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We consider a linear algorithm to achieve formation control in a group of agents which are driven by second-order dynamics
and affected by two rationally independent delays. One of the delays is in the position and the other in the velocity information
channels. These delays are taken as constant and uniform throughout the system. The communication topology is assumed to
be directed and fixed. The formation is attained by adding a supplementary control term to the stabilising consensus protocol.
In preparation for the formation control logic, we first study the stability of the consensus, using the recent cluster treatment
of characteristic roots (CTCR) paradigm. This effort results in a unique depiction of the non-conservative stability boundaries
in the domain of the delays. However, CTCR requires the knowledge of the potential stability switching loci exhaustively
within this domain. The creation of these loci is done in a new surrogate coordinate system, called the ‘spectral delay space
(SDS)’. The relative stability is also investigated, which has to do with the speed of reaching consensus. This step leads
to a paradoxical control design concept, called the ‘delay scheduling’, which highlights the fact that the group behaviour
may be enhanced by increasing the delays. These steps lead to a control strategy to establish a desired group formation that
guarantees spacing among the agents. Example case studies are presented to validate the underlying analytical derivations.

Keywords: consensus; CTCR; delay scheduling; formation; multi-agent systems; time delay

1. Introduction

The problem of decentralised (distributed) coordination of
multi-agent systems is considered here, where the agents
aim to agree upon a certain variable of interest. This general
problem is treated in a ground-breaking work by Vicsek,
Czirók, Ben-Jacob, Cohen, and Shochet (1995), which stud-
ies the agents trying to align their headings using discrete-
time representation. Later on, Olfati-Saber and Murray
(2004) investigated agents driven by first-order dynamics
within a formal framework. That study considers directed
communication topologies (both fixed and switching type)
and introduces some graph theoretical results useful for the
stability analysis of such agreement protocols. Under the
simplifying features of first-order dynamics, time-delayed
communications are also studied in the case of fixed topol-
ogy. Several other researchers (Cepeda-Gomez & Olgac,
2011a, 2011b; Lin & Jia, 2009a, 2009b; Lin, Jia, Du, &
Juan, 2008; Meng, Ren, Cao, & Zheng, 2011; Peng & Yang,
2009; Ren, 2007; Ren & Beard, 2005; Sun & Wang, 2009a,
2009b) have performed further extensions to this work,
proposing consensus protocols for agents driven by second-
order dynamics, including the study of the agreement prob-
lem under time-delayed communications (Cepeda-Gomez
& Olgac, 20011a, 2011b; Lin & Jia, 2009a, 2009b; Lin et al.,
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2008; Meng et al., 2011; Peng & Yang, 2009; Sun & Wang,
2009a, 2009b). Meng et al. (2011) address a case with
two time delays. For the stability analysis of such systems
with uncertain but fixed time delays, almost all the previous
works rely on either Lyapunov–Krasovskii- or Razhumikin-
based methodologies (Lin & Jia, 2009a, 2009b; Lin et al.,
2008; Meng et al., 2011; Peng & Yang, 2009; Sun & Wang,
2009a, 2009b) or generalised Nyquist criterion (Liu & Tian,
2009; Münz, Papachristodoulou, & Allgower, 2010). All of
these treatments provide only sufficient conditions on the
delays to achieve asymptotic stability. Consequently, they
produce very conservative results, essentially confining the
stability bounds within very small delays. Also, because
these results are based on some solutions of an linear matrix
inequality or graphical analysis, they are always imprecise.
Therefore, these methods are, in general, not so practicable.

Differently from the earlier investigations, this paper
presents an approach with several distinguishing features.
First and most importantly, we follow a unique stability
paradigm in this paper. It is based on the combination of a
simplifying factorisation procedure over the characteristic
equation of the system and the deployment of the crucial
stability paradigm, which is called the cluster treatment of
characteristic roots (CTCR) (Ergenc, Olgac, & Fazelinia,

C© 2014 Taylor & Francis
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2 R. Cepeda-Gomez and N. Olgac

2007; Fazelinia, Sipahi, & Olgac, 2007). This method cre-
ates exact, exhaustive and explicit stability regions in the
domain of the delays. Second, CTCR provides both neces-
sary and sufficient stability conditions in the domain of the
delays. This unique knowledge enables the control designer
to manipulate the delays (simply by enlarging them) such
that the stability of the dynamics is guaranteed as well as the
desired consensus reaching times. This delay manipulation
process is named ‘delay scheduling’ (Olgac & Cavdaroglu,
2011). Liu and Tian (2009) also executes a similar manipu-
lation using the generalised Nyquist method. Their results,
therefore, are confined to fixed delay compositions, and
short of providing an exhaustive parametric stability map
of the system in the delay space which is offered here us-
ing CTCR philosophy. Cepeda-Gomez and Olgac (2011a,
2011b) analyses this capability for networks but with undi-
rected topologies. The critical nuance between the undi-
rected and directed cases is in the handling of the complex
eigenvalues, which has been declared in the literature as the
major hurdle (Münz et al., 2010, p. 1255). Although some
earlier investigations have also attempted similar task for
directed topologies (Liu & Tian, 2009; Meng et al., 2011),
this is the first work, to the best of our knowledge, in which
the exact stability boundaries are declared with truly large
time delays.

The third distinguishing feature of this paper is in the
formation control logic. Most approaches to this problem
include control laws based on relative distances and the
nearest-neighbour rules (Olfati-Saber, 2006; Ren, 2007),
which impose highly nonlinear characteristics. Conse-
quently, these systems make the stability assessment pro-
hibitively complex.

