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Abstract. Although it seems like a common load-geometry configuration, there is neither an 
analytical nor a numerical solution for Stress Intensity Factors (SIF) in cracked tubes under pure 
torsion. Standards such as API 579, BS 7910 or handbooks do not present such case. There is plenty 
of solutions based on FEM or weight functions calculations for an extensive load-geometry 
combinations, but not for tubes under pure torsion. This paper shows curves of KI, KII, and KIII for 
through-wall cracks obtained with ANSYS simulations for slim tubes, under pure torsion with a 
rounded horizontal slit, numerically calculated via J-integral. Additionally KI, KII, and KIII are 
calculated using relative displacement between two points along the crack lips using Linear Elastic 
Fracture Mechanics (LEFM) formulations for Crack Tip Opening Displacement (COD) and Crack 
Tip Sliding Displacement (CTSD). Results are compared with experimentally measured SIF using 
the Digital Image Correlation (DIC) technique for fatigued-growth cracks reported in literature. 

Introduction 
From already published results and posterior search in Stress Intensity Factors (SIF) manuals 

[1]–[4]or standards such as API, BS 7910, it was concluded that there is not available solution for 
thin tubes under pure torsion. Yang [5] published a numerical simulation results for rounded bars 
but the samples had a curvature perpendicular to the loading axis. Harter [6] published preliminary 
results for plates under biaxial loading, which is not the same case as here, but a tube can be 
approximated to a plate is the distances are sufficiently small and a biaxial loading case with equal 
stresses produces similar effects as torsion in an inclined crack. Hos [7] subjected slim tubes to 
remote pure torsion and Vormwald et. al. [8] reported measured SIF using the Digital Image 
Correlation (DIC) technique for fatigued-growth cracks using the same specimen. Because the 
reported SIF [8] came from experimental measurements, they already account for non-linear 
phenomena such as crack closure induced by plasticity, roughness, and environmental conditions. 
Therefore, they do not represent crack behavior under ideal linear elastic conditions. This paper 
deals with the numerical calculation for SIF in slim tubes subjected to pure torsion. Fig. 1 shows the 
schematics of the sample used, and the position of the four symmetrical cracks that were formed. 
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Fig. 1 Sample dimensions and generated cracks 

 
Assuming local conditions do not cause large plasticity, the displacements for a flat cracked 

sample are described by Williams´s series [9] as presented in Eq. (1). 
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where u, v and w are paralell, perpendicular to crack and out-of-plane displacements, 
respectively, G is shear modulus, k is the Kolosov constant, r and θ are coordinates respect a 
coordinate system with origin at the crack tip, n is the number of terms in the expansion series,            
a1= KI/√2π, b1=KII/√2π, c1=KIII/√2π, and a2=σox/4, the so called T-stress. 

If one takes two opposite-to-crack points along the crack faces and uses only the first term in the 
series presented in Eq. (1), SIF can be reduced to the expressions presented in Eq. (2). Herein, it is 
termed FEM COD method. 
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Now, if the applied load causes large plasticity around the crack tip, the ⌡ integral [10] can be 
used as crack driving force. It is presented in Eq. (3). 
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where W is the strain energy density, ui is displacement, x the crack growth direction, T is stress 
vector, and δs is length increment along an arbitrary chosen path. ⌡ is path independent for an open 
path. If more than one loading mode is present, ⌡ represents the sum of energy per unit area (J/m2) 
in each loading direction. So, an orthogonal decomposition must be done to find the crack growth 
energy contribution on each axis, such as: ⌡= ⌡I+ ⌡II+ ⌡III. One way to do so is by taking advantage 
of the displacements fields symmetry respect to the crack axis [11]. Another one way to decompose 
the ⌡ value found in numerical simulations is by using an auxiliary and already-known solution; a 
procedure identified as the M-integral [12]–[14]. Furthermore, if a contour is selected appropriately 
in the K-dominance zone, the elastic relation between ⌡ and SIF, as shown in Eq. (4) can be used. 
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where E’ is the elastic modulus depending on having a plane stress or a plane strain situation. 
ANSYS® uses the ⌡ formulation to calculate SIF through Eq. (4) using the displacements 
calculated in the numerical solution. Herein, it is termed FEM method 
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Materials and Methods 
Modeling a meshing such a particular geometry is bit of a challenge. Two independent 

