DETERMINACIÓN DEL COMPORTAMIENTO BIOMECÁNICO DE UNA CADERA DISPLÁSICA EN UN PACIENTE DE 1 AÑO DE EDAD: MODELO 3D COMPUTACIONAL

JEISSON JOAQUIN ARDILA LÓPEZ

UNIVERSIDAD SANTO TOMÁS
DIVISIÓN DE INGENIERÍAS
FACULTAD DE INGENIERÍA MECÁNICA
BOGOTÁ D. C.
2018
DETENICIÓN DEL COMPORTAMIENTO BIOMECÁNICO DE UNA CADERA DISPLÁSICA EN UN PACIENTE DE 1 AÑO DE EDAD: MODELO 3D COMPUTACIONAL

JEISSON JOAQUIN ARDILA LÓPEZ

Proyecto de trabajo de grado en la modalidad de solución de un problema de ingeniería para optar por el título de Ingeniero Mecánico

Director: Oscar Rodrigo López Vaca
Ingeniero Mecánico

UNIVERSIDAD SANTO TOMÁS
DIVISIÓN DE INGENIERÍAS
FACULTAD DE INGENIERÍA MECÁNICA
BOGOTÁ D. C.
2018
AGRADECIMIENTOS

El autor expresa sus agradecimientos a:

Mis padres, ya que con su esfuerzo y trabajo han permitido el cumplimiento de mis sueños y metas, haciendo posible este bonito paso de aprendizaje por la universidad. Además, siempre brindando todo su amor y apoyo incondicional, e inculcando valores de respeto, responsabilidad y amor por lo que se hace.

Al ingeniero Oscar Rodrigo López Vaca, por todo su apoyo durante la realización del proyecto. También, por brindarme la confianza necesaria para realizar este trabajo, para el cual puso a disposición sus grandes conocimientos en el área de elementos finitos. Agradecerle, además, por su motivación para enseñarme la importancia de la biomecánica en la actualidad y la necesidad de ver las cosas de una manera crítica y analítica.
<table>
<thead>
<tr>
<th>TABLA DE CONTENIDO</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESUMEN ... 11</td>
</tr>
<tr>
<td>INTRODUCCIÓN ... 13</td>
</tr>
<tr>
<td>OBJETIVOS ... 15</td>
</tr>
<tr>
<td>Objetivo general ... 15</td>
</tr>
<tr>
<td>Objetivos específicos ... 15</td>
</tr>
<tr>
<td>1. ANATOMÍA DE LA CADERA ... 16</td>
</tr>
<tr>
<td>1.1. Articulación de la cadera ... 16</td>
</tr>
<tr>
<td>1.2. Desarrollo de la cadera en infantes ... 17</td>
</tr>
<tr>
<td>1.3. El fémur proximal .. 18</td>
</tr>
<tr>
<td>1.4. Biomecánica del hueso ... 19</td>
</tr>
<tr>
<td>1.4.1. Hueso cortical ... 21</td>
</tr>
<tr>
<td>1.4.2. Hueso trabecular ... 21</td>
</tr>
<tr>
<td>1.4.3. Cartílago articular .. 22</td>
</tr>
<tr>
<td>1.5. Displasia del desarrollo de cadera .. 22</td>
</tr>
<tr>
<td>1.5.1. Incidencia de la enfermedad .. 23</td>
</tr>
<tr>
<td>1.5.2. Etiología y anatomía ... 23</td>
</tr>
<tr>
<td>1.6. Mediciones radiográficas .. 24</td>
</tr>
<tr>
<td>1.6.1. Ángulo centro-borde (CEA) ... 25</td>
</tr>
<tr>
<td>1.6.2. Ángulo cabeza-cuello-eje femoral ... 25</td>
</tr>
<tr>
<td>1.6.3. Índice acetabular (IA) .. 26</td>
</tr>
<tr>
<td>1.6.4. Línea de Shenton y Menard .. 27</td>
</tr>
<tr>
<td>1.6.5. Ángulo de anteversión femoral ... 27</td>
</tr>
<tr>
<td>1.6.6. Profundidad acetabular .. 28</td>
</tr>
<tr>
<td>1.7. Grados de clasificación de la displasia de cadera 29</td>
</tr>
<tr>
<td>1.8. Antecedentes de estudios realizados .. 30</td>
</tr>
<tr>
<td>2. MATERIALES Y METODOS ... 36</td>
</tr>
<tr>
<td>2.1. Reconstrucción del modelo computacional .. 36</td>
</tr>
<tr>
<td>2.2. Obtención de modelos con presencia de displasia 39</td>
</tr>
<tr>
<td>2.3. Propiedades de los materiales .. 40</td>
</tr>
</tbody>
</table>
2.4. Contactos mecánicos ... 41
2.5. Condiciones de carga y frontera... 44
 2.5.1. Modelo de carga aplicado... 44
 2.5.2. Condiciones de frontera... 49
2.6. Mallado... 50
 2.6.1. Análisis de convergencia... 51
3. RESULTADOS... 56
 3.1. Deformación total... 56
 3.2. Distribución de la intensidad de esfuerzos en la articulación.. 57
 3.3. Presiones de contacto en la articulación.. 60
4. CONCLUSIONES.. 64
5. RECOMENDACIONES.. 66
6. BIBLIOGRAFÍA... 67
<table>
<thead>
<tr>
<th>Figura</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Articulación de la cadera humana</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>Centros de osificación en la pelvis de un recién nacido</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>Fotografía de secciones sagitales a través del extremo superior del fémur. A.</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Nacimiento B. Dos años C. Adolescente D. Paciente maduro</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Anatomía vascular del fémur proximal. Existe un ángulo de cabeza femoral de</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>150° en la niñez hasta 130° en la madurez y las diferentes etapas vasculares (A, B, C)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Relación carga-desplazamiento</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>Curva tensión-deformación para las diferentes densidades óseas</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>Características generales del cartílago articular</td>
<td>22</td>
</tr>
<tr>
<td>8</td>
<td>Posición envuelta en recién nacidos</td>
<td>23</td>
</tr>
<tr>
<td>9</td>
<td>Radiografía antero-posterior de la pelvis con dibujo lineal</td>
<td>24</td>
</tr>
<tr>
<td>10</td>
<td>Ángulo de medición centro-borde (CEA)</td>
<td>25</td>
</tr>
<tr>
<td>11</td>
<td>Ángulo de medición cabeza-cuello-femoral</td>
<td>26</td>
</tr>
<tr>
<td>12</td>
<td>Índice acetabular (IA)</td>
<td>26</td>
</tr>
<tr>
<td>13</td>
<td>Línea de Shenton y Menard</td>
<td>27</td>
</tr>
<tr>
<td>14</td>
<td>Ángulo de anteversión femoral</td>
<td>28</td>
</tr>
<tr>
<td>15</td>
<td>Profundidad acetabular</td>
<td>28</td>
</tr>
<tr>
<td>16</td>
<td>Grados de clasificación de displasia IHDI</td>
<td>29</td>
</tr>
<tr>
<td>17</td>
<td>Presiones obtenidas durante el estudio de M. Giorgi</td>
<td>31</td>
</tr>
<tr>
<td>18</td>
<td>Distribución de los esfuerzos en el estudio de S. Chegini</td>
<td>32</td>
</tr>
<tr>
<td>19</td>
<td>Comportamiento de las presiones antes y después de la operación en el</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>estudio de C. L. Abraham</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Distribución de las presiones de contacto para el estudio de A. E. Anderson</td>
<td>33</td>
</tr>
<tr>
<td>21</td>
<td>Distribución de las presiones a nivel articular halladas en el estudio de M.</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>E. Russell.</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Generación de la geometría 3D inicial</td>
<td>37</td>
</tr>
<tr>
<td>23</td>
<td>Edición de imágenes tomográficas</td>
<td>37</td>
</tr>
<tr>
<td>24</td>
<td>Generación del modelo a partir de imágenes editadas</td>
<td>38</td>
</tr>
<tr>
<td>25</td>
<td>Reconstrucción final de la articulación</td>
<td>38</td>
</tr>
<tr>
<td>26</td>
<td>Medición de IA en tomografías de estudio</td>
<td>39</td>
</tr>
<tr>
<td>27</td>
<td>Modelos de estudio generados A. IA 20° B. IA25° C. IA 30°</td>
<td>39</td>
</tr>
<tr>
<td>28</td>
<td>Asignación de materiales de los diferentes tejidos</td>
<td>41</td>
</tr>
<tr>
<td>29</td>
<td>Descomposición vectorial de las fuerzas de acuerdo al modelo de Pauwels</td>
<td>45</td>
</tr>
<tr>
<td>30</td>
<td>Gráfica de peso y estatura para niñas hasta los 36 meses de edad</td>
<td>46</td>
</tr>
<tr>
<td>31</td>
<td>Cambios proporcionales en los segmentos del cuerpo con la edad</td>
<td>47</td>
</tr>
<tr>
<td>32</td>
<td>Aplicación de la fuerza ejercida por los músculos y el peso remoto al modelo</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>de trabajo</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Restricciones de desplazamiento a nivel de la pelvis</td>
<td>49</td>
</tr>
<tr>
<td>34</td>
<td>Aplicación del soporte fijo en el extremo distal del fémur</td>
<td>49</td>
</tr>
<tr>
<td>35</td>
<td>Generación de la malla por defecto</td>
<td>50</td>
</tr>
</tbody>
</table>
Figura 36. Generación de la malla refinada..51
Figura 37. Puntos de desplazamiento seleccionados en el hueso del fémur y la epífisis. 51
Figura 38. Puntos de desplazamiento seleccionados en la pelvis.....................................52
Figura 39. Convergencia de malla de acuerdo a los diferentes puntos y tejidos seleccionados...54
Figura 40. Comparación de la deformación total en los modelos A. 20° B. 25° Y C. 30° (mm) ..56
Figura 41. Estado de esfuerzos en la articulación coxo-femoral A. Modelo IA 20° B. Modelo IA 25° C. Modelo IA 30° (MPa)..58
Figura 42. Anatomía acetabular A. Techo lateral B. Anterior C. Techo medial D. Posterior ..59
Figura 43. Comportamiento de los esfuerzos en el acetábulo A. Modelo IA 20° B. Modelo IA 25° C. Modelo IA 30° (MPa)..60
Figura 44. Presiones de contacto A. Modelo IA 20° B. Modelo IA 25° C. Modelo IA 30° (MPa)..61
Figura 45. Comportamiento de las presiones de contacto en el estudio de A. Dhabi61
Figura 46. Comportamiento de las presiones de contacto en el estudio de M. F. Paine...62
Figura 47. Comparación de resultados con modelo de A. Dhabi A. Modelo de estudio B. Modelo de A. Dhabi..62
LISTA DE TABLAS

Tabla 1. Variación de las presiones de contacto pico (MPa) en el cartílago acetabular según el estudio de S. Chegini .. 32
Tabla 2. Datos de las presiones de contacto en las caderas con displasia acetabular según el estudio de M. E. Russell... 35
Tabla 3. Propiedades mecánicas de los componentes del modelo de estudio 40
Tabla 4. Contactos mecánicos definidos en los modelos .. 42
Tabla 5. Valores de convergencia de malla en la epífisis femoral................................. 52
Tabla 6. Valores de convergencia de malla en el acetábulo 53
Tabla 7. Valores de convergencia de malla en el hueso del fémur......................... 53
Tabla 8. Valores de convergencia de malla en la cresta iliaca................................. 53
GLOSARIO

Anatomía: Ciencia que estudia la estructura, forma y relaciones de las diferentes partes de cuerpo de los seres vivos.