The formation control problem requires an agreement
of the agents on some feature(s) of the group behaviour. For
instance, Olfati-Saber (2006) presents flocking algorithms
which utilise a linear term to achieve a velocity agreement
and a distance-based nonlinear term to guarantee separa-
tion and cohesion properties. Lin and Jia (2009b) extend a
linear consensus algorithm to create formation behaviour
by including the inter-agent distances into the control law
of each agent. A similar approach is used by Liu and Tian
(2009); they use the desired positions of the agents with re-
spect to a common origin in the control logic, and analyse
the convergence speed to the formation in the presence of
time delay observing simulations of different case studies.
For the same objective, in this paper we follow a different
approach, which is part of the contributions of the work.
While designing the control we take advantage of decou-
pling properties of the dynamics in modal coordinates in-
troduced by a factorisation procedure. A constant forcing
term is deployed on each agent, which provides the desired
formation spacing among the agents. This procedure results
in a simpler control logic than those previously proposed.
Structured steps for the design of that constant forcing term
are also presented.

In summary, the combined contributions of this paper
over the existing literature are the following. For a group of
second-order agents communicating under a directed struc-
ture affected by two rationally independent time delays:

(1) A simple new formation control logic is introduced,
based on a consensus protocol and a constant inter-
agent forcing term. Interestingly, this logic pre-
serves linearity of the dynamics, in contrast to the
competing routines.

(2) To assess the stability of the consensus protocol,
and of the formation control algorithm under de-
layed communication schemes, a unique CTCR
paradigm is deployed. This process yields an ex-
act (non-conservative) and exhaustive declaration
of stable regions in the domain of the delays.

(3) The ‘delay scheduling’ concept is introduced,
which is a direct consequence of Equation (2).

The paper is organised as follows: Section 2 presents
the consensus protocol, which is used as the basis for the
formation control algorithm; Section 3 is devoted to the
stability assessment in the domain of the delays, including
a brief description of the CTCR paradigm and spectral de-
lay space (SDS) concept; the extension of the consensus
protocol to the formation control algorithm, including the
design steps, is the topic of Section 4. Section 5 presents
some case studies including the deployment of the delay
scheduling concept.

Throughout the text, boldface notation is used for vec-
tor quantities, bold capital letters for matrices and italic
symbols for scalars.

2. Problem statement

We consider a group of n autonomous agents, which are
driven by second-order dynamics given by ẍj (t) = uj (t),
j = 1, 2,. . ., n, where xj (t) ∈ � is taken as the scalar posi-
tion and uj (t) ∈ � as the control law. The analysis is pre-
sented for a one-dimensional case for simplicity, although
all the ensuing results are scalable to higher dimensions
using the Kronecker product operation (Schaefer, 1996)
as it is common in the literature (Cepeda-Gomez & Ol-
gac, 2011a, 2011b; Lin & Jia, 2009a, 2009b; Lin et al.,
2008; Meng et al., 2011). We declare that the consensus is
achieved when all n agents approach to the same position,
i.e., limt→∞ xj (t) − xk (t) = 0 for j = 1, 2,. . ., n and k =
1, 2,. . ., n. Notice that this consensus definition does not
impose any a priori restriction over the value of the final
position.

We assume that the jth agent receives position and ve-
locity information from a subset of agents, which consists
of �j agents, �j < n. The members of this set are called the
informers of the jth agent, and the set is denoted by Nj. The
number of informers is also known as the in-degree of the
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jth node. Assuming unidirectional information channels,
the communication network is described by a directed graph
with n vertices. It is also assumed that all these communi-
cation channels have two constant and uniform time delays,
τ 1 and τ 2, which affect the position and velocity informa-
tion exchange, respectively. That is, agent j only knows the
τ 1-seconds-earlier position and τ 2-seconds-earlier velocity
of its �j informers. The delay structure proposed here is
based on a realistic assumption that two different classes
of sensors are used for the measurement of position and
velocity, which introduce different delays for each sensing
channel. Also, considering that the swarm is made of the
same type of agents, the selection of uniform time delays
across the network is justified.

In order to create the consensus, we adopt a commonly
used PD-type (proportional and derivative) decentralised
control law for each agent:

ẍj (t) = P

⎛
⎝∑

k∈Nj

xk (t − τ1)

�j

− xj (t)

⎞
⎠

+D

⎛
⎝∑

k∈Nj

ẋk (t − τ2)

�j

− ẋj (t)

⎞
⎠ (1)

This logic tries to bring the agent’s current position to
the centroid of its informers, Nj, and its velocity to the mean
velocity of the same set of informers (or the velocity of the
same centroid), using the last known position and velocity
of the informer agents. Notice that this protocol does not
include self-delayed information, while all the data from
the informers are delayed, positions by τ 1 and velocities by
τ 2. The corresponding dynamics of the n-agent system in
state space become

ẋ (t) =
(

In ⊗
[

0 1
−P −D

])
x (t) +

(
C ⊗

[
0 0
P 0

])

× x (t − τ1) +
(

C ⊗
[

0 0
0 D

])
x (t − τ2) (2)

with the state vector x = [
x1 ẋ1 x2 ẋ2 . . . xn ẋn

] ∈ �2n

being a concatenation of the n positions and velocities.
In Equation (2), ⊗ denotes Kronecker multiplication
(Schaefer, 1996), In is the identity matrix of dimension n,
C = �−1A� is the weighted adjacency matrix created using
the in-degree matrix, � = diag (�1,�2, . . . ,�n) ∈ �n×n

and A� is the adjacency matrix of the communication topol-
ogy (Biggs, 1993). This dynamics can also be expressed in
a compact form as

ẋ (t) = Ax (t) + B1x (t − τ1) + B2x (t − τ2) (3)

with self-evident A, B1 and B2 matrices from Equation (2).

Figure 1. Example communication topology with five agents.

