
</tr>
<tr>
<td>GARCH(-1)</td>
<td>0.884560</td>
<td>0.018394</td>
<td>48.08993</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

R-squared 0.028118 Mean dependent var 0.000223
Adjusted R-squared 0.027318 S.D. dependent var 0.010501
S.E. of regression 0.010356 Akaike info criterion -6.601041
Sum squared resid 0.260303 Schwarz criterion -6.574805
Log likelihood 8031.264 Hannan-Quinn criter. -6.591502
Durbin-Watson stat 1.972714

Inverted AR Roots .63-.61i .63+.61i -.59+.61i -.59-.61i
Inverted MA Roots .59+.59i .59+.59i -.59-.59i -.59-.59i
2. Gráfica de la Varianza Condicional de los modelos GARCH ajustados

2.1 Varianza Condicional Modelo GARCH (0, 1)

2.2 Varianza Condicional Modelo GARCH (1, 0)

2.3 Varianza Condicional Modelo GARCH (1, 1)
2.4 Varianza Condicional Modelo GARCH (2, 0)

2.5 Varianza Condicional Modelo GARCH (0, 2)
2.6 Varianza Condicional Modelo GARCH (2, 2)

2.7 Varianza Condicional Modelo GARCH (6,0)
2.8 Varianza Condicional Modelo GARCH (0, 6)

2.9 Varianza Condicional Modelo GARCH (6, 1)
Varianza condicional
3. Correlogramas de FAC y FACP

3.1 Modelo GARCH (0, 1)

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 0.010 0.010 0.2632</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 0.017 0.017 1.0058</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 0.002 0.001 1.0144</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 -0.014 -0.014 1.4685 0.226</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 0.028 0.029 3.4331 0.190</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 -0.016 -0.016 4.0496 0.296</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 0.020 0.019 4.9814 0.286</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 0.001 0.001 4.9830 0.415</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Probabilities may not be valid for this equation specification.

3.2 Modelo GARCH (1, 0)

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 0.037 0.037 3.4069</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 0.046 0.044 8.3302</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 -0.002 -0.005 8.3511</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 0.007 0.005 8.4764 0.004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 -0.053 -0.054 15.427 0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 -0.016 -0.016 16.327 0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 0.036 0.034 16.469 0.002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 0.041 0.041 20.311 0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Probabilities may not be valid for this equation specification.

3.3 Modelo GARCH (1, 1)
3.4 Modelo GARCH (2, 0)

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>0.042</td>
<td>0.042</td>
<td>4.2395</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>0.040</td>
<td>0.039</td>
<td>0.1323</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0.016</td>
<td>0.013</td>
<td>8.7874</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>0.005</td>
<td>0.003</td>
<td>8.0543</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>0.038</td>
<td>0.037</td>
<td>12.418</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>-0.003</td>
<td>-0.006</td>
<td>12.433</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>0.011</td>
<td>0.008</td>
<td>12.721</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>0.011</td>
<td>0.010</td>
<td>13.017</td>
</tr>
</tbody>
</table>

*Probabilities may not be valid for this equation specification.

3.5 Modelo GARCH (0, 2)

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>0.028</td>
<td>0.028</td>
<td>1.8598</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>0.024</td>
<td>0.024</td>
<td>3.3163</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>-0.004</td>
<td>-0.005</td>
<td>3.3650</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>0.007</td>
<td>0.006</td>
<td>3.4650</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>-0.050</td>
<td>-0.057</td>
<td>11.229</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>-0.020</td>
<td>-0.017</td>
<td>12.170</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>0.001</td>
<td>0.004</td>
<td>12.170</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>0.053</td>
<td>0.053</td>
<td>16.608</td>
</tr>
</tbody>
</table>

*Probabilities may not be valid for this equation specification.
3.6 Modelo GARCH (2, 2)

Sample: 1/1/2008 11/6/2018
Included observations: 2430
Q-statistic probabilities adjusted for 3 ARMA terms

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1.00</td>
<td>0.01</td>
<td>0.2554</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0.01</td>
<td>0.01</td>
<td>0.0990</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.0053</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>-0.03</td>
<td>-0.01</td>
<td>1.4521</td>
<td>0.226</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>0.02</td>
<td>0.02</td>
<td>3.4124</td>
<td>0.182</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>-0.01</td>
<td>-0.01</td>
<td>4.0336</td>
<td>0.255</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>0.02</td>
<td>0.01</td>
<td>4.9658</td>
<td>0.281</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>4.6273</td>
<td>0.420</td>
</tr>
</tbody>
</table>

*Probabilities may not be valid for this equation specification.