Anteroposterior: Proyección en la que el paciente está situado de frente a la parte generadora o a la fuente de energía, en el momento de adquisición de una imagen.

Articulación: Unión material de dos o más piezas de modo que por lo menos una de ellas mantenga una libertad de movimiento.

Biomecánica: Ciencia que estudia las fuerzas y todo el comportamiento mecánico que ocurre a nivel de los seres vivos.

Bipedestación: Posición de estar erguido y sostenido sobre dos pies.

Centro de osificación: Cada uno de los lugares donde tiene lugar el proceso de formación del hueso durante la etapa de desarrollo.

Diartrodial: Es aquella articulación que tiene una cavidad articular dentro de una capsula ligamentosa recíproca.

Elasticidad: Propiedad de un cuerpo sólido para recuperar su forma cuando cesa la fuerza que lo altera.

Etiología: Es la parte de la medicina que estudia el origen o las causas de las enfermedades.

Elementos finitos: Es un método numérico general para la aproximación de solución de ecuaciones diferenciales complejas utilizado en diferentes problemas de ingeniería y ciencia.

Interfaz: Zona de comunicación o acción de un sistema sobre otro.

Labrum: Órgano que aumenta la superficie articular entre el fémur y la pelvis y realiza un perfecto sellado de la articulación que impide la salida del líquido sinovial.

Locomoción: Translación de un lugar a otro.

Luxación: Dislocación o separación que se produce cuando un hueso se sale de su articulación.

Morfogénesis: es el proceso biológico que lleva a que un organismo o parte de él desarrolle su forma.

Oligohidroamnios: Termino médico que significa poco líquido amniótico.

Osificación endocondral: Es un proceso del desarrollo del sistema esquelético que incluye la producción del ejido óseo a partir del tejido cartilaginoso.
Patología: Estudio de los trastornos anatómicos y fisiológicos de los tejidos, así como los síntomas a través de los cuales se manifiestan las enfermedades.

Prenatal: Es un concepto que utiliza para nombrar aquello que surge o que tiene existencia desde etapas previas al nacimiento.

Postnatal: Es un concepto que se utiliza para nombrar todo aquello que surge o tiene lugar después del nacimiento.

Propiocepción: Sentido que informa al organismo de la posición de los músculos. Es la capacidad de sentir la posición relativa de partes corporales contiguas.

Sintomatología: Conjunto de señales características de una enfermedad determinada.

Tomografía: Técnica exploratoria radiográfica que permite obtener imágenes radiológicas de una sección o plano de un órgano.

Trocánter: Cada uno de los abultamientos que hay en el extremo superior del fémur y otros huesos largos.
RESUMEN

La cadera es una de las articulaciones más importantes en el ser humano, ya que en ella se soporta el peso del cuerpo durante posturas estáticas y dinámicas. La morfogénesis articular se puede ver afectada por anomalías como la displasia de cadera, que se centra en la afectación de la cavidad acetabular y la cabeza femoral. Los posibles factores que pueden generar dicha condición, incluyen nutrición, genética, género o una combinación de estos. Sin embargo, el entorno mecánico juega un papel principal en la degeneración del cartílago en la articulación [1]. La carga aplicada facilita el flujo de nutrientes en el cartílago, además de proporcionar señales mecánicas esenciales para el mantenimiento normal de las células y tejidos, incluso, influye en el proceso de crecimiento endocondral, debido a esto, las cargas excesivas hacen que se vean afectados los procesos biológicos como crecimiento correcto y formación de la misma cadera [2][3].

Debido a que las presiones de contacto y la biomecánica general de la cadera no se pueden medir directamente in vivo, se han venido aplicando métodos de elementos finitos [4]. En este estudio, se propuso determinar el comportamiento biomecánico de la cadera displásica de un infante de un año de edad. Para este fin se realizó la reconstrucción de un modelo 3D computacional en estado sano a partir de tomografías computarizadas, el cual fue posteriormente modificado para la obtención de dos modelos con condiciones displásicas. A partir de la revisión de la literatura existente acerca de la enfermedad, se seleccionaron condiciones de cambio en el índice acetabular para la generación de la enfermedad en los modelos, los cuales tuvieron índices de 20° (modelo sano), 25° y 30° (modelos afectados).

Los modelos fueron llevados al software ANSYS 19.1 ® en el cual fueron debidamente resueltos. Se llevó a cabo una revisión de literatura de trabajos relacionados con el estudio de tejido óseo, para determinar las propiedades de los materiales que se asignaron a cada una de las partes que componen la articulación. Las condiciones de carga aplicadas se basaron en el modelo de bipedestación descrito por Pauwels [5]. Además, se dieron las condiciones de contacto pertinentes entre los diferentes cuerpos de los modelos y se realizó el mallado y su respectiva refinación, para posteriormente dar solución.

Los resultados obtenidos mostraron evidentes cambios en los esfuerzos y presiones de contacto para los modelos de mayor afectación patológica. Se evidenciaron aumentos en los esfuerzos a nivel articular de 2,787 MPa en el modelo sano a 6,9625 MPa en el modelo más crítico y aumentos de las presiones de contacto en el cartílago acetabular de 2,8746 MPa a 7 MPa. Estos valores y sus distribuciones
fueron comparados con datos obtenidos de la literatura especializada existente, con el fin de validar el estudio realizado.
INTRODUCCIÓN

El desarrollo de displasia de cadera, conocida anteriormente como luxación congénita de cadera, es una condición causada por el desarrollo anormal de la articulación, la cual se basa en una alteración en el desarrollo y relación anatómica de los componentes de la articulación coxo-femoral. Dicha anomalía se presenta en alrededor de 1-3 infantes por cada 1000 nacidos, esta condición pueden ir desde la inestabilidad hasta la dislocación completa de la articulación [6][7]. El término “Developmental displacement of the hip” (DDH) abarca todas las variantes del trastorno del desarrollo de la articulación (displasia, subluxación y luxación).

En lo que tiene que ver con la etiología de la enfermedad se tienen varias hipótesis sobre la generación de los trastornos en la cadera, las cuales se resumen básicamente en dos grupos: intrínsecas y extrínsecas. Las causas extrínsecas se basan en trastornos mecánicos durante desarrollo, dentro de los cuales se encuentran el oligohidroamnios, que genera una posición errónea del feto, lo cual exporndría el mismo a presiones que tienden a separar la epífisis femoral de la cavidad acetabular, también pueden intervenir factores como resistencia en la paredes uterinas y abdominales de la madre, formas de vestir de los niños, nacimiento de nalgas, etc. Todas estas condiciones son factores que pueden intervenir para la generación de una futura luxación. Las causas intrínsecas se refieren principalmente a factores de herencia, raza, genero, nutrición, etc. [8]

Actualmente el estudio de algunas de estas enfermedades se lleva a cabo a través de la biomecánica, rama que se enfoca en el comportamiento de tipo mecánico que ocurre a nivel de los seres vivos. Además, este campo de la mecánica se apoya en modelos matemáticos que pueden ser resueltos con ayuda de herramientas computacionales. Por estos motivos las simulaciones 3D han venido tomando fuerza a través de los últimos años y son tomadas como una buena alternativa en el estudio de estas patologías.

Teniendo en cuenta que el factor mecánico es de vital importancia dentro del desarrollo de displasia de la cadera (DDC), este trabajo se realiza con el fin de determinar el estado de esfuerzos y deformaciones que se presentan en una cadera displásica de un paciente de un año de edad a partir de un método no invasivo o dañino para la persona, ya que dicho estudio muestra los efectos que tienen algunas condiciones generadas por la anomalía en la biomecánica de la cadera, permitiendo comparar lo ocurrido en los diferentes grados de la enfermedad que se estudiaron. Por otra parte, este trabajo puede ser la base de futuros estudios a nivel de
tratamiento y predicción de la enfermedad a partir de un análisis del comportamiento biomecánico de una cadera con estas condiciones de displasia.

Para el desarrollo de este estudio se llevó a cabo una consulta acerca de la anatomía de la cadera de un infante de alrededor de un año de edad en estado sano y también en presencia de la enfermedad, que permitió identificar las características morfológicas existentes en las caderas que presentan una determinada condición de displasia. Teniendo en cuenta dichas condiciones, se realizó la reconstrucción de un modelo de cadera 3D a partir de tomografías computacionales (TC) que permitió determinar el estado de esfuerzos y deformaciones del mismo a partir de un análisis de elementos finitos (FEA) a través de la herramienta computacional ANSYS 19.1®.
OBJETIVOS

Objetivo general

Establecer el comportamiento biomecánico de una cadera displásica en un paciente de 1 año de edad.

Objetivos específicos

- Determinar las condiciones anatómicas que describen una condición de displasia de cadera para la reconstrucción de un modelo CAD tridimensional.
- Reconstruir un modelo CAD de una cadera displásica a partir de tomografías computacionales y la condición patológica seleccionada.
- Determinar el estado de esfuerzos y deformaciones para la cadera displásica reconstruida.
- Validar los resultados obtenidos mediante análisis cualitativos reportados en la literatura.
1. ANATOMÍA DE LA CADERA

1.1. Articulación de la cadera

La cadera es una articulación diartrodial, lo que quiere decir que es una articulación de movimiento libre, la cual consta de una cabeza femoral esférica que se encuentra encapsulada por una cavidad acetabular reciproca, esta capsula articular se encuentra recubierta por una membrana sinovial que también se encarga de producir el líquido que lubrica el cartílago dentro de la capsula, además, la membrana se encuentra reforzada por algunos ligamentos y musculatura circundante (ver figura 1). El acetábulo es una cavidad conformada por diferentes huesos, en la parte superior se encuentra el ilion, en el sector ínfero-lateral se ubica el isquion y medialmente el pubis. En la parte central del hueso innominado la unión de estos tres elementos da paso a la formación del cartílago trirradiado. La superficie articular tiene forma lunada y lateralmente tiene un Labrum que profundiza la cavidad acetabular, el cual llega a tener un espesor de 5,3 mm en adultos [7].