The complexity level of this dynamics increases rapidly
as the number of agents gets larger, making the stability
analysis numerically intractable. To observe this point, a
very simple example is presented here. Consider five agents
interacting under a very simple communication topology
presented in Figure 1. The corresponding characteristic
equation of the system is

Q (s, P,D, τ1, τ2) = det
(
sI2n − A − B1e

−τ1 s − B2e
−τ2 s

)
(4)

Just to give the reader an idea of the enormity of the
mathematics, we display the explicit form of Equation (4)
for this particular case:

s10 + 5Ds9 +
[

5P +
(

10 − 3

4
e−2τ2 s

)
D2

]
s8

+
[ (

20 − 3

2
e−(τ1+τ2) s

)
DP +

(
10 − 3

8
e−3τ2 s

− 9

4
e−2τ2 s

)
D3

]
s7 +

[ (
10 − 3

4
e−2τ1 s

)
P 2

+
(

30 − 9

4
e−2τ2 s − 9

2
e−(τ1+τ2) s − 9

8
e−(2τ2+τ1) s

)
D2P

+
(

5 − 9

4
e−2τ2 s − 3

4
e−3τ2 s + 1

16
e−4τ2 s

)]
s6

+
[(

30 − 9

8
e−(τ2+2τ1) s − 9

4
e−2τ1 s − 9

2
e−(τ2+τ1) s

)
DP2

+
(

20 + 1

4
e−(3τ2+τ1) s − 3

4
e−3τ2 s − 9

4
e−(2τ2+τ1) s

− 9

2
e−(τ2+τ1) s − 9

2
e−2τ2 s

)
D3P +

(
1 − 3

8
e−3τ2 s

+ 1

16
e−5τ2 s − 3

4
e−2τ2 s + 1

16
e−4τ2 s

)
D5

]
s5

+
[(

10 − 9

4
e−2τ1 s − 3

8
e−3τ1 s

)
P 3

+
(

30 − 9

4

(
e−(τ2+2τ1) s + e−2τ1 s + e−2τ2 s

+ e−(2τ2+τ1) s

)
+ 3

8
e−2(τ1+τ2) s − 9e−(τ2+τ1) s

)
D2P 2
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4 R. Cepeda-Gomez and N. Olgac

+
(

5 − 9

8
e−(2τ2+τ1) s − 5

16
e−(4τ2+τ1) s + 1

16
e−4τ2 s

− 3

4
e−3τ2 s − 3

2
e−(τ2+τ1) s + 1

4
e−(3τ2+τ1) s

− 9

4
e−2τ2 s

)
D4P

]
s4 +

[(
20 − 3

4
e−3τ1 s − 9

2
e−(τ2+τ1) s

− 9

4
e−(τ2+2τ1) s − 9

2
e−2τ1 s + 1

4
e−(τ2+3τ1) s

)
DP3

+
(

10 + 3

8
e−2(τ2+τ1) s + 5

8
e−(3τ2+2τ1) s + 1

4
e−(3τ2+τ1) s

− 3

8
e−3τ2 s − 9

4
e−2τ2 s − 3

4
e−2τ1 s − 9

8
e−(τ2+2τ1) s

− 9

4
e−(2τ2+τ1) s − 9

2
e−(τ2+τ1) s

)
D3P 2

]
s3

+
[(

5 − 9

4
e−2τ1 s − 3

4
e−3τ1 s+ 1

16
e−4τ1 s

)
P 4

+
(

10 + 1

4
e−(τ2+3τ1) s−9

4

(
e−2τ1 s + e−(τ2+2τ1) s

)

− 3

8

(
e−3τ1 s − e−2(τ2+τ1) s

) − 9

2
e−(τ2+τ1) s − 3

4
e−2τ2 s

+ 5

8
e−(2τ2+3τ1) s − 9

8
e−(2τ2+τ1) s

)
D2P 3

]
s2

+
[

5 − 3

2
e−(τ2+τ1) s − 3

4
e−3τ1s + 5

16
e−(τ2+4τ1) s

− 9

8
e−(τ2+2τ1) s + 1

4
e−(τ2+3τ1) s − 9

4
e−2τ1 s

+ 1

16
e−4τ1 s

]
DP4s +

(
1 − 3

4
e−2τ1 s + 1

16
e−4τ1 s

− 3

8
e−3τ1 s + 1

16
e−5τ1 s

)
P 5 (5)

This equation is a 10th-order quasi-polynomial with
commensuracy degree 5 (i.e., up to 5τ 1 and 5τ 2 terms ap-
pear) and, more critically, the crosstalk between the time
delays (i.e., terms like τ 1 + τ 2 and 3τ 1 + τ 2) is present. It
is clear that the complexity of Equation (5) increases rapidly
as the number of agents gets larger or if a more elaborate
communication topology is used. The stability problem of
this general class of multiple time-delay systems (MTDSs)
is also notoriously known to be NP-hard (Toker & Ozbay,
1996). It becomes numerically intractable very quickly as
the order of the characteristic equation increases. Even the
strongest of the present mathematical tools to analyse the
stability of time-delay systems falls short to handle such
complexities. To remedy this impasse, two procedures are
combined in this paper. First, a factorisation operation is
performed to break the characteristic equation into quasi-
polynomial factors of reduced order and simpler but iden-
tical forms, as described in this section. Second, a method
called the CTCR (Fazelinia et al., 2007; Ergenc et al., 2007)
is deployed to analyse the stability of each factor, as ex-

plained in Section 3. This combination of factorisation and
CTCR facilitates an efficient and novel mechanism to re-
solve the problem.