simulations were performed. In the first, a CAD model was created in Solidworks® and a 
simulation was ran in Solidworks Simulation® assuming the crack as a 0,1o sharp notch. The 
second simulation was done using the ANSYS® ADPL language. In both simulations, each model 
was meshed, and boundary conditions were applied to reproduce the specimen testing 
circumstances. The sample was meshed using 2mm SOLID186 in the general body. A 3mm radius 
refinement around the crack was done using 0,25mm quarter point elements in the ANSYS model, 
whereas in the SolidWorks® there were just refined tetrahedral elements. An example of the 
ANSYS® mesh is shown in Fig. 2. The applied load was 532N-m on the sample´s top face and a 
rigid support allocated in the lower face. Material properties were set to: elasticity modulus of 
200GPa and Poisson ratio of 0,29. In neither case, no symmetry was used. There were ran 
simulations using different crack lengths, as presented ahead. 

 
Fig. 2 ANSYS ® mesh details at cracks 

 
For the Solidworks® model, displacements u, v and w along both crack lips were extracted and 

SIF in modes I, II, and III were calculated using Eq. (2). An example of opposite-to-crack points 
with respect to the known crack tip location is presented in Fig 3 where the Solidworks® mesh is 
also seen. On the other hand, for the ANSYS® model, the software already gives the SIF values. 

 
Fig. 3 Close up of SolidWorks® mesh around one crack 

 
A job to obtain compliance functions is underway so a more general case, different load and 

thickness, could be addressed. 
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Results and Discussion 
The published experimental results [8] were obtained with the DIC technique, so they are 

over-the-surface measurements. Fig. 4 shows the comparison maximum SIF mode I (over the 
surface) versus crack length. Because the short crack lengths, one cannot see clearly the 
proportionality to 1/√r predicted by theoretical models, for both numerical simulations, using Eq. 2 
(FEM COD) and ANSYS (FEM) results. 

As hinted before, the experimentally obtained SIF values, obtained with the DIC technique, 
account for plasticity and crack roughness. Additionally, the reported DIC values [8] represent a 
SIF range (∆K), rather than an absolute value. This is due to an inherent characteristic of the 
technique, which needs a reference picture to establish displacements from. 

 
Fig. 4 SIF in mode I comparison with crack length 

 
Fig. 5 shows the comparison maximum SIF mode II (over the surface) versus crack length. 
 

 
Fig. 5 SIF in mode II comparison with crack length 

 
Finally, Fig. 6 shows the comparison maximum SIF mode II, also measured over the surface, 

versus crack length. 
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Fig. 6 SIF in mode III comparison with crack length 

It is seen how although only in-plane loading was applied, out-plane sliding was present as well, 
which is represented by the KIII values, as described by the w-field in Eq. (1), and they are shown in 
Fig. 6. 

Finally Fig. 7 shows how SIFs, calculated from Eq. 2 (COD method), develop according to 
distance from the crack tip. For KI, the variation is negligible, as it stays almost constant as one 
moves away from the crack tip. For KII and KIII, it is seen a variation with crack tip distance. Kibey, 
Sehitoglu, and Pecknold. [15] concluded that a crack may partially slip under mode II sliding when 
friction is included in the modeling. An analogy to mode III sliding can be drawn as well. In this 
case, the contact between faces was “frictionless”, so a similar behavior cannot be assumed. The 
explanation for this must come from the uneven meshing around the two crack faces. 
Displacements in opposite-to-crack nodes do have the same distance to the CTL, therefore the 1/√r 
value in Eq. (3) has different values for the relative displacement between two almost-opposite-to-
crack nodes. 

 
Fig. 7 Exemplary results of SIF versus crack tip distance  

Conclusion 
A simple method to calculate SIF using displacements from two opposite-to-crack points 

assuming linear elastic conditions was presented. The displacements were taken from FEM 
simulations that did not include special fracture mechanics special elements. The advantage of 
getting the SIF with this method is that it uses a simple solution and no specialized FEM software is 
needed. 

Although the applied load was only in plane-loading (pure torsion), there were present mode I 
and mode III SIFs as well. This is due to the sample´s geometry and local conditions which allow 
out-of-plane displacements hence, generating large COD-z displacement values, thus associated KIII 
values. There were differences with experimental data reported in literature. This is attributed to 
non-linearities such as plasticity ahead of the plastic zone, and roughness between the crack faces 
that could hinder SIF mode II development. 
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