Figura 1. Articulación de la cadera humana

Fuente: [9]
1.2. Desarrollo de la cadera en infantes

Durante la etapa prenatal, la articulación de la cadera se encuentra preformada principalmente por tejido cartilaginoso, es por esto que después del nacimiento el fémur y la pelvis aún tienen que terminar de osificarse. Este procedimiento se realiza a partir de ocho centros de osificación, los cuales se encuentran incrustados dentro de los cartílagos (tres primarios y cinco secundarios). Los centros primarios se encuentran en el isquion, ilion y el pubis. Los secundarios están ubicados en la cresta del ilion, la espina iliaca inferior anterior, la tuberosidad del isquion, la sínfisis púbica y el cartílago de crecimiento del acetábulo (cartílago trirradiado) [7].

![Figura 2. Centros de osificación en la pelvis de un recién nacido](image)

Fuente: [10]

La figura 2, se observan los diferentes centros de osificación que se encuentran distribuidos en diferentes sectores de la pelvis, en los cuales se señalan: A) centro de osificación del cartílago pélvico, B) rama superior osificada del hueso púbico, C) rama inferior no osificada, D) ilion, E) ovalo obturador, F) sacro [10]. A medida que el infante crece y el proceso de osificación se lleva a cabo se genera una reducción del cartílago trirradiado para dar paso a la formación de la cavidad acetabular, la cual estará debidamente madura a la edad de los 12 años, posteriormente, varios centros de osificación secundarios se unirán a la pelvis, lo que da fin al proceso de osificación de la articulación.
1.3. El fémur proximal

El fémur proximal está compuesto por la cabeza femoral, el cuello, el trocánter menor y mayor. Durante el desarrollo prenatal y postnatal, la cabeza femoral tiene una forma casi totalmente esférica y se une al cuello femoral a través del surco subcapital (ver figura 3) [7].

El crecimiento de los huesos largos como el fémur se lleva a cabo en las placas de crecimiento epifisario cartilaginoso, entre la epífisis y la diáfisis. Estas placas de crecimiento son sensibles a la carga mecánica, lo que indica que el crecimiento endocondral y la osificación se deben al esfuerzo compresivo hidrostático y es acelerado por esfuerzos cortantes octaedricos. Esta tasa de crecimiento mecánico está definida por el índice osteogénico [3].

También, es importante tener en cuenta la anatomía vascular del fémur proximal, ya que principalmente la vasculatura de transición en la cabeza femoral es esencial para comprender muchos procesos patológicos en la cadera pediátrica. El suministro vascular de la epífisis femoral se analiza en tres etapas, 1) desde el nacimiento hasta la formación de la fisis subcapital, 2) durante la osificación de la epífisis femoral, y 3) después de la osificación de la fisis. Normalmente, en la primera etapa, que abarca los primeros 4 a 6 meses de vida, el suministro sanguíneo se realiza a través de 3 vasos: La arteria circunfleja femoral medial (MFCA), la arteria circunfleja femoral lateral (LFCA) y la arteria del ligamento teres (ALT). Estos vasos pasan libremente del cuello a la cabeza femoral sin interferencia de la placa de crecimiento. En la segunda etapa, que data más o menos desde los 6 meses de edad hasta la madures de los huesos, el flujo deriva únicamente de la MFCA, ya que la presencia de la fisis subcapital evita el paso de los vasos de la LFCA a través de la placa de crecimiento. En la tercera etapa, el suministro se da principalmente por la MFCA, aunque con pequeñas contribuciones de LFCA y ALT (ver figura 4) [11].
Figura 3. Fotografía de secciones sagitales a través del extremo superior del fémur. A. Nacimiento B. Dos años C. Adolecente D. Paciente maduro

Fuente: [7]

Figura 4. Anatomía vascular del fémur proximal. Existe un ángulo de cabeza femoral de 150° en la niñez hasta 130° en la madurez y las diferentes etapas vasculares (A, B, C)

Fuente: [11]

1.4. **Biomecánica del hueso**

El hueso es un tejido complejo que se destruye y reemplaza continuamente por remodelación biológica. Como el constituyente principal en los huesos completos (que como cualquier órgano contiene otros tejidos como la medula ósea, los nervios y los vasos sanguíneos) tienen dos tipos de tejido óseo (trabecular y cortical), los cuales tienen la función de resistir un esfuerzo sustancial durante el curso de la locomoción y la extenuación [12]. Inicialmente se considera que el hueso es un material anisotrópico ya que el comportamiento mecánico del mismo no es uniforme.
en todas las direcciones cuando se encuentra sometido a algún tipo de fuerza o carga. Existen varios parámetros biomecánicos que pueden servir para la caracterización del hueso, pero el parámetro clave a utilizar es la relación existente entre la carga aplicada a la estructura y el desplazamiento en respuesta a la carga (ver figuras 5 y 6). La pendiente de la región elástica de la curva carga-desplazamiento representa la rigidez del material, la carga y el desplazamiento final [13].

Figura 5. Relación carga-desplazamiento

![Figura 5: Relación carga-desplazamiento](image5)

Fuente: [13]

Figura 6. Curva tensión-deformación para las diferentes densidades óseas

![Figura 6: Curva tensión-deformación](image6)

Fuente: [14]
Además, es de vital importancia la gráfica que muestra la relación existente entre el esfuerzo y la deformación del material. Dicha curva se encuentra dividida en las regiones elástica y plástica. La primera región muestra el esfuerzo que puede resistir el material sin recibir un daño permanente, es decir, que cuando la carga deja de ser aplicada la estructura regresa a su forma original. La segunda región se refiere al esfuerzo necesario para que el daño y la deformación que se presenta en el material sea irreversible. Otro punto importante en el análisis de esta gráfica es la pendiente generada en la curva, ya que esta hace referencia al módulo de elasticidad del material (módulo de Young).

1.4.1. Hueso cortical

El hueso cortical se caracteriza por ser mucho más compacto que el trabecular. Su densidad depende de la porosidad y la mineralización del material, y en el hueso humano tiene un valor aproximado de 1,9 $\frac{g}{cm^2}$. Se sabe que existe una correlación entre la densidad cortical y sus propiedades biomecánicas, ya que si aumenta la primera mejoran las segundas. Se ha determinado que la porosidad y mineralización del hueso cortical se relacionan con el módulo de Young, de tal forma que un aumento en la mineralización implica una disminución del módulo elástico [15].

1.4.2. Hueso trabecular

Se ha determinado que el hueso trabecular, de la misma manera que el cortical, presenta una mayor resistencia ante la carga de compresión que ante cualquier otro tipo. La resistencia en ensayos de compresión varía entre 1,5 y 9,3 MPa, y el módulo de Young entre 10 y 1,058 MPa, en función de la región del cuerpo. Dicho tipo de hueso tiene densidades aproximadas de 0,4 $\frac{g}{cm^2}$. Mediante métodos experimentales, se ha determinado que la resistencia y el módulo de Young son función de la densidad, de tal manera que un aumento en la densidad produce grandes incrementos en los parámetros anteriores [15].
1.4.3. Cartílago articular

El cartílago articular es un recubrimiento de baja fricción, que se encuentra en los extremos de los huesos articulares como el fémur. Dicho componente tiene la función de transmitir y distribuir las cargas producidas en la articulación en las actividades diarias, de tal manera que se reduzcan los esfuerzos de contacto de las superficies. También, brinda funciones biomecánicas esenciales como resistencia al desgaste y absorción de energía durante el choque de los componentes de la articulación coxo-femoral [16].

Esta estructura se encuentra compuesta principalmente por colágeno, que mecánicamente brinda rigidez y fuerza de tensión. También, tiene cierto contenido de agua, la cual es de vital importancia, ya que mediante su movimiento cuando se aplican cargas compresivas en el tejido, se realiza el procedimiento de lubricación articular [16]. Las características generales del cartílago se pueden observar en la figura 7.

Figura 7. Características generales del cartílago articular

Fuente: [17]

1.5. Displasia del desarrollo de cadera

La displasia del desarrollo de cadera se define como “un aspecto de la enfermedad” que va desde una displasia leve hasta una dislocación en la articulación irreducible. Se entiende como dislocación a la separación completa de los huesos articulados debido su desplazamiento. La subluxación también es una separación de los huesos articulares debido a un desplazamiento de los mismos, pero en este caso la separación no es completa, ya que existe una parte de la superficie articular aún en contacto. La displasia de cadera se define como como una anomalía en el desarrollo del acetábulo, lo cual lo hace poco profundo y/o deformé [18]. El desarrollo anormal
de la cadera incluye estructuras óseas como el acetábulo, el fémur proximal, el Labrum, la capsul y otros tejidos blandos [19].

1.5.1. Incidencia de la enfermedad

La displasia de cadera es una anomalía que se presenta aproximadamente en 3 infantes por cada mil nacidos [20]. La condición es más común en las hembras y en el lado izquierdo. Normalmente la frecuencia con la que se presenta la enfermedad varía dependiendo de factores geográficos y raciales, ya que se mantiene una relación estricta con los mismos. En algunos lugares del mundo la incidencia es alta, mientras que en otros la enfermedad es casi inexistente [7].

1.5.2. Etiología y anatomía

Hay un gran número de factores que pueden influir en el desarrollo de la articulación de la cadera para que se presente una condición de displasia, entre ellos encontramos factores mecánicos, hormonales, raciales, nutricionales, genéticos, ambientales y de género. La posición de nalgas es un factor de riesgo importante en el momento del nacimiento. Algunas posturas en los recién nacidos también pueden ser un factor de riesgo que predispone al infante a una dislocación de cadera, ya que, es el caso de algunas culturas como la turca, en la cual se envuelven las piernas de los recién nacidos de forma circular, por lo que se mantienen las extremidades de forma extendida (ver figura 8), lo cual genera una mayor incidencia de la anomalía [7].

Figura 8. Posición envuelta en recién nacidos
El crecimiento normal de la cavidad acetabular es dependiente del crecimiento epifisario, del cartílago trirradiado y de los tres centros de osificación presentes en la formación acetabular (pubis, ilion, isquion). También es un factor importante dentro del desarrollo del acetábulo el posicionamiento correcto de la cabeza femoral dentro del mismo, ya que la presencia esférica de dicho componente estimula el correcto crecimiento de la cavidad. Otro de los factores que se consideran riesgosos es la laxitud ligamentaria, ya que en algunas ocasiones en las que se tiene un acetábulo poco profundo existe probabilidad de una futura luxación de cadera [19].

1.6. Mediciones radiográficas

La línea de Hilgenreiner es una línea horizontal dibujada en una radiografía anteroposterior de la pelvis, que conecta la parte superior de los cartilagios trirradiados derecho e izquierdo. Hilgenreiner también describió un “punto” en el centro del extremo proximal del fémur. Una línea vertical que sale desde dicho punto en ángulo recto a la línea de Hilgenreiner permite determinar la distancia h, que es una medida de altura del extremo superior del fémur con respecto a la línea de Hilgenreiner. Normalmente el valor de h es de 1 cm, pero en caderas dislocadas dicho valor disminuye. Dichos parámetros se observan en la figura 9.