Lemma 1 (Factorisation property): The characteristic equ-
ation of system (2) can always be expressed as the product
of a set of second- and fourth-order factors:

Q (s, P,D, τ1, τ2)

= det
(
sI2n − A − B1e

−τ1 s − B2e
−τ2 s

)

=
�+m∏
j=1

qj

(
s, P,D, τ1, τ2, λj

)

=
�∏

j=1

[
s2 + Ds + P − λj

(
Dse−τ2 s + Pe−τ1 s

)]

×
m∏

j=�+1

[
s4 + 2Ds3 + (

D2 + 2P
)
s2 + 2DPs + P 2

− 2Re
(
λj

) (
s2 + Ds + P

) (
Dse−τ2 s + Pe−τ1 s

)
+ ∣∣λj

∣∣2 (
Dse−τ2s + Pe−τ1 s

)2 ] = 0 (6)

where λj represents the eigenvalues of C = �−1A� .
This matrix has � real eigenvalues, denoted by j =
1, 2, 3, . . . , �, and m complex conjugate eigenvalue pairs(
λj , λ∗

j

)
, j = � + 1, � + 2, � + 3, . . . , � + m. Then, n =

2m + � (see Appendix for the proof).

Remark 1: In Lemma 1, we have assumed that the real
eigenvalues of the matrix C always create Jordan blocks of
size 1. If a multiple real eigenvalue creates a Jordan block of
size 2 or larger, the corresponding characteristic equation
factor can be obtained and analysed as we demonstrate
below. Jordan blocks of size larger than two are extremely
rare. Although the procedure is discussed, we will ignore
further pursuit along this line.

Remark 2: The factorisation idea presented here is sim-
ilar to the one used before for consensus problems with
undirected communication topologies (Cepeda-Gomez &
Olgac, 2011a, 2011b). However, there is an extra difficulty
added in the form of the second-order factors created by
Jordan blocks of size 2.

Remark 3: The above factorisation feature has been
recognised by many researchers earlier (Fax & Murray,
2004) and presented in different ways. However, we in-
clude the above segment for a more lucid proof of Lemma
1 and to better show the interplay between the spectra (the
eigenvalues) of a special matrix C and the final form of the
factors. This is critical for the deployment of CTCR and al-
lows a more generic treatment of different communication
structures with very large membership counts (more than
10 agents).

Lemma 1 simplifies the problem considerably, by trans-
forming it from a 2n-order system with time delays of com-
mensuracy degree n and delay crosstalk (just like in the
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International Journal of Systems Science 5

example given by Equation (5)) into a combination of �

second-order and m fourth-order subsystems with maxi-
mum commensuracy degree of 2 (e.g., e−2τ1 s) and a simple
delay crosstalk term (e.g., e−(τ1+τ2)s). Furthermore, since the
only discriminating element from one factor to the other is
the eigenvalue λj, the complete stability analysis can be
handled very efficiently. For this, we first perform the sta-
bility analysis only once for a generic real eigenvalue and
a generic complex one. Then, we simply repeat these re-
sults for � + m different eigenvalues (i.e., subsystems). The
superposition of the stability pictures for each factor even-
tually yields the global stability outlook for the complete
system. This property makes the stability analysis virtually
independent of the number of agents. The complexity in de-
termining the stability of a quasi-polynomial such as Equa-
tion (5) is now considerably reduced to the determination
of the eigenvalues of a known matrix C and repeated cre-
ation of the stability pictures of simple quasi-polynomials
(which we call the ‘factors’ from this point forward), which
are in the form given by Equation (6). The process to obtain
the individual stability bounds can be automated, without
the need of user intervention beyond the description of the
communication structure.

In order to demonstrate the power provided by Lemma 1,
we consider again the five-agent topology of Figure 1. The C
matrix corresponding to this topology has the eigenvalue set
1, 0.38, −0.5, −0.44 ± 0.37i. The ensuing factorised char-
acteristic equation, which displays the footprints of these
eigenvalues, is

[
s2 + Ds + P − (

Dse−τ2 s + Pe−τ1 s
)] [

s2 + Ds + P

− 0.38
(
Dse−τ2 s − Pe−τ1 s

) ] × [
s2 + Ds + P

+ 0.5
(
Dse−τ2 s − Pe−τ1 s

) ][ (
s4 + 2Ds3

)
+ (

D2 + 2P
)
s + 2DPs + P 2 − 0.88

(
s2 + Ds + P

)
× (

Dse−τ2 s − Pe−τ1 s
) + 0.33

(
Dse−τ2 s − Pe−τ1 s

)2 ]
= 0 (7)

Obviously, the first three factors correspond to the three
real eigenvalues and the last one emanates from the com-
plex eigenvalue pair. The conversion of the characteristic
equation from Equation (5) to Equation (7) represents a
wonderful simplification.

Some key observations

We now wish to direct the discussions to some other fea-
tures of the eigenvalues of the weighted adjacency matrix
C. From the way in which this matrix is created, its diagonal
consists of zeroes only (so-called hollow matrix), and any
row elements always add up to 1. The latter property makes
C a row-stochastic matrix of which the components are all
non-negative (Marcus & Minc, 1996). Row-stochastic non-
negative matrices possess a wonderful feature: the eigen-

values of such matrices are always within the unit disc of
the complex plane. This feature arises as an extension to the
Gershgorin’s disc theorem (Bell, 1965). Furthermore, it can
be proven (Agaev & Chebotarev, 2005) that if the topology
is connected and has at least one spanning tree, λ = 1 is
one of the eigenvalues of the weighted adjacency matrix C
with multiplicity 1. Then, there is always a factor

q1 (s, P,D, τ1, τ2, λ = 1) = s2 + Ds

+P − (
Dse−τ2 s + Pe−τ1 s

) = 0 (8)

in the characteristic quasi-polynomial (5) which corre-
sponds to λ = 1. Without loss of generality, we will as-
sign this eigenvalue to the state ξ 1. It can be shown that
the normalised eigenvector corresponding to ξ 1 is always
t1 = 1

/√
n [1 1 1 . . . 1]T ∈ �n, and it is selected as the

first column of the transformation matrix T that converts
the matrix C into its Jordan form: � = T−1CT. This factor
governs the dynamics of ξ 1, which can be shown to be a
weighted average of the positions of the agents. The weights
for the computation of ξ 1 arise from the first row of the in-
verse of the transformation matrix T. We call this quantity
ξ 1, the weighted centroid, which is, obviously, topology de-
pendent. It represents some sort of an agreement dynamics
in the swarm, because if there is an agreement (consen-
sus) we expect the behaviour of the weighted centroid to
represent that consensus.