3.7 Modelo GARCH (6, 0)

Sample: 1/1/2008 11/6/2018
Included observations: 2430
Q-statistic probabilities adjusted for 3 ARMA terms

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1.00</td>
<td>0.04</td>
<td>4.1016</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0.04</td>
<td>0.03</td>
<td>8.0313</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0.03</td>
<td>0.13</td>
<td>8.0724</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>0.00</td>
<td>0.03</td>
<td>8.7436</td>
<td>0.003</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>0.00</td>
<td>0.37</td>
<td>12.324</td>
<td>0.002</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>-0.00</td>
<td>-0.06</td>
<td>12.339</td>
<td>0.006</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>0.01</td>
<td>0.08</td>
<td>12.626</td>
<td>0.013</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>0.01</td>
<td>0.00</td>
<td>12.024</td>
<td>0.024</td>
</tr>
</tbody>
</table>

*Probabilities may not be valid for this equation specification.
3.8 Modelo GARCH (0, 6)

Sample: 1/15/2008 1/15/2018
Included observations: 2430
Q-statistic probabilities adjusted for 3 ARMA terms

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>0.014</td>
<td>0.014</td>
<td>0.4514</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0.017</td>
<td>0.017</td>
<td>1.1462</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0.001</td>
<td>0.000</td>
<td>1.1503</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>-0.017</td>
<td>-0.017</td>
<td>1.8607</td>
<td>0.173</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>0.029</td>
<td>0.030</td>
<td>3.9620</td>
<td>0.139</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>-0.015</td>
<td>-0.015</td>
<td>4.4947</td>
<td>0.213</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>0.021</td>
<td>0.021</td>
<td>5.6080</td>
<td>0.230</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>-0.001</td>
<td>-0.001</td>
<td>5.6100</td>
<td>0.346</td>
</tr>
</tbody>
</table>

*Probabilities may not be valid for this equation specification.

1.9 Modelo GARCH (6, 1)

Sample: 1/15/2008 1/15/2018
Included observations: 2430
Q-statistic probabilities adjusted for 3 ARMA terms

<table>
<thead>
<tr>
<th>Autocorrelation</th>
<th>Partial Correlation</th>
<th>AC</th>
<th>PAC</th>
<th>Q-Stat</th>
<th>Prob*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>0.006</td>
<td>0.005</td>
<td>5.1806</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0.035</td>
<td>0.032</td>
<td>8.0629</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0.016</td>
<td>0.013</td>
<td>8.7443</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>0.006</td>
<td>0.005</td>
<td>8.8681</td>
<td>0.003</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>0.043</td>
<td>0.041</td>
<td>13.320</td>
<td>0.001</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>-0.001</td>
<td>-0.005</td>
<td>13.322</td>
<td>0.004</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>0.014</td>
<td>0.012</td>
<td>13.821</td>
<td>0.008</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>0.006</td>
<td>0.007</td>
<td>14.018</td>
<td>0.016</td>
</tr>
</tbody>
</table>

*Probabilities may not be valid for this equation specification.
Anexos

Anexo A. Carta de aprobación para ponencia en Simposio Internacional de Estadística.

Bogotá, D. C., 18 de mayo de 2018

Ponente(s)
Sandra Viviana Aardila Flórez
Pilar Parada
Universidad Santo Tomás
COLOMBIA

Asunto: Póster: N° 26

Respetado (a) Ponente(s)

Tengo el gusto de informarle (s) que su trabajo titulado "Evaluación de modelos de pronóstico de series temporales para el índice del mercado colombiano COLCAP", ha sido aceptado en la modalidad de Póster para presentarse en el XXVIII Simposio Internacional de Estadística que se realizará del 23 al 27 de julio del 2018 en la ciudad de Bucaramanga, a presentarse dentro del ciclo de Pósters el día 26 de Julio de 5:00 p.m. a 7:00 p.m. El salón y las condiciones de presentación se publicarán en la página web http://simposiumestadistica.una.edu.co. Es importante que tenga (a) en cuenta el número asignado previamente a su trabajo, ya que mediante el mismo se asignará la ubicación en el evento y será más sencillo realizar los trámites administrativos, como la impresión de certificaciones.

Me permito recordar que la presentación del póster debe contener como mínimo: Introducción, metodología, conclusiones y referencias, además debe ser presentado en blanco, tamaño 1m x 70 cm en forma vertical. Para mayor información les invito a consultar los lineamientos en el siguiente link http://simposiumestadistica.una.edu.co/programacion-academica/posters/.

Recuerde(n) que para poder programar su trabajo, su inscripción debe estar cancelada a más tardar el 06 de Julio de 2018. Las fechas límite de pago se pueden consultar en la página web. Si por algún motivo ninguno de los autores puede asistir al evento, (o) solicitamos nos informe(n) antes de esta fecha, para proceder a excluir su trabajo de la programación.

Agradecemos de nuevo su interés en participar en el XXVIII Simposio Internacional de Estadística y esperamos contar con su asistencia.

Cordial saludo,

CARLOS EDUARDO ALONSO MALAYER
Coordinador XXVIII Simposio Internacional de Estadística 2018
Profesor Asociado
Departamento de Estadística
Universidad Nacional De Colombia, Sede Bogotá
Anexo B. Certificado de Ponencia en Simposio Internacional de Estadística.