La línea de Perkins es una línea perpendicular a la línea de Hilgenreiner dibujada a través del borde acetabular exterior. El cruce de las dos líneas establece cuatro cuadrantes. En una cadera normal, la osificación de la metáfisis inferomedial del fémur se encuentra en el cuadrante inferior interno, mientras que en las caderas displásicas las metáfisis inferomedial se encuentran en cualquier otro cuadrante [7].

Figura 9. Radiografía antero-posterior de la pelvis con dibujo lineal

Fuente: [7]
1.6.1. Ángulo centro-borde (CEA)

Un diagnóstico de displasia de cadera se puede hacer con un ángulo de centro-borde inferior a 20° medido en una radiografía antero-posterior. Un valor de 25° o más se considera normal. Los valores de 20° a 25° son considerados límite en lo que refiere a cobertura acetabular, pero no lo suficiente para considerarse como displasia [21]. Para la medición del CEA se trazan dos líneas desde el centro femoral, una completamente vertical y la otra hacia el borde acetabular externo y se halla en ángulo existente entre las dos (ver figura 10).

Figura 10. Ángulo de medición centro-borde (CEA)

1.6.2. Ángulo cabeza-cuello-eje femoral

En ángulo cabeza-cuello-eje femoral se mide como el formado por el eje del cuello femoral y el eje del fémur en una radiografía antero-posterior. Strayer midió el ángulo de inclinación en vástagos femorales a las 8 semanas de gestación y los valores oscilaron entre 150° y 155°, los cuales disminuyeron un poco al nacer [7]. Los valores normales para un adulto en este ángulo varían entre 120° y 135°. Los valores por arriba de los 135° son asociados con coxa valga y los valores inferiores a 120° son asociados con coxa vara. Normalmente la displasia está asociada a los coxa valga (ver figura 11) [21].
El ángulo acetabular se define como el ángulo formado entre el techo o la región ilíaca del acetábulo y la línea horizontal que pasa a través de los cartilagios trirradiados. Este ángulo mide la oblicuidad del techo acetabular y por lo tanto su crecimiento. Así mismo disminuye hasta los ocho años de edad, cuando alcanza su madurez. Las medidas aproximadas son de menos de 30° para infantes de menos de un año de edad; menos de 25° para niños de 1 a 3 años y 21° o menos de 4 años a la edad adulta [7].
1.6.4. Línea de Shenton y Menard

Es una curva suave y continua del foramen del obturador y la cara medial del cuello femoral en la radiografía antero-posterior de la pelvis. Si esta cuerva se rompe o se pierde va a existir una subluxación o dislocación de la articulación [7].

Figura 13. Línea de Shenton y Menard

Fuente: [7]

1.6.5. Ángulo de anteversión femoral

Es un ángulo formado por una línea entre el centro del cuello femoral y la cabeza femoral al plano coronal de la cara posterior de los cóndilos femorales. Dicho ángulo no se puede medir en fetos de menos de once semanas ya que la articulación no está totalmente formada. Los valores al nacer varían de 15° a 53° y disminuye gradualmente hasta la vida adulta, cuando oscila entre 18° y 41° [7]
Figura 14. Ángulo de anteversión femoral

Figura 15. Profundidad acetabular

1.6.6. Profundidad acetabular

La profundidad acetabular puede ser medida y cuantificada a través de una radiografía antero-posterior, trazando una línea desde el borde acetabular superior hasta el borde inferior, posteriormente se traza otra línea perpendicular a la primera hacia el punto más profundo de la cavidad acetabular. La profundidad se calcula con la fórmula \((b/a) \times 100\). Los porcentajes por debajo del 25% se consideran asintomáticos.

Fuente: [7]
1.7. Grados de clasificación de la displasia de cadera

Varios autores han planteado diferentes grados y métodos de clasificación para la displasia de cadera, todos ellos válidos. El instituto internacional de displasia de cadera (IHDI) propone utilizar la posición de la metáfisis femoral proximal (en lugar del núcleo osificado) como referencia para determinar la posición de la cadera y por lo tanto el grado de la displasia. Al igual que en el sistema de Tönnis, se dibuja la línea H (línea de Hilgenreiner) en la parte superior de los cartílagos trirradiados. La línea P (línea de Perkins) se dibuja perpendicular a la H, a la altura del margen superolateral del acetábulo, pero a diferencia de los otros sistemas, se traza una línea diagonal a 45° desde la unión de las líneas H y P. La posición del punto H determina el grado de displasia. En una cadera de grado I el punto H está en/o medial a la línea P. En el grado II la línea H es lateral a la línea P y en/o medial a la línea D. Para el grado III, el punto H es lateral a la línea D y en/o inferior a la línea H. En las caderas de grado IV el punto H es superior a la línea H (ver figura 16) [20].

Figura 16. Grados de clasificación de displasia IHDI

Fuente: [20]

De acuerdo a los parámetros de medición y diagnóstico de la enfermedad consultados y señalados anteriormente, se decidió realizar la modificación del índice acetabular de la cadera sana, mediante la edición de las diferentes imágenes tomográficas y el uso de herramientas CAD. Este procedimiento fue realizado con el fin de obtener caderas con displasia de 25° y 30° de IA, ya que era un parámetro
con viabilidad de variación, teniendo en cuenta la factibilidad de medir dicho ángulo en las imágenes. A nivel morfológico, el IA es un parámetro que evidencia una falta de cobertura acetabular clara hacia la cabeza femoral. Además de esto, se notó, que a través de la adición de las diferentes imágenes tomográficas y el uso de herramientas CAD, era un parámetro con mayor facilidad de variación, en comparación con parámetros como ángulo de anteversión femoral, ángulo cabeza-cuello-femoral, etc. Ya que estos exigen una mayor modificación del modelo de trabajo, lo que puede llevar a distanciarse de la morfología característica de la cadera.

1.8. Antecedentes de estudios realizados

Los métodos para predecir presiones de contacto en la cadera pueden proporcionar mayor información y comprensión acerca de la distribución de la carga en caderas normales y patológicas [22]. Además, esta información sirve como base para entender, predecir y tratar patologías como la displasia de cadera. Por esta razón, métodos como los elementos finitos (FE) han venido tomando importancia en los últimos años. El modelado computacional es una alternativa atractiva para reemplazar las pruebas experimentales, debido a que actualmente es el único método que tiene el potencial para realizar predicciones de la mecánica de contacto existente en el conjunto articular de una manera no invasiva [22]. A continuación, se muestran algunos de los estudios que se han realizado.

El trabajo de M. Giorgi [6] realizó una simulación para explorar los efectos prenatales de movimientos en la formación de la articulación de la cadera para comprender su importancia en malformaciones esqueléticas postnatales como el desarrollo de displasia de cadera. Para ello, se creó una geometría 2D idealizada de una articulación de cadera simplificada con dos cartílagos opuestos (del fémur y pelvis). La relación de profundidad a diámetro del acetábulo fue de aproximadamente 75%. Las propiedades del cartílago fueron (E=1,1 MPa, un=0,49). La pelvis se fijó para todas las rotaciones en su extremo proximal y en sus lados. Se simularon movimientos dinámicos de articulaciones aplicando una rotación al centro de la cabeza femoral con valores promedio entre 40° y 30°. Las presiones fueron más altas a lo largo del borde acetabular y en las regiones de curvatura de la cabeza femoral distal. Las presiones generadas por la combinación de presión biológica e hidrostática conducen a niveles de crecimiento mayores en el extremo proximal del fémur distal y en el centro del acetábulo. Las presiones obtenidas se pueden observar en la figura 17.
S. Chegini [1] realizó un estudio para observar la relación existente entre las variaciones morfológicas de los componentes óseos de la cadera y los esfuerzos que se presentan cuando se generan dichas variaciones. Se encontró el ángulo y las condiciones en las cuales dichos esfuerzos son máximos y mínimos. Se desarrollaron modelos de caderas normales y patológicas basadas en los parámetros morfológicos de la cabeza femoral y el acetábulo. Para ello, se usó un cartílago de cabeza femoral de 2mm en la parte más gruesa. El cartílago acetabular también tenía 2 mm de grosor. El cartílago se modeló como un isotrópico elástico lineal E= 12 MPa y un= 0,45. El hueso cortical y trabecular tuvieron módulos de elasticidad de E= 20 GPa y E= 100 MPa respectivamente. Se definió un contacto deslizante entre los cartílagos, con el femoral como superficie maestra y el acetabular como superficie esclava. Se calcularon los esfuerzos de contacto y de Von Mises durante todo el ciclo de carga al caminar y posición para sentarse, las presiones más altas se encontraron durante el ciclo de marcha, justo después del golpe del talón. Al sentarse, estos coincidieron con la inclinación máxima justo antes del contacto con la silla, como se muestra en la figura 18 y tabla 1.
Figura 18. Distribución de los esfuerzos en el estudio de S. Chegini

Fuente: [1]

Tabla 1. Variación de las presiones de contacto pico (MPa) en el cartílago acetabular según el estudio de S. Chegini

<table>
<thead>
<tr>
<th>CE</th>
<th>0°</th>
<th>10°</th>
<th>20°</th>
<th>30°</th>
<th>40°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40°</td>
<td>3.48</td>
<td>3.6</td>
<td>3.66</td>
<td>3.34</td>
<td>3.71</td>
</tr>
<tr>
<td>50°</td>
<td>3.48</td>
<td>3.6</td>
<td>3.67</td>
<td>3.68</td>
<td>10.52</td>
</tr>
<tr>
<td>60°</td>
<td>3.48</td>
<td>3.61</td>
<td>3.78</td>
<td>7.51</td>
<td>16.51</td>
</tr>
<tr>
<td>70°</td>
<td>3.49</td>
<td>4.7</td>
<td>8.84</td>
<td>12.84</td>
<td>16.51</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CE</th>
<th>0°</th>
<th>10°</th>
<th>20°</th>
<th>30°</th>
<th>40°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alpha</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40°</td>
<td>9.92</td>
<td>6.08</td>
<td>3.55</td>
<td>2.25</td>
<td>1.81</td>
</tr>
<tr>
<td>50°</td>
<td>9.92</td>
<td>6.08</td>
<td>3.55</td>
<td>2.35</td>
<td>1.81</td>
</tr>
<tr>
<td>60°</td>
<td>9.92</td>
<td>6.08</td>
<td>3.55</td>
<td>2.35</td>
<td>1.81</td>
</tr>
<tr>
<td>70°</td>
<td>9.92</td>
<td>6.08</td>
<td>3.55</td>
<td>2.35</td>
<td>1.81</td>
</tr>
</tbody>
</table>

Fuente: [1]

El autor C. L. Abraham [23] busca mediante un modelo de elementos finitos evaluar la mecánica en el cartílago y el Labrum de un paciente con displasia, antes y después de un tratamiento de osteotomía periacetabular. Los modelos se generaron a través de tomografía computarizada y el área de contacto de cuantificó global y regionalmente. El hueso fue tomado como un material elástico isotrópico lineal con $E=17$ MPa y $\nu=0.29$. El cartílago fue representado como una región hiperelástica neo-hookeana casi incompresible ($G=13.6$ MPa, $K=1359$ MPa). Se aplicó peso corporal de 205% durante la marcha, 203% en transición de golpe de talón y 230% durante ascenso de escaleras. El pico de presión total en el cartílago acetabular
disminuyó de 20 MPa antes a 13,3 MPa después de la operación y el esfuerzo total de contacto promedio disminuyó de 4,3 a 3,7 MPa, como se evidencia en la figura 19.

Figura 19. Comportamiento de las presiones antes y después de la operación en el estudio de C. L. Abraham

En su trabajo A. E. Anderson [22] busca desarrollar y validar un modelo de elementos finitos para predecir las presiones de contacto utilizando la geometría específica de un sujeto de 35 años, a partir de tomografías computarizadas. Se aplicaron condiciones de carga y propiedades de los materiales basados en datos de la cadera de un cadáver, para realizar simulación al caminar, imitando pruebas experimentales. Las mallas corticales de la pelvis y el fémur consistieron en 13.562 y 4196 elementos respectivamente. La pelvis y el fémur trabecular fueron mallas tetraédricas con 227.108 y 82.176 elementos respectivamente. El cartílago fue representado como un material hiperelástico con módulo de cizallamiento \(G = 6,8 \) MPa. El cortical se representó como hipoelástico con \(E = 17 \) GPa y \(\nu = 0,29 \). Las presiones máximas estuvieron entre 10,8 y 12,7 MPa y las presiones medias entre 5,1 y 6,2 MPa. La distribución de los esfuerzos se observa en la figura 20.

Figura 20. Distribución de las presiones de contacto para el estudio de A. E. Anderson

Fuente: [23]

Fuente: [22]
El autor M. E. Russell [24] en su trabajo busca calcular las presiones del cartílago tridimensional y buscar los aumentos de la exposición a la presión acumulada. Para ello, se utilizaron modelos de elementos finitos no lineales. Se tomaron tomografías computacionales de diferentes pacientes y se modelaron 6 caderas displásicas y 5 asintomáticas. Los modelos tuvieron alrededor de 5.000 y 20.000 elementos asignados al acetábulo y la cabeza femoral respectivamente y se resolvieron utilizando ABACUS. Las propiedades de los materiales para el cartílago fueron $E = 12$ MPa, $\nu = 0,42$ y para el trabecular $E = 120$ MPa, $\nu = 0,3$. Se tomó el peso promedio de un hombre de 72 kg y la aplicación de la carga se realizó a través de un nodo de referencia que coincidió con el centro de la cabeza femoral. Las presiones de contacto máximas para las caderas asintomáticas y displásicas oscilaron entre 3,56 y 9,88 MPa. Las presiones de contacto acumuladas estuvieron entre 2,45 y 6,62 MPa por marcha como se observa en la figura 21 y la tabla 2.

Figura 21. Distribución de las presiones a nivel articular halladas en el estudio de M. E. Russell

Fuente: [24]
Tabla 2. Datos de las presiones de contacto en las caderas con displasia acetabular según el estudio de M. E. Russell

Sevérin Classification	I	II	III																																	
Acetabulum																																				
Increment	12	12	5	12	12	5	12	12	5	12	12	5	12	12	5	12	12	5	12	12	5	12	12	5	12	12	5	12	12	5	12	12	5			
Max pressure (MPa)	1.75	4.945	6.964	5.631	5.298	4.922	5.25	4.526	7.05	6.87	8.587	4.83	5.44	5.44	6.553	3.107																				
Max chronic press (MPa-years)	0.195	3.399	0.569	3.418	3.39	3.108	3.815	3.463	5.48	5.44	6.553	3.107	5.44	5.44	6.553	3.107																				
Femoral Head																																				
Increment	12	12	4	12	12	4	12	12	4	12	12	4	12	12	4	12	12	4	12	12	4	12	12	4	12	12	4	12	12	4	12	12	4			
Max chronic press (MPa-years)	0.341	4.206	0.643	5.828	2.298	2.487	2.313	4.34	5.85	5.617	1.829	5.85	5.617	1.829	5.85	5.617	1.829	5.85	5.617	1.829	5.85	5.617	1.829	5.85	5.617	1.829										

*DDH in bold text cells, and asym is asympotic contralateral hip

Fuente: [24]
2. MATERIALES Y METODOCS

El desarrollo de un modelo computacional de cadera se llevó a cabo a partir de tomografías computacionales realizadas a un infante específico diferenciando los tejidos óseo y cartilaginoso. La geometría obtenida fue retocada y ensamblada de manera en que fuera posible variar las condiciones morfológicas que permitieran tener las condiciones displásicas deseadas. Teniendo en cuenta los diferentes casos anatómicos observados en el capítulo 1, se decidió realizar la variación del índice acetabular para posiciones de 20° (cadera sana), 25° y 30°. Posteriormente, cada uno de los modelos fue llevado al software ANSYS 19.1, en el cual se llevó a cabo el análisis de elementos finitos. En este capítulo se muestra el proceso realizado para la simulación, en el cual se pueden encontrar propiedades de los materiales, condiciones de carga, mallado, tipos de contacto y resultados obtenidos en los diferentes casos.

2.1. Reconstrucción del modelo computacional

En lo que al área de la salud se refiere, se encuentra un gran desafío en lo que respecta a la construcción de modelos geométricos, debido a las irregularidades presentes en dichas estructuras. Con los avances tecnológicos y computacionales actuales, se ha hecho viable el estudio estas estructuras a partir de modelos geométricos detallados, acercando las simulaciones computacionales en gran medida a la situación real [25].

La reconstrucción del modelo 3D computacional inicial se llevó a cabo a partir de tomografías computacionales de un paciente específico de 4 años de edad, el cual fue debidamente escalado y modificado de acuerdo a la morfología característica que presenta un paciente de un año de edad. A partir de la edición de imágenes y el uso de diferentes herramientas CAD para la obtención de un modelo de cadera de un infante de un año de edad. Inicialmente, se generó un cálculo de geometría 3D, de acuerdo a la caracterización de densidad ósea (ver figura 22).
La edición de las diferentes imágenes tomográficas se hizo necesaria para mejorar la geometría obtenida y realizar el diseño adecuado de los cartílagos, teniendo en cuenta la morfología característica de la articulación, como se muestra en las figuras 23 y 24.
Posteriormente, el modelo 3D fue ensamblado y corregido para obtener una geometría suavizada y adecuada para la realización de la simulación a través del método de elementos finitos. La figura 25 muestra el resultado final de la reconstrucción ósea realizada.
2.2. Obtención de modelos con presencia de displasia

La generación del estado de displasia en la cadera se llevó a cabo teniendo en cuenta los parámetros de índice acetabular (IA) planteados en la sección 1.6.3. Ya que mediante la edición de imágenes tomográficas y de la geometría 3D original mediante herramientas CAD es posible la obtención de modelos de 25° y 30°, los cuales son catalogados como displásecos y se observan en la figura 27. En la figura 26 se muestra el lugar de medición y el ángulo de las tomografías de estudio, el cual fue posteriormente variado.

Figura 26. Medición de IA en tomografías de estudio

Figura 27. Modelos de estudio generados A. IA 20° B. IA 25° C. IA 30°
2.3. Propiedades de los materiales

Las deformaciones y esfuerzos dentro de la cadera dependen de las propiedades del material de sus componentes, incluidos los huesos y cartílagos. Para modelos de elementos finitos (FEM) específicos, es común asumir estos tejidos como materiales elásticos isotrópicos, ya que esta simplificación ha demostrado ser apropiada para analizar el comportamiento mecánico de la cadera y requiere solo dos constantes mecánicas, el módulo de Young y la relación de Poisson [4].

El modelo 3D generado para el estudio fue creado diferenciando los tejidos óseo y cartilaginoso. Para la asignación de propiedades de cada uno de estos tejidos, se realizó una revisión de la literatura especializada y se tomaron los datos mostrados en la tabla 3. Posteriormente, dicha información fue suministrada al software de trabajo y asignada a los diferentes componentes del modelo, como se muestra en la figura 28.

Tabla 3. Propiedades mecánicas de los componentes del modelo de estudio

<table>
<thead>
<tr>
<th>Componente</th>
<th>Módulo de Young (MPa)</th>
<th>Coeficiente de Poisson</th>
<th>Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cartílago acetabular</td>
<td>1,236</td>
<td>0,49</td>
<td>[4][26]</td>
</tr>
<tr>
<td>Cartílago epifisial</td>
<td>1,1</td>
<td>0,49</td>
<td>[6][27]</td>
</tr>
<tr>
<td>Hueso trabecular fémur</td>
<td>400</td>
<td>0,33</td>
<td>[4][28]</td>
</tr>
<tr>
<td>Hueso trabecular pelvis</td>
<td>100</td>
<td>0,3</td>
<td>[1][24]</td>
</tr>
</tbody>
</table>

Fuente: Autor
2.4. Contactos mecánicos

Con la intención de llevar a cabo una correcta solución de los modelos computacionales desarrollados en el trabajo y, además garantizar un comportamiento lineal durante la misma, es de vital importancia realizar una revisión y asignación correcta de los tipos de contacto entre las diferentes superficies y componentes geométricos del modelo.

El tipo de contacto definido para la mayor parte de las superficies de composición de los modelos de este estudio fue seleccionado como tipo bonded, ya que este es de tipo lineal, genera una unión en todas las direcciones y evita deslizamiento entre las mismas. Para la interfaz cartílago-cartílago presente en la articulación, se ha tenido en cuenta información que indica el bajo coeficiente de fricción en presencia del líquido sinovial (0,01-0,02) [27].

En la tabla 4 se especifica y observa de manera gráfica cada uno de los contactos existentes en los modelos, los cuales son asignados de la misma manera para los diferentes grados de displasia trabajados.
<table>
<thead>
<tr>
<th>Cuerpo de contacto</th>
<th>Cuerpo objetivo</th>
<th>Tipo de contacto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cartílago trirradiado</td>
<td>Pubis</td>
<td>Bonded</td>
</tr>
<tr>
<td>Cartílago trirradiado</td>
<td>Cresta ilíaca</td>
<td>Bonded</td>
</tr>
<tr>
<td>Cartílago trirradiado</td>
<td>Isquion</td>
<td>Bonded</td>
</tr>
<tr>
<td>Cartílago pubis</td>
<td>Pubis</td>
<td>Bonded</td>
</tr>
<tr>
<td>Cartílago pubis</td>
<td>Isquion</td>
<td>Bonded</td>
</tr>
<tr>
<td>----------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>Centro de osificación</td>
<td>Cartílago epifisiario</td>
<td>Bonded</td>
</tr>
<tr>
<td>Cartílago epifisiario</td>
<td>Hueso fémur</td>
<td>Bonded</td>
</tr>
<tr>
<td>Cartílago trirradiado</td>
<td>Labrum acetabular</td>
<td>Bonded</td>
</tr>
<tr>
<td>Labrum acetabular</td>
<td>Cartílago epifisiario</td>
<td>Frictionless</td>
</tr>
</tbody>
</table>

Fuente: Autor
2.5. Condiciones de carga y frontera

El equilibrio corporal es una cualidad física esencial para el ser humano. Esta valencia física depende en gran medida del propioceptivo muscular y de los mecanismos articulares, los cuales ayudan al sistema nervioso central a establecer y mantener el equilibrio estático [29]. La cadera es una de las articulaciones más importantes para dicho propósito, ya que permite el movimiento de las piernas durante actividades de la vida cotidiana como caminar, correr, saltar, subir y bajar escaleras, etc., soportando a la vez el peso corporal y dando equilibrio.

2.5.1. Modelo de carga aplicado

En algunos estudios, autores como Rohlmann, emplearon una configuración de carga que incluye, además de los músculos abductores, la acción de los músculos isquiotibiales, los cuales son principalmente extensores de la cadera. También, otros autores como Taylor, presentan un sistema de fuerzas alternativo. El modelo considera no sólo la acción de los músculos abductores y de la reacción de la cadera, sino que además consideran la acción de los músculos isquiotibiales e iliaco [30].

Este trabajo se desarrolló bajo las condiciones de carga a dos pies descrita por Pauwels, quien analizó tridimensionalmente las fuerzas que actúan sobre la cadera [5]. Según Pauwels, la fuerza en la articulación de la cadera al estar de pie o caminar depende principalmente del torque alrededor del centro de la articulación de la cadera causado por el peso corporal parcial. Además, utilizó datos de marcha de Fischer para determinar el centro de gravedad y también localizó el punto donde los músculos abductores tienen su punto de inserción en el trocánter mayor [31]. Los músculos abductores actúan como brazo de palanca contraria para reducir el impulso en el centro de la articulación de la cadera a cero. La figura 29 muestra las fuerzas obtenidas a través del equilibrio estático que actúan sobre la articulación de la cadera. Los valores α_M, d_M y d_W pueden leerse desde las CT. La fuerza F_M actúa sobre la cadera en una línea imaginaria que apunta al trocánter mayor con un ángulo α_M. La intersección de esta línea y el ilion define el punto de unión de la carga muscular.
Figura 29. Descomposición vectorial de las fuerzas de acuerdo al modelo de Pauwels

Para el cálculo de las fuerzas, es necesario tener en cuenta el peso corporal del individuo, ya que este tiene incidencia directa en las fuerzas de reacción de la cadera. Para este estudio, se tomaron datos del percentil 50 de la base de datos del Centro para el Control y la Prevención de enfermedades (CDC), el cual nos muestra valores de peso promedio de 9,5 Kg para una niña de 12 meses de edad (ver figura 30). Además, de acuerdo con el porcentaje de peso corporal para cada parte del cuerpo descrito por De Leva [32], se supuso que la articulación soporta cerca de 1/3 del peso corporal total.

Dónde:

- $d_M = \text{Distancia del trocánter mayor punto C}$
- $d_W = \text{Distancia entre la fuerza del peso corporal y el punto C}$
- $F_W = \text{Fuerza ejercida por el peso corporal del paciente}$
- $F_M = \text{Fuerza ejercida por los músculos abductores}$
- $R = \text{Fuerza de reacción de la articulación}$
- $\alpha_M = \text{Ángulo generado por la fuerza de los abductores}$

Fuente: Autor
Figura 30. Grafica de peso y estatura para niñas hasta los 36 meses de edad

Fuente: [33]

Al nacer, la cabeza es un cuarto de la longitud total del cuerpo, mientras en un adulto es un séptimo. Además, el tronco es más largo y las extremidades superiores son más largas que las inferiores [34], como se observa en la figura 31. Con los datos de altura y proporciones del cuerpo, se supuso que el centro de masa para acción del peso corporal reducido se encuentra entre 10 y 15 cm arriba de la línea de Hilgenreiner
Figura 31. Cambios proporcionales en los segmentos del cuerpo con la edad

Cálculo de la fuerza producida por el peso corporal en la articulación

\[F_W = m \times a \]

\[F_W = \frac{9.5Kg}{3} \times 9.8 \frac{m}{s^2} \]

\[F_W = 31.03 \text{ N} \]

Para el cálculo de las fuerzas ejercidas por los músculos abductores, se realizó la solución de las ecuaciones de equilibrio estático pertinentes para el modelo, de acuerdo a la figura 27. Para dicho cálculo, se determinaron previamente las mediciones de \(d_M \), \(d_W \) y \(\alpha_M \) las cuales tomaron los siguientes valores:

\[d_Mx = 20,695 \text{ mm} \]
\[d_{My} = 18,7 \text{ mm} \]
\[d_W = 41,64 \text{ mm} \]
\[\alpha_M = 75,4^\circ \]
De acuerdo con las ecuaciones de equilibrio, se tiene:

$$\sum F_y = 0 \ (1)$$

$$(F_M \cdot \text{Sen } \alpha) + F_W = R \cdot \text{Cos } \beta$$

$$\sum F_x = 0 \ (2)$$

$$(F_M \cdot \text{Cos } \alpha) = R \cdot \text{Sen } \beta$$

$$\sum M_c = 0 \ (3)$$

$$(-F_W \cdot d_W) + (F_M \cdot \text{Sen } \alpha \cdot d_{Mx}) + (F_M \cdot \text{Cos } \alpha \cdot d_{My}) = 0$$

$$F_M \cdot (\text{Sen } \alpha \cdot d_{Mx} + \text{Cos } \alpha \cdot d_{My}) = F_W \cdot d_W$$

$$F_M = \frac{F_W \cdot d_W}{(\text{Sen } \alpha \cdot d_{Mx} + \text{Cos } \alpha \cdot d_{My})}$$

$$F_M = 49,189 \ N$$

La fuerza F_M obtenida en de la ecuación (3) y el peso remoto se aplicaron a los modelos de cadera sano y displásicos como se muestra en la figura 32, teniendo en cuenta que es la fuerza ejercida por los músculos abductores para contrarrestar el torque ejercido por el peso corporal.

Figura 32. Aplicación de la fuerza ejercida por los músculos y el peso remoto al modelo de trabajo
2.5.2. Condiciones de frontera

Se aplicaron condiciones de contorno en el plano simétrico de la pelvis, que restringen el movimiento en los ejes X y Y, Permitiendo el libre desplazamiento el modelo en el eje Z, como se muestra en la figura 33. Además, se aplicó un soporte fijo en el extremo proximal del fémur, como se puede observar en la figura 34.

Figura 33. Restricciones de desplazamiento a nivel de la pelvis

Fuente: Autor

Figura 34. Aplicación del soporte fijo en el extremo distal del fémur

Fuente: Autor
2.6. Mallado

Dentro del método de análisis por elementos finitos, es necesario tener en cuenta y seguir una serie de pasos que garanticen una correcta solución de los modelos. Uno de estos pasos es el enmallado, ya que la precisión y eficiencia, además de una solución adecuada de las ecuaciones dependen de la calidad y el refinamiento de la malla. A partir de la geometría compleja que presentan los huesos humanos, se puede incurrir en elementos con grandes distorsiones, los cuales son fuente potencial de errores y falta de precisión en el momento de la solución del modelo [35]. Para los modelos en estudio, inicialmente se generó un mallado por defecto, como se muestra en la figura 35, el cual cuenta con un total de 115.430 elementos y 65.067 nodos y en el que se observan elementos con poca uniformidad que generan falta de precisión.

Figura 35. Generación de la malla por defecto

Debido a la evidente irregularidad presente en la generación de la malla por defecto, se hizo necesario realizar un refinamiento del mallado en los modelos de trabajo. En general, cuando se realiza un mallado para estructuras biológicas, en especial de los componentes óseos, se utilizan elementos de forma tetraédrica (cuentan 4 nodos), debido a que a menor tamaño producen un mejor ajuste en las geometrías con fronteras curvas [35][36]. La figura 36 muestra la malla refinada generada mediante elementos tetraédricos.
2.6.1. Análisis de convergencia

Con el fin de garantizar buenos resultados en los modelos, se realizó un enmallado por el método Patch Independent a partir de elementos tetraédricos. Para garantizar la buena calidad de la malla, se llevó a cabo un análisis de convergencia en el cual se obtuvo un promedio de 935.000 elementos y 1.350.000 nodos para cada uno de los modelos. Estos valores, fueron escogidos de acuerdo al porcentaje de error presentado en la deformación total del modelo de trabajo, así como también, en la deformación de los diferentes tejidos de trabajo.
Las figuras 37 y 38, evidencian la selección de los diferentes puntos de deformación tomados en cuenta para el análisis de convergencia. Dichos puntos, fueron tomados de acuerdo a condiciones máximas de deformación en la epífisis femoral (punto 2), el cartílago acetabular (punto 3), el hueso del fémur (punto 1) y la cresta iliaca (punto 4), y permanecieron constantes durante todo el análisis.

Tabla 5. Valores de convergencia de malla en la epífisis femoral

<table>
<thead>
<tr>
<th>MALLA</th>
<th>DESPLAZAMIENTO (mm)</th>
<th>ERROR (%)</th>
<th>NÚMERO DE ELEMENTOS</th>
<th>NÚMERO DE NODOS</th>
<th>TAMAÑO MÁX. DEL ELEMENTO (mm)</th>
<th>TAMAÑO MÍN. DEL ELEMENTO (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Defecto)</td>
<td>6,5827</td>
<td>11,35</td>
<td>3568</td>
<td>5976</td>
<td>Por defecto</td>
<td>Por defecto</td>
</tr>
<tr>
<td>2</td>
<td>6,4891</td>
<td>12,61</td>
<td>4058</td>
<td>6491</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>7,0509</td>
<td>5,05</td>
<td>6878</td>
<td>10653</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>7,2953</td>
<td>1,75</td>
<td>10908</td>
<td>16574</td>
<td>4</td>
<td>3,5</td>
</tr>
<tr>
<td>5</td>
<td>7,1656</td>
<td>3,50</td>
<td>13051</td>
<td>19630</td>
<td>3,5</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>7,13</td>
<td>3,98</td>
<td>16729</td>
<td>25025</td>
<td>3</td>
<td>2,5</td>
</tr>
<tr>
<td>7</td>
<td>7,1698</td>
<td>3,44</td>
<td>24186</td>
<td>35734</td>
<td>2,5</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>7,2578</td>
<td>2,26</td>
<td>38664</td>
<td>55461</td>
<td>2</td>
<td>1,8</td>
</tr>
<tr>
<td>9</td>
<td>7,3586</td>
<td>0,90</td>
<td>42957</td>
<td>62319</td>
<td>1,8</td>
<td>1,5</td>
</tr>
<tr>
<td>10</td>
<td>7,4097</td>
<td>0,21</td>
<td>93315</td>
<td>13596</td>
<td>1,6</td>
<td>1,2</td>
</tr>
<tr>
<td>11</td>
<td>7,4256</td>
<td>0,18</td>
<td>135960</td>
<td>193592</td>
<td>1,5</td>
<td>1</td>
</tr>
</tbody>
</table>

Fuente: Autor
Tabla 6. Valores de convergencia de malla en el acetábulo

<table>
<thead>
<tr>
<th>MALLA</th>
<th>DESPLAZAMIENTO (mm)</th>
<th>ERROR (%)</th>
<th>NÚMERO DE ELEMENTOS</th>
<th>NÚMERO DE NODOS</th>
<th>TAMAÑO MÁX. DEL ELEMENTO (mm)</th>
<th>TAMAÑO MÍN. DEL ELEMENTO (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Defecto)</td>
<td>6,735</td>
<td>9,15</td>
<td>3895</td>
<td>5689</td>
<td>Por defecto</td>
<td>Por defecto</td>
</tr>
<tr>
<td>2</td>
<td>6,9376</td>
<td>6,42</td>
<td>3638</td>
<td>6109</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>7,0855</td>
<td>4,43</td>
<td>6042</td>
<td>9740</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>7,2879</td>
<td>1,70</td>
<td>11401</td>
<td>17680</td>
<td>4</td>
<td>3,5</td>
</tr>
<tr>
<td>5</td>
<td>7,3669</td>
<td>0,63</td>
<td>16042</td>
<td>24396</td>
<td>3,5</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>7,2434</td>
<td>2,30</td>
<td>20585</td>
<td>31359</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>7,3075</td>
<td>1,43</td>
<td>27949</td>
<td>42265</td>
<td>2,5</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>7,2561</td>
<td>1,19</td>
<td>40277</td>
<td>60820</td>
<td>2</td>
<td>1,8</td>
</tr>
<tr>
<td>9</td>
<td>7,3967</td>
<td>0,23</td>
<td>46957</td>
<td>70984</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>7,4002</td>
<td>0,18</td>
<td>102534</td>
<td>151914</td>
<td>1,6</td>
<td>1,2</td>
</tr>
<tr>
<td>11</td>
<td>7,4136</td>
<td>0,14</td>
<td>227602</td>
<td>155353</td>
<td>1,5</td>
<td>1</td>
</tr>
</tbody>
</table>

Fuente: Autor

Tabla 7. Valores de convergencia de malla en el hueso del fémur

<table>
<thead>
<tr>
<th>MALLA</th>
<th>DESPLAZAMIENTO (mm)</th>
<th>ERROR (%)</th>
<th>NÚMERO DE ELEMENTOS</th>
<th>NÚMERO DE NODOS</th>
<th>TAMAÑO MÁX. DEL ELEMENTO (mm)</th>
<th>TAMAÑO MÍN. DEL ELEMENTO (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Defecto)</td>
<td>0,2867</td>
<td>4,68</td>
<td>2064</td>
<td>4689</td>
<td>Por defecto</td>
<td>Por defecto</td>
</tr>
<tr>
<td>2</td>
<td>0,27148</td>
<td>9,74</td>
<td>3368</td>
<td>5243</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>0,2593</td>
<td>13,79</td>
<td>5798</td>
<td>8766</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>0,29688</td>
<td>1,29</td>
<td>9195</td>
<td>13661</td>
<td>4</td>
<td>3,5</td>
</tr>
<tr>
<td>5</td>
<td>0,2882</td>
<td>0,65</td>
<td>9855</td>
<td>14735</td>
<td>3,5</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>0,308</td>
<td>2,40</td>
<td>11508</td>
<td>17270</td>
<td>3</td>
<td>2,5</td>
</tr>
<tr>
<td>7</td>
<td>0,3096</td>
<td>2,94</td>
<td>14587</td>
<td>21748</td>
<td>2,5</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>0,3026</td>
<td>0,61</td>
<td>21434</td>
<td>31685</td>
<td>2</td>
<td>1,8</td>
</tr>
<tr>
<td>9</td>
<td>0,3015</td>
<td>0,24</td>
<td>26615</td>
<td>39121</td>
<td>1,8</td>
<td>1,5</td>
</tr>
<tr>
<td>10</td>
<td>0,3012</td>
<td>0,14</td>
<td>55978</td>
<td>94505</td>
<td>1,6</td>
<td>1,2</td>
</tr>
<tr>
<td>11</td>
<td>0,30077</td>
<td>0,12</td>
<td>60756</td>
<td>89121</td>
<td>1,5</td>
<td>1</td>
</tr>
</tbody>
</table>

Fuente: Autor

Tabla 8. Valores de convergencia de malla en la cresta ilíaca

<table>
<thead>
<tr>
<th>MALLA</th>
<th>DESPLAZAMIENTO (mm)</th>
<th>ERROR (%)</th>
<th>NÚMERO DE ELEMENTOS</th>
<th>NÚMERO DE NODOS</th>
<th>TAMAÑO MÁX. DEL ELEMENTO (mm)</th>
<th>TAMAÑO MÍN. DEL ELEMENTO (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Defecto)</td>
<td>6,9567</td>
<td>8,48</td>
<td>8574</td>
<td>12675</td>
<td>Por defecto</td>
<td>Por defecto</td>
</tr>
<tr>
<td>2</td>
<td>7,0676</td>
<td>7,02</td>
<td>10973</td>
<td>16848</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>6,9565</td>
<td>8,49</td>
<td>16263</td>
<td>24116</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>7,2354</td>
<td>4,82</td>
<td>24029</td>
<td>35558</td>
<td>4</td>
<td>3,5</td>
</tr>
<tr>
<td>5</td>
<td>7,66</td>
<td>0,77</td>
<td>29075</td>
<td>42945</td>
<td>3,5</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>7,6223</td>
<td>0,27</td>
<td>35809</td>
<td>52917</td>
<td>3</td>
<td>2,5</td>
</tr>
<tr>
<td>7</td>
<td>7,6679</td>
<td>0,87</td>
<td>45795</td>
<td>67873</td>
<td>2,5</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>7,5678</td>
<td>0,44</td>
<td>67898</td>
<td>99679</td>
<td>2</td>
<td>1,8</td>
</tr>
<tr>
<td>9</td>
<td>7,5873</td>
<td>0,19</td>
<td>83198</td>
<td>121354</td>
<td>1,8</td>
<td>1,5</td>
</tr>
<tr>
<td>10</td>
<td>7,5726</td>
<td>0,38</td>
<td>209956</td>
<td>298395</td>
<td>1,6</td>
<td>1,2</td>
</tr>
<tr>
<td>11</td>
<td>7,6016</td>
<td>0,23</td>
<td>371711</td>
<td>525020</td>
<td>1,5</td>
<td>1</td>
</tr>
</tbody>
</table>

Fuente: Autor
Las tablas 5, 6, 7 y 8 muestran los valores de deformación y el error en cada uno de los puntos seleccionados, así como también, el número de nodos, elementos y el tamaño de los mismos, durante el análisis realizado. Los valores resaltados en la tabla, fueron seleccionados de acuerdo al menor porcentaje de error obtenido en cada una de las mallas, las cuales fueron variadas de acuerdo al tamaño máximo y mínimo de los elementos.

Figura 39. Convergencia de malla de acuerdo a los diferentes puntos y tejidos seleccionados

En la figura 39, se observa el comportamiento de los desplazamientos y la estabilidad que se empieza a dar a medida que se cambia el número de elementos en la malla general y en los diferentes tejidos del modelo. De acuerdo al análisis de
los resultados y datos obtenidos, se seleccionó la malla con un total de 937.116 elementos y 1.353.075 nodos, la cual presenta los menores errores, con valores de 0,12% en la deformación total, 0,18% en deformación en la epífisis, 0,14% en deformación en el acetábulo y 0,23% en la cresta iliaca. De acuerdo a lo bajos valores de error menores al 0,3%, se obtiene una malla adecuada para los modelos.
3. RESULTADOS

Los resultados obtenidos en el estudio muestran la influencia que tiene la displasia de cadera en la biomecánica de la articulación, mediante la comparación del comportamiento de la deformación total, los esfuerzos y las presiones de contacto obtenidas a partir de la solución de los modelos de diferentes grados patológicos. Además, con el fin de validar los resultados obtenidos, se llevó a cabo un análisis cualitativo y comparación de los mismos con datos adquiridos a partir de la literatura especializada existente, enfocándose en la distribución y magnitud de los esfuerzos y presiones de contacto.

3.1. Deformación total

Las deformaciones obtenidas para los modelos IA 20° (sano), 25° y 30° (displásicos) a nivel de los componentes articulares en general se evidencian en la figura 40. Es importante resaltar la realización de un corte en los modelos, con el objetivo de tener una visión más clara de la interacción entre los cartílagos acetabular y epifisiario.

La deformación total máxima muestra valores similares para los diferentes casos de estudio, los cuales se encuentran en un rango general de entre 8 mm y 8,6 mm. También, se buscó comparar lo ocurrido cerca de las superficies de contacto de los cartílagos, ya que estas son las zonas de gran interés debido a las condiciones de desarrollo óseo presentes en dichos cuerpos y al contacto existente entre el fémur y la pelvis. Allí, también se encontraron deformaciones similares con valores
menores a los 7 mm en la epífisis femoral y mayores a 7 mm en el cartílago trirradiado para los tres casos.

3.2. Distribución de la intensidad de esfuerzos en la articulación

Un estado general de esfuerzos tridimensional, se calcula en componentes de esfuerzo normal y esfuerzo cortante alineados al sistema de coordenadas de la pieza o ensamble. Los esfuerzos principales (σ_1, σ_2, σ_3) y el esfuerzo cortante máximo ($\tau_{\text{máx}}$) son llamados invariantes; es decir, su valor no depende de la orientación de la pieza o ensamble con respecto a su sistema de coordenadas global. Los esfuerzos evidenciados en los modelos, corresponden a la intensidad de los esfuerzos. Estos, se definen como el mayor de los valores absolutos de $\sigma_1 - \sigma_2$, $\sigma_2 - \sigma_3$ o $\sigma_3 - \sigma_1$, y se calculan de la siguiente manera:

$$\sigma_I = \text{MAX} (|\sigma_1 - \sigma_2|, |\sigma_2 - \sigma_3|, |\sigma_3 - \sigma_1|)$$

Además, la intensidad de los esfuerzos también está relacionada con el máximo esfuerzo cortante, de la siguiente manera:

$$\sigma_I = 2\tau_{\text{máx}}$$

Debido a la evidente existencia de relación de los esfuerzos principales y el cortante máximo con la intensidad de los esfuerzos, se determinó dar muestra de los mismos, ya que son valores que dan información acerca de los dos comportamientos de esfuerzo nombrados.

El comportamiento de los esfuerzos a nivel de la articulación coxo-femoral se analizó de manera conjunta, como también de manera individual en la epífisis femoral y el cartílago trirradiado. De esta manera se observa lo ocurrido con la magnitud y distribución de los mismos en los diferentes cuerpos de interés y la influencia del IA en la mecánica articular.
La figura 41, muestra el estado de esfuerzos de los modelos de estudio A (sano), B y C (displásicos), en los cuales, se observa un aumento progresivo en la magnitud de los mismos, a medida que el IA aumenta y la condición patológica se hace más crítica. Los esfuerzos máximos para el modelo sano tomaron valores de 2,787 MPa y aumentaron a 3,7469 MPa y 6,9625 MPa para los modelos de 25° y 30° respectivamente. Estos valores son cercanos a los obtenidos por C. L. Abraham [23], quien reporta valores de alrededor de 4,3 MPa para caderas displásicas. Además, se observa que los esfuerzos se concentran principalmente en la superficie de contacto de los cartílagos, el centro de osificación y cerca de la placa de crecimiento epifisiario. Dicha concentración de esfuerzos puede tener implicaciones en el desarrollo de los componentes articulares, ya que las placas de crecimiento son especialmente sensibles al estímulo mecánico [3], ya que mediante este se genera la activación de las diferentes células que intervienen en el proceso de osificación. Por tal motivo, la distribución observada puede ser señal de mal formaciones, ya que existen esfuerzos concentrados cerca a la placa de crecimiento epifisiario y el centro primario de osificación, lo que puede generar estímulos...
inadecuados durante el proceso de osificación y, por tanto, aumentar el riesgo de futuras luxaciones.

También, es necesario conocer la distribución de los esfuerzos en el acetábulo, ya que es allí donde se presenta la falta de cobertura sobre la epífisis femoral, debido al aumento del índice acetabular. Para ello, es necesario conocer la anatomía del acetábulo, como lo muestra la figura 42.

Figura 42. Anatomía acetabular A. Techo lateral B. Anterior C. Techo medial D. Posterior

Fuente: [26]
La figura 43, muestra el comportamiento de los esfuerzos a nivel acetabular, los cuales tienen cambios evidentes en su distribución y magnitud. Estos se concentran principalmente en las áreas del techo lateral y del techo medial, cambiando y haciéndose un poco menos uniforme en su distribución a medida que aumenta el IA. Los valores máximos para los diferentes casos varían desde 0,5048 MPa hasta 0,8604 MPa en el caso patológico más extremo.

3.3. Presiones de contacto en la articulación

Es importante tener en cuenta las presiones de contacto que se presentan en la cadera humana, ya que al ser una de las articulaciones que mayor carga soporta, tiene el riesgo de sufrir mal formaciones acetabulares debido a la concentración excesiva de presiones. Se cree que enfermedades como la displasia aumentan considerablemente la magnitud y la concentración de las mismas en la articulación, lo que puede conducir a una degeneración irreversible del cartílago y otras enfermedades.
Figura 44. Presiones de contacto A. Modelo IA 20° B. Modelo IA 25° C. Modelo IA 30° (MPa)

Fuente: Autor

Figura 45. Comportamiento de las presiones de contacto en el estudio de A. Dhabì

Fuente: [37]
La figura 44, muestra el comportamiento de las presiones de contacto en la articulación. La imagen A, muestra mayor distribución de las presiones en el acetábulo en las zonas del techo lateral y techo medial, además de ser menores en su magnitud. A medida que se aumenta el IA en las figuras B y C, se observa una mayor aglomeración a nivel del techo lateral acetabular, además de un aumento considerable en las magnitudes. Los valores máximos (2,8 MPa, 3,35 MPa y 7 MPa) y distribución de presiones determinados en el estudio, son considerablemente similares a las halladas, por los autores A. Dhabi [37] y M. F. Paine [38], quienes reportan valores de presiones de contacto máximas de 3,5 MPa y 4 MPa respectivamente para caderas con presencia patológica. La distribución de las presiones obtenidas por los autores se muestra en las figuras 45 y 46.

Figura 46. Comportamiento de las presiones de contacto en el estudio de M. F. Paine

![Diagrama de presiones en articulación con IA aumentado](image)

Fuente: [38]

Figura 47. Comparación de resultados con modelo de A. Dhabi A. Modelo de estudio B. Modelo de A. Dhabi

![Comparación de modelos](image)

Fuente: Autor, [37], [38]
Como lo muestra la figura 47, se encuentran similitudes a nivel de distribución de las presiones entre el modelo de estudio y el modelo de A. Dhabi. Ambos muestran una distribución en forma de herradura, con una pequeña agrupación lateral en la cual se encuentran los valores máximos. También, aunque los valores no son exactamente los mismos, son similares en su magnitud, lo que da validez al modelo de estudio realizado.

En comparación con el modelo de M. F. Paine, la figura 48 muestra similitudes en el lugar en el que se encuentran mayormente concentradas las presiones de contacto, ya que en los tres casos se muestra concentración de las mismas a nivel el techo lateral y medial del acetábulo. Sin embargo, se encuentran algunas diferencias, ya que en el modelo IA 30, las presiones se encuentran más concentradas en techo lateral con una menor o casi nula presencia en los demás lugares de la cavidad acetabular. En el caso de los valores, el modelo de 30° tiene presiones máximas un poco más elevadas (7 MPa) que el modelo de M. F. Paine (4 MPa), los cuales siguen siendo coherentes ya que son magnitudes de un rango similar.

Fuente: Autor, [38]
4. CONCLUSIONES

La displasia de cadera es una anomalía que evidentemente afecta la estabilidad y la morfología de la articulación, de la cual, aunque no es completamente cierta su etiología, se sabe que se ve influenciada directamente por factores mecánicos. Debido a esto, los trabajos realizados acerca de la enfermedad mediante el método de elementos finitos, pueden ser base futura para la determinación de métodos de prevención y corrección patológica en pacientes en específico.

Los resultados obtenidos en este estudio, siguen lo dicho por M. E. Russell [24], quien plantea, que las caderas normales en el ser humano presentan condiciones de contacto que muestran una tendencia significativamente diferente a la de las caderas asintomáticas de los pacientes en todos los cálculos (Esfuerzo máximo, área de contacto y presiones de contacto). Es este el caso de los modelos IA 25° y IA 30°, en los cuales se observan evidentes incrementos tanto en los esfuerzos máximos, como en las presiones de contacto, en comparación con el modelo IA 20° (sano). Lo que se evidencia en cambios de 2,7 MPa (modelo sano) a 6,96 MPa (caso más crítico) en los esfuerzos a nivel de la articulación en general, y de 2,87 MPa a 7 MPa en las presiones en el acetábulo. De esta manera, se puede decir que la displasia de cadera es una anomalía que influye de manera directa en el cambio de la magnitud y la distribución de los esfuerzos sobre la articulación.

El modelo sano y los afectados por la displasia tienen importantes diferencias como se observa en las figuras 41, 43 y 44, principalmente a nivel de distribución y magnitud de las presiones de contacto y los esfuerzos máximos. Debido a que estos factores mecánicos tienen un gran impacto en la estructura y las propiedades del hueso durante el desarrollo esquelético, y a que los esqueletos inmaduros son especialmente más sensibles a la carga mecánica, ya que su tejido es más elástico y el proceso de remodelación más activo [39], se presume que las condiciones biológicas y procesos como la osificación endocondral se ven directamente afectados por la enfermedad.

Los resultados observados para los modelos de estudio tienen coherencia con lo reportado en la literatura especializada. Las presiones de contacto tienen similitudes con estudios como los realizados por A. Dhabi [37] y M. F. Paine [38], en los cuales se observa una distribución de presiones concentrada principalmente a lo largo del techo medial y lateral de la cavidad acetabular, al igual que en los modelos analizados en el presente estudio. Además, estos autores reportan presiones con magnitudes máximas de 3,5 y 4 MPa respectivamente, las cuales tienen bastante
similitud con el modelo IA 25° el cual reporta presiones máximas de 3,35 MPa, lo que da validez a los modelos de estudio realizados.

La condición de concentración de esfuerzos que se evidencia alrededor del centro de osificación y la placa de crecimiento epifisario puede ser indicio de la formación futura de la articulación, debido a que es allí donde se genera la osificación de la articulación y el hueso femoral. Dicha afirmación, se basa en la implicación que tiene la carga en la activación de los procesos celulares de osificación, ya que los sobreestímulos mecánicos generan condiciones anormales durante el proceso. Por esta razón, se cree que enfermedades patológicas como la displasia de cadera, tienen incidencia directa en mal formaciones durante los procesos de desarrollo óseo.
5. RECOMENDACIONES

- Se recomienda utilizar tomografías computacionales de la mayor calidad posible debido a la complejidad de la geometría en construcción y la requerida identificación de los diferentes componentes óseos para un infante. Además, se debe tratar en lo posible de contar con tomografías de un niño de la edad más cercana posible a la requerida en el modelo de trabajo, para hacer más sencilla la reconstrucción del modelo.

- Para futuros estudios, es recomendable realizar modelos de caderas displásicas basados en otros criterios y formas de medición, como ángulo centro borde, ángulo de anteversión femoral, etc. Con el fin de comparar los resultados y observar el cambio en cada uno de los casos que se presentan.

- Se recomienda tener total cuidado en la generación de los enmallados de los modelos, ya que de este proceso depende en gran medida la calidad y precisión de los resultados que se obtienen, ya que al ser geometrías biológicas complejas es bastante factible obtener elementos que generen distorsión y error.

- Es de vital importancia realizar suavizados adecuados en la geometría de trabajo, con el fin de reducir la posibilidad de obtener errores en el momento de la solución por el método de elementos finitos debidos a irregularidades en el modelo.

- En futuras investigaciones, se recomienda tener en cuenta diferentes modelos de carga, en los cuales se tengan en cuenta un mayor número de músculos o en lo posible todos los que actúan en la articulación de la cadera.

- Es recomendable también en futuros estudios, tener en cuenta diferentes posiciones del infante en el estado de cargas. Es el caso de las posiciones de gateo, estando de pie, en brazos, etc. Con la finalidad de ver el cambio en el comportamiento biomecánico en estas posiciones y realizar comparaciones.

- Para la realización de futuros trabajos, es recomendable realizar el cálculo del índice osteogénico, a partir de los esfuerzos obtenidos en los modelos. Ya que este cálculo, es de vital importancia para detectar los lugares en los cuales se llevará a cabo el proceso de osificación a partir del estímulo mecánico, además de los lugares en los que se conservará el tejido cartilaginoso.
6. BIBLIOGRAFÍA

