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a b s t r a c t

We study the role that a cosmic triad in the generalized SU(2) Proca theory, specifically in one of the
pieces of the Lagrangian that involves the symmetric version Sµν of the gauge field strength tensor Fµν ,
has on dark energy and primordial inflation. Regarding dark energy, the triad behaves asymptotically
as a couple of radiation perfect fluids whose energy densities are negative for the S term but positive
for the Yang–Mills term. This leads to an interesting dynamical fine-tuning mechanism that gives rise
to a combined equation of state parameter ω ≃ −1 and, therefore, to an eternal period of accelerated
isotropic expansion for an ample spectrum of initial conditions. Regarding primordial inflation, one of the
critical points of the associated dynamical system can describe a prolonged period of isotropic slow-roll
inflation sustained by the S term. This period ends up when the Yang–Mills term dominates the energy
density leading to the radiation dominated epoch. Unfortunately, in contrast to the dark energy case, the
primordial inflation scenario is strongly sensitive to the coupling constants and initial conditions. The
wholemodel, including the other pieces of the Lagrangian that involve Sµν , might evade the recent strong
constraints coming from the gravitational wave signal GW170817 and its electromagnetic counterpart
GRB 170817A.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The vector sector of gauge field theories is built from the gauge
field strength tensor Fµν , its Hodge dual F̃µν , and, if the gauge
symmetry is spontaneously broken, from the vector field Aµ [1].
Generalized Proca theories have taught us that, when the gauge
symmetry is explicitly broken, the vector sector of these theories
is also built from the symmetric version Sµν of Fµν [2,3] (see also
Refs. [4,5]). The cosmological implications of Fµν , F̃µν , and Aµ have
been well investigated in the literature (see, for instance Refs. [6–
8]) but little has been said about Sµν . In this paper, we study the
cosmological implications of a cosmic triad [9] in the vector–tensor
Horndeski theory, also called the theory of vector Galileons, en-
dowedwith a global SU(2) symmetry. In particular, we analyse the
Yang–Mills Lagrangian together with L1

4 ⊂ L4, it being one of the
pieces of the generalized SU(2) Proca Lagrangian [10] that contains
contractions of two Sµν . We have found an asymptotic behaviour
inwhich the cosmic triad underL1

4 behaves as an almost radiation-
like perfect fluid with negative energy density and pressure whose
absolute values matches almost precisely those of the radiation
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perfect fluid coming from the same cosmic triad under the Yang–
Mills Lagrangian. The system exhibits an interesting dynamical
fine-tuning mechanism which results in a combined equation of
state parameter ω ≃ −1 and, therefore, in an eternal isotropic
inflationary period; this makes of this model an ideal candidate
to explain the dark energy. We have also explored the dynamical
system associated to this model and we have found that one
of the critical points may correspond to a prolonged period of
isotropic slow-roll accelerated expansion. This is a saddle point,
i.e., it represents a transient state of the dynamical system so
that the inflationary period comes naturally to an end, this being
replaced by a radiation dominated period by virtue of the Yang–
Mills Lagrangian; thismodelwould be an ideal candidate to explain
the primordial inflation were it not for the necessary judicious
choosing of initial conditions and parameters in the action. The
purpose of this paper is to isolate and understand the cosmo-
logical implications of L1

4 despite of being apparently strongly
constrained [11–15] by the recent observation of the gravitational
wave signal GW170817 [16] and its electromagnetic counterpart
GRB 170817A [17,18].1 The purpose is reasonable since the gen-
eralized SU(2) Proca Lagrangian contains L4 ≡ αL1

4 + κL2
4 + λL3

4,

1 We say ‘‘apparently strongly constrained’’ because there does not exist a formal
proof of it. The analyses so far done are for a scalar Galileon [12–15] and for the
generalized Proca action for an Abelian vector field [11].
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α, κ, λ being constants, where a relation between α and κ might
be established so that the gravitational waves speed matches that
of light.2 In such a scenario, although α, κ ̸= 0 in principle, κ being
a function of α, it might happen the cosmological implications of
L1

4 are not counterbalanced by those of L2
4. We will analyse such a

scenario and the whole cosmological implications of αL1
4 + κL2

4 ⊂

L4 in a forthcoming publication.

2. Generalized Proca theories and the cosmic triad

Generalized Proca theories are built following the same con-
struction idea of the Galileon–Horndeski theories [4,19].Whatever
choices Nature had to define the action, once the field content
and the symmetries were decided, all of them must comply with
a Hamiltonian bounded from below. And this may be possible,
according to Ostrogradski [20], if the dynamical field equations
are, at most, second order in space–time derivatives. If the latter
condition were not satisfied, the system would generically enter
in a severe instability, called Ostrogradski’s, both at the classical
and quantum levels [21,22]. The traditional approach to construct
such theories is by employing scalar fields as the field content [23–
28]. Nothing significantly new, compared to the usual canonical
kinetic term, is obtained when employing, instead, an Abelian
gauge field [29,30]. Hence, having new phenomenology requires
no longer invoking gauge symmetries, i.e., it requires a general-
ization to the Proca action. Such a generalization was performed
in Refs. [2,3,31–34] where it was recognized that, besides Fµν and
its Hodge dual F̃µν , the action is also defined in terms of Aµ and
the symmetric version Sµν of Fµν : Sµν ≡ ∇µAν + ∇νAµ. The
application of all these ideas to non-Abelian theories culminated
in the construction of the generalized SU(2) Proca theory [10] (see
also Ref. [35]). An interesting aspect of this theory is the explicit vi-
olation of the SU(2) gauge symmetrywhich allows amass termand
its generalizations written in terms of the non-Abelian versions
of Aµ, Fµν , F̃µν , and Sµν . Another interesting aspect is the global
character of the SU(2) symmetry which might play an important
role in particle physics.3 A third interesting aspect is the possibility
of using a cosmic triad [9], a set of three vector fields mutually or-
thogonal and of the same norm, which corresponds to an invariant
configuration both under SU(2), for the field space, and SO(3), for
the physical space, in agreement with the local homomorphism
between these two groups. The cosmic triad configuration has
been employed before [36–42] and, at least in the Gauge-flation
scenario [36,37], its naturalness has been shown in the sense that
it is an attractor in a more general anisotropic setup [43]. The
cosmological implications of the generalized Proca theory for an
Abelian vector field have been recently studied [32,44–47] but
always working with a time-like vector field so that the spatial
components are chosen to vanish, avoiding this way disastrous
anisotropies.4 In contrast, the isotropic configuration provided by
the cosmic triad, although the latter is composed of vector fields
that inherently define privileged directions, is amply favoured by
cosmological observations. It is the purpose of this paper to focus
on the spatial components of a triad of space-like vector fields.