The other factors of the characteristic equation (6) must
then be related to some disagreement dynamics of the sys-
tem. When these disagreement dynamics are stable (i.e.,
their states asymptotically vanish), the agents will reach
consensus among themselves.

It can be seen that s = 0 is always a stationary root of
Equation (8) independent of the delays, τ 1 and τ 2, which
implies that the dynamics of the weighted centroid are, at
best, marginally stable. In fact, provided that the disagree-
ment dynamics are stable, ξ 1 reaches a non-zero steady
state, when the topology is connected and has at least one
spanning tree (also known as arborescence) (Gabow & My-
ers, 1978). Regardless of the number of arborescences, each
agent remains connected to the root of its arborescence.

In Lemma 1, we implicitly require every agent to have
at least one informer, otherwise the matrix � would be
singular. Now, when the communication topology does not
only have a spanning tree but it is a tree, the root node does
not have any informer. This situation is useful to model
leader–follower consensus cases (Meng et al., 2011), where
that root node dictates the dynamics upon which the agents
agree, regardless of the initial conditions. For leaderless
consensus, everybody should listen to at least one peer, and
the agreement takes place at a point related to the initial
conditions of the group. Then, we need every agent to have
at least one informer to reach consensus at the value dictated
by the weighted centroid dynamics.
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6 R. Cepeda-Gomez and N. Olgac

If the communication topology does not have a span-
ning tree, however, λ = 1 is a multiple eigenvalue of C
and Equation (8) appears as a repeated factor within the
characteristic equation (5). These factors represent the dy-
namics of the centroids of the subgroups generated by the
subgraphs which contain different spanning trees. If all the
disagreement factors are stable, the swarm members within
a subgroup reach some stationary positions which are gen-
erally different. Thus, the consensus is not achieved. These
facts are stated in the following lemmas, the proofs of which
are in Appendix.

Lemma 2 (Group behaviour): Assume that the communi-
cation topology has at least one spanning tree and every
agent has at least one informer. Then, the agents in the
group reach a consensus if and only if the factor (8) is
marginally stable and all the remaining factors of Equation
(6) are stable. Furthermore, the consensus value will be
limt→∞ xj (t) = limt→∞

√
nξ1 (t = ∞), whereas the other

states tend to ξj (t = ∞) = 0 for j = 2, 3, . . . , � + m.

Lemma 3 (Topologies without spanning trees): If the given
communication topology does not have a spanning tree,
the control logic described by Equation (1) cannot result in
consensus.

Remark 4: The results presented in Lemmas 2 and 3
concur with the consensus literature. However, they offer
two important distinctions. The treatment here considers
second-order agents without self-delayed feedback con-
struct, thus proper preparatory discussions are provided for
the integrity of the document. Second, this paper brings a
different but more lucid proof of the unsuccessful consen-
sus in the presence of multiple spanning trees.

According to Lemma 2, the characteristic polynomial
given by q1 in Equation (8) is related to the motion of
the topology-dependent centroid. That is, if the swarm be-
haviour creates a consensus, the agents will agree in the
dynamics governed by this characteristic. The remaining
factors which have the generic form of Equation (6) are
related to the stability of the relative motion of the agents
with respect to the expected consensus. Therefore, they
represent the disagreement dynamics. A stable swarm con-
sensus is reached if all the qj

(
s, P,D, τ1, τ2, λj

)
, with

j = 2, 3, . . . , � + m, and the weighted centroid behaviour
q1 (s, P,D, τ1, τ2, λ1 = 1) are all stable. Alternatively, if all
the factors of Equation (6) are stable except q1 in Equation
(8), i.e., the weighted centroid of the group has an unstable
behaviour, the agents will move in coherence but along an
unstable trajectory.

3. Main contribution: stability analysis using CTCR
paradigm and the SDS

Lemma 1 points that the stability of the swarm dynamics
is only achieved provided that each of the factors given

in Equation (6) represents stable system behaviour. For a
given set of control parameters (P, D), these factors have
the general formations of

q (s, τ1, τ2) = g11 (s) + g12 (s) e−τ1 s + g13 (s) e−τ2 s = 0

(9)

for Equation (A7a), and

q (s, τ1, τ2) = g21 (s) + g22 (s) e−τ1 s + g23 (s) e−τ2 s

+ g24 (s) e−(τ1+τ2)s + g25 (s) e−2τ1s

+ g26 (s) e−2τ2s = 0 (10)

for Equation (A7b), where gi,j(s) are some polynomials
of s. Furthermore, the class of quasi-polynomials given
in Equation (9) is a subset of those of Equation (10).
Therefore, we will concentrate on the stability treatment of
the latter generic class. Notice that this quasi-polynomial
represents a system with multiple and rationally indepen-
dent time delays with delay crosstalk and commensurate
degree 2.

The stability analysis of the factors in Equation (10)
is not a trivial task, as these quasi-polynomials possess in-
finitely many characteristic roots, and all of them should
be in the stable left-half of the complex plane. This feature
is further exacerbated due to the presence of two ratio-
nally independent delays. The complex task of assessing
the stability is performed deploying a unique methodol-
ogy called the CTCR (Ergenc et al., 2007; Fazelinia et al.,
2007). The main philosophy behind it is the detection
of the right-half plane characteristic roots (i.e., unstable
roots), of a linear time invariant–multiple time-delay system
(LTI-MTDS), such as Equation (10), similar to what Routh’s
array achieves for LTI systems with no delay. It is well
known in the linear system literature that the number of
unstable roots of a characteristic equation such as Equation
(10) can change only along certain loci in the domain of the
delays. The CTCR method requires the exhaustive knowl-
edge of these so-called ‘stability switching curves’. In this
paper, we utilise a novel approach to obtain this knowledge
in a surrogate domain called the SDS. The following para-
graphs present some preparatory definitions and explain
the key propositions of CTCR, leaving the details to the
references (Ergenc et al., 2007; Fazelinia et al., 2007).

Definition 1 (Kernel hypercurves ℘0): The hypercurves
that consist of all the points (τ1, τ2) ∈ �2+exhaustively,
which cause an imaginary root s = ω i, ω ∈ �+ and sat-
isfy the constraint 0 < τjω < 2π are called the kernel
hypercurves. The points on this hypercurve contain the
smallest possible delay values that create the given imagi-
nary root at the frequency ω.

Definition 2 (Offspring hypercurves ℘): The hypercu-
rves obtained from the kernel hypercurve by the following
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pointwise nonlinear transformation:

〈
τ1 ± 2π

ω
j1, τ2 ± 2π

ω
j2

〉
, j1, j2 = 0, 1, 2, . . . (11)

are called the offspring hypercurves.

Definition 3 (Root tendency (RT)): The RT indicates the
direction of transition of the imaginary root (to the right
or to the left-half of the complex plane) as only one of the
delays increases by ε, 0 < ε 
 1, while the other delay
remains constant:

RT|τj

s=ωi = sgn

[
Re

(
∂s

∂τj

∣∣∣∣
s=ωi

)]
(12)

Root tendencies are −1 for stabilising and + 1 for desta-
bilising root crossings across the imaginary axis.

There are two key propositions of the CTCR paradigm
without which an exhaustive parametric stability assess-
ment can be possible.

Proposition 1 (Small number of kernel hypercurves): The
number of kernel hypercurves is manageably small: for an
LTI-TDS of state dimension n, that number is bounded by
n2 (Ergenc et al., 2007).

Proposition 2 (Invariant RT property): Take an imaginary
characteristic root, ωi, caused by any one of the infinitely
many grid points on the kernel and offspring hypercurves in
(τ1, τ2) ∈ �2+ domain defined by expression (11). The RT of
these imaginary roots remains invariant so long as the grid
points on different ‘offspring hypercurves’ are obtained by
keeping one of the delays fixed. That is, the RT with respect
to the variations of τ j is invariant from the kernel to the
corresponding offspring as the other delay τk, k �= j is
fixed.

Spectral delay space

We describe a new procedure for determining the kernel
(and offspring) hypercurves. It is a formalised treatment
from a recent thesis work (Fazelinia, 2007) and it is devel-
oped on a new domain called the SDS. SDS is defined by
the coordinates vj = τjω for every point (τ1, τ2) ∈ �2+on
the kernel and the offspring hypercurves. This is a con-
ditional mapping: if a delay set (τ1, τ2) ∈ �2+creates an
imaginary root ωi, (i.e., if the point is on the kernel or the
offspring hypercurves), then (τ 1ω, τ 2ω) forms a point in
the SDS. On the contrary, (τ1, τ2) points that do not gen-
erate an imaginary root have no representation in the SDS
domain.

The main advantage of SDS is that the image of the
kernel hypercurve in the SDS, denoted as ℘SDS

0 and named
the building hypercurve, is confined to a square of edge
length 2π (see Definition 1). Then, it is only necessary to

explore a finite domain in SDS in order to find the rep-
resentation of the building hypercurves in SDS. This finite
domain is known as the building block (BB), i.e., a square of
2π × 2π . Similarly, we name the corresponding represen-
tation of offspring hypercurves in the SDS as the reflection
curves. An important advantage of SDS domain is that the
transition from the building hypercurves to the reflection
hypercurves is achieved simply by translating the build-
ing hypercurve by 2π , as opposed to using the pointwise
nonlinear transformation (11). SDS also prevents the un-
desirable shape distortion from kernel to offspring which
occurs in the delay space. The reflection curves in the SDS,
℘SDS, are generated by simply stacking the BB squares with
℘SDS

0 in it one next to the other. We refer to this property as
the stackability feature of the SDS.

With these definitions and propositions, we now return
to the mentioned preparatory stage of CTCR method. It
is the exhaustive determination of all the imaginary roots,
s = ωi, for the generic factor q (s, τ1, τ2) of the character-
istic equation, as in Equation (10) within the semi-infinite
quadrant of (τ1, τ2) ∈ �2+. For this, we follow the proce-
dure given below. For the sake of simplicity, we present
the steps for a generic second-order factor (9). The same
procedure, slightly expanded, applies to (10). First, the ex-
ponential terms in Equation (9) are replaced by

e−τkω i = cos (vk) − i sin (vk) , vk = τkω (13)

And the sine and cosine functions are expressed in terms
of a half-angle tangent function:

cos (vk) = 1 − z2
k

1 + z2
k

, sin (vk) = 2zk

1 + z2
k

, zk = tan
(vk

2

)

(14)

Now q (s = ω i, τ1, τ2) can be rewritten as a polynomial
of ω with complex coefficients, which are parameterised in
z1 and z2:

qj (ω, z1, z2) =
2∑

k=0

ck

(
P,D, λj , z1, z2

)
(ω i)k = 0 (15)

In this equation, we abuse the notation as the arguments of
q (s, τ1, τ2) are changed but the function’s name q is kept the
same. Please note that the subscript j establishes the connec-
tion between a specific eigenvalue and the corresponding
factor. If there is an imaginary solution at s = ω i, ω ∈ �+

of Equation (10), both the real and the imaginary parts of
Equation (15) must be zero simultaneously:

Re
[
qj (ω, z1, z2)

] =
2∑

k=0

fk (z1, z2) ωk = 0 (16a)

Im
[
qj (ω, z1, z2)

] =
2∑

k=0

gk (z1, z2) ωk = 0 (16b)
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8 R. Cepeda-Gomez and N. Olgac

The necessary condition for Equations (16a) and (16b)
to have a common root, ω, is simply stated through a
Sylvester’s resultant matrix:

M =

⎡
⎢⎢⎣

f2 (z1, z2) f1 (z1, z2) f0 (z1, z2) 0
0 f2 (z1, z2) f1 (z1, z2) f0 (z1, z2)

g2 (z1, z2) g1 (z1, z2) g0 (z1, z2) 0
0 g2 (z1, z2) g1 (z1, z2) g0 (z1, z2)

⎤
⎥⎥⎦
(17)

In order for Equation (16a, b) to be satisfied, M should
be singular. This results in the following expression in terms
of z1 and z2:

det (M) = F (z1, z2) = F
(

tan
(v1

2

)
, tan

(v2

2

))
(18)

which constitutes a closed-form description of the building
hypercurves in the SDS (v1, v2). To obtain its graphical
depiction, one of the parameters, say v2, can be scanned
in the range of [0, 2π ] and the corresponding v1 values
are calculated again in [0, 2π ]. Notice that every point
(v1, v2) on these curves brings an imaginary characteristic
root at ±ωi. That is, we have a continuous sequence of
(v1, v2, ω) sets all along the building hypercurves. During
this process, several key properties of the BB concept are
also deployed: (1) the confinement of the BB within 0 <

τjω < 2πsquares, and (2) the stackability of the BBs.
In order to assess the stability properties of the system in

the space of the delays, we now back transform the building
hypercurves from the (v1, v2) domain of SDS to the (τ1, τ2)
delay space, using the inverse transformation of Equa-
tion (21). For every point in SDS, the knowledge of
(v1, v2, ω) creates the corresponding (τ1, τ2, ω), and thus
a point on the kernel or the offspring hypercurves. The RT
invariance property follows, for the creation of the complete
and exact stability outlook of the system, which is unique.
Examples of this construction are presented in Section 5.

4. From consensus to formation control

The consensus protocol which is studied in the previous
sections is deployed to drive the agents towards the agreed-
upon consensus position. This behaviour, however, does not
make much practical sense as the agents would ultimately
collide. It is well known that consensus structure can be
transformed into a formation. This transition has been in-
vestigated before, as recent survey article (Cao, Yu, Wei,
& Cheng, 2013) summarises. Various approaches which
were suggested to generate a group formation departing
from consensus protocols are heavily nonlinear. We wish
to list only a few of them here for comparison. Pavone and
Frazzolli (2007) analyses kinematic agents and then extends
the results to non-holonomic agents (unicycles). However,
their results are limited to circular formations, in which

each agent follows one of its neighbours. Sepulchre, Paley,
and Leonard (2007, 2008) also study collective motion
of linear, kinematic agents, however, the proposed control
logic is highly nonlinear. Dimarogonas and Kyriakopoulos
(2009) present a dispersion algorithm to guarantee spacing
among members of a swarm, again bringing severe nonlin-
ear effects into the group dynamics.

The formation generation algorithm presented in this
paper is novel from two aspects: it is a very simple construct
and it preserves the linearity of the dynamics. Furthermore,
we provide a clear procedure to design any formation con-
figuration.

We propose a modification to the control law (1), pre-
serving the linearity of the dynamics in place, in such a way
that the agents can maintain some distances among them-
selves. To create this ‘formation’, we take advantage of the
decoupling property presented in Lemma 1. If a constant
forcing term is introduced into the disagreement dynamics
in the modal coordinates ξj , some of the inter-agent dis-
tances will be non-zero at the steady state. The question for
synthesising the control is how to determine these forces in
order to achieve a desired swarm formation. The relation
between the forcing terms in the transformed domainξj and
the final swarm formation is obviously topology depen-
dent. The rest of this section addresses this particular
question.

We introduce an additional constant control term ϕj ,
on each one of the disagreement subsystems ξj , j =
2, 3, . . . , � + m. Notice that the consensus forming state of
the centroid ξ 1 is not forced, as its final value depends only
on the initial conditions. The dynamics of the disagreement
subsystems are given by

ξ̇j (t) = Aj ξ j (t) + B1j ξ j (t − τ1) + B2j ξ j (t − τ2) + ϕj ,

j = 2, 3, . . . , � + m (19)

The system matrices Aj, B1j and B2j are self-
evident from Equations (A6a) and (A6b), for second-
and fourth-order factors. The constant forcing vector has
the form ϕj = [

0 ϕj

]T
for second-order factors and ϕj =[

0 ϕ1j 0 ϕ2j

]T
for fourth-order factors.

To study the influence of the forcing terms on the
steady-state value of the disagreement dynamics, we take
the Laplace transform of Equation (19):

�j (s) = (
sI − Aj − B1j e

−τ1 s − B2j e
−τ2 s

)−1 ϕj

s
(20)

where � (s) represents the Laplace transformation of ξ (t).
Notice that we are considering zero initial conditions for
the disagreement dynamics in Equation (19). This is based
on the fact that the disagreement factors are assumed sta-
ble, and therefore, the effect of non-zero initial conditions
should vanish after the transient behaviour. If we apply the
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final value theorem to (20), it yields:

ξ j,ss = ξ j (t = ∞) = lim
s→0

s�j (s)

= − (
Aj + B1j + B2j

)−1
ϕj (21)

where the subscript ss refers to the steady-state values.
For the second-order factors, Equation (21) has the explicit
form:

ξ j,ss = − ϕj

P
(
λj − 1

)
[

1
0

]
(22a)

whereas the fourth-order factors impart

ξ j,ss = − 1

P
(∣∣λj

∣∣2 + 1 − 2Re
(
λj

))

×

⎡
⎢⎢⎣

Re
(
λj

) − 1 −Im
(
λj

)
0 0

Im
(
λj

)
Re

(
λj

) − 1
0 0

⎤
⎥⎥⎦

[
ϕ1j

ϕ2j

]
(22b)

Notice that Equations (22a) and (22b) imply constant rela-
tive positions among the agents and therefore zero relative
velocity.

Using the back transformation, one can obtain the
corresponding agent positions in the formation as xss =
(T ⊗ I2) ξ ss . Obviously, the formation design process does
not start from the forcing terms ϕj, but from the desired
final configuration of the agents. Then, the actual algorithm
takes the set of desired final configurations for the agents,
xss, and generates the required final values of the disagree-
ment terms, ξ ss = (

T−1 ⊗ I2
)

xss . Once these values are
known, the inverse operations of Equation (22) are applied
to obtain the forcing terms ϕj.

It is important to notice that this formation algorithm
guarantees the desired relative distances that are achieved,
as given in xss. However, it does not assure the final absolute
positions of the agents in formation. This is because the
centroid-related term is not controlled, thus the agents cre-
ate the formation around the centroid, motion of which
is defined by the initial configuration of the agents. This
nuance, i.e., the application of a constant forcing term to
the centroid dynamics, introduces an extra degree of flexi-
bility to the formation control algorithm. Since this factor
exhibits marginal stability, as explained in Section 2, apply-
ing a constant forcing term simply results in a steady-state
behaviour with constant velocity and linearly increasing
position. This velocity is reflected in the motion of every
single agent. Then, an extended coordinated motion can be
achieved if ξ 1 is also controlled.

Finally, one must consider that the control � =[
0 0 ϕT

2 · · · ϕT
�+m

]T ∈ �2n cannot be applied in the
transformed coordinate ξ . They have to be deployed in

the actual displacement domain x. Therefore, we use
the transformation F = (T ⊗ I2) �, where the vector F =
[0 f1 0 f2 . . . 0 fn]T ∈ �2n contains the control
terms applied to each agent in the actual displacement
domain x. With the inclusion of the forcing term F, the
dynamics of the multi-agent system become

ẋ (t) =
(

In ⊗
[

0 1
−P −D

])
x (t) +

(
C ⊗

[
0 0
P 0

])

× x (t − τ1) +
(

C ⊗
[

0 0
0 D

])
x (t − τ2) + F

(23)

Notice that this mechanism is very different from
the formation control approach followed by Lin and Jia
(2009b), where the authors include inter-agent distances
in the control protocol. This inclusion introduces severe
nonlinearities in the overall dynamics, whereas the present
approach simply exerts a constant forcing term as a supple-
ment over the consensus creating protocol. Therefore, the
treatment does not affect the linearity of the dynamics. This
is completely new and distinct from the common pathways
adopted to date.

Examples of this design process are presented in the
following section.

5. Illustrative examples

In this section, we present the simulation results that verify
the theoretical analysis of previous sections. All of the ex-
amples use the communication topology of Figure 1. The
weighted adjacency matrix, once again, has the eigenval-
ues: 1, 0.38, −0.5, −0.44 ± 0.37i. The control gains used
in the examples are P = 2 and D = 0.8.

5.1. Stability analysis

The deployment of the CTCR paradigm using the BB con-
cept leads to Figures 2 and 3. In Figure 2, the SDS rep-
resentation of the characteristic equation factors with their
respective building and reflection hypercurves is shown.
They correspond to the real and the complex eigenvalues.
The properties of the SDS are clear: the reflection curves,
presented in blue, are obtained by translating the building
curves, which are depicted in red. Notice that the building
curves are confined to a square of side length 2π , i.e., the
building block.

Figure 3 shows the representation of the stability switch-
ing curves in the space of the time delays for each one of the
factors. The kernel curves are represented in red, whereas
the offspring are in blue. The shaded region represents the
stability zone in the domain of the delays for each factor.
The intersection of these individual regions results in the
combined stability chart of Figure 4. Delay combinations
inside the shaded portion of this figure result in a stable
behaviour, i.e., agents reach consensus.
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10 R. Cepeda-Gomez and N. Olgac

Figure 2. Spectral delay space representation of the stability switching curves generated by the communication topology of Figure 1
with P = 2 and D = 0.8. They correspond to (a) λ = 1, (b) λ = 0.38, (c) λ = –0.5 and (d) λ = −0.44 ± 0.37i.

It is important to highlight that Figure 4 is an exact
and exhaustive stability map. The shaded regions represent
delay combinations that yield no characteristic root on the
right-half of the complex plane. At any point on the kernel
or offspring curves, there is a pair of purely imaginary
roots which make the system marginally stable. There is no
region of stability outside those marked in Figure 4; thus
the method is exhaustive. There is no other methodology
in the literature that allows the creation of such exact and
exhaustive stability map in the domain of the delays.

These results are verified in Figure 5, in which panel
(a) shows the simulation results for a delay combination of
(τ1, τ2) = (0.5, 0.5) seconds, corresponding to point a in
Figure 4, panel (b) is for (τ1, τ2) = (1, 2.5) (point b in Fig-
ure 4) and panel (c) is for (τ1, τ2) = (1.3, 4.