2 The cosmological implications of L3
4 were reported in Ref. [4]. For its own

existence, this parity-violating term requires not only at least one non-vanishing
temporal component but also a non-orthogonal configuration for the triad, poten-
tially generating anisotropies in the expansion in conflict with observations.
3 Global continuous symmetries are important in particle physics, say, for exam-

ple, in the solution to the strong CP problem via the spontaneous breaking of the
U(1) global symmetry imposed by the Peccei–Quinn mechanism [1].
4 Anexception is themodel studied inRef. [48]where a triad of space-likeAbelian

vector fields is considered so that the temporal components are chosen to vanish.
The results of this work are very interesting despite the unnaturalness of the triad
configuration when there is no an underlying global SU(2) symmetry.

3. The non-Abelian S terms and the considered model

The Lagrangian of the generalized SU(2) Proca theory is com-
posed of several pieces that are described in Eqs. (96)–(99) of
Ref. [10]. Of particular importance is L4 which is characterized
by the two first-order covariant space–time derivatives of Aµ that
each of its terms contain (except for the non-minimal coupling to
gravity terms):

L4 ≡ αL1
4 + κL2

4 + λL3
4 , (1)

with α, κ, λ ∈ R and where5

L1
4 ≡

1
4
(Ab · Ab)

[
Sµaµ Sννa − Sµaν Sνµa + Aa · AaR

]
+

1
2
(Aa · Ab)

[
Sµaµ Sνbν − Sµaν Sνbµ + 2Aa

· AbR
]
, (2)

L2
4 ≡

1
4
(Aa · Ab)

[
Sµaµ Sνbν − Sµaν Sνbµ + Aa

· AbR
]

+
1
2
(AµaAνb)

[
SρµaSνρb − SρνaSµρb − AρaA

σ
b Rµνρσ

−
(
∇
ρAµa

) (
∇ρAνb

)
+ (∇ρAνa)

(
∇ρAµb

)]
, (3)

L3
4 ≡ G̃b

µσA
µ
a AνbS

νσa . (4)

In the previous expressions, gauge indices run from 1 to 3 and are
represented by Latin letters, space–time indices run from0 to 3 and
are represented by Greek letters, R is the Ricci scalar, Rµνρσ is the
Riemann tensor, Ga

µν is the Abelian version of F a
µν :

Ga
µν ≡ ∇µAa

ν − ∇νAa
µ , (5)

G̃a
µν is the Hodge dual of Ga

µν , and Saµν is the symmetric version of
Ga
µν :

Saµν ≡ ∇µAa
ν + ∇νAa

µ . (6)

It is very important to notice that the third line of L2
4, formed by

products of two first-order covariant space–time derivatives of Aµ,
cannot be written either in terms of F a

µν , F̃
a
µν , or S

a
µν , this line being

a specific term to the non-Abelian nature of the theory [10]. As
such, it vanishes in the Abelian case so that L1

4 + L2
4 reduces to

−A2
[(Sµµ )

2
− Sσρ S

ρ
σ ] +

1
4A

4R which is part of the corresponding
L4 in the generalized Proca theory for an Abelian vector field [4].
This is the reason why we will denote L1

4 and L2
4 as the non-

Abelian S terms. In this paper, we will analyse the cosmological
consequences of the non-Abelian S term in the action

S =

∫
d4x

√
− det(gµν) (LE-H + LYM + αL1

4) , (7)

where gµν is the metric tensor, LE-H is the Einstein–Hilbert La-
grangian,

LYM ≡ −
1
4
F a
µνF

µν
a , (8)

is the canonical kinetic term of Aµ, and

F a
µν ≡ ∇µAa

ν − ∇νAa
µ + gϵabcA

b
µA

c
ν , (9)

where g is the coupling constant of the group whereas the group
structure constants are given by the Levi-Civita symbol ϵabc .

5 The difference between our L1
4 and that in Ref. [10] is [(Ab · Ab)GµaνG

ν
µa + 2(Aa ·

Ab)GµaνG
b ν
µ ]/4. Likewise, the difference between our L2

4 and that in Ref. [10] is
[(Aa · Ab)GµaνG

b ν
µ − 2(AµaAνb)(G ρ

µaGνρb − G ρ
νa Gµρb)]/4. These differences formally

belong to L2 ≡ L2(Aa
µ,G

a
µν , G̃

a
µν ) in Eq. (96) of Ref. [10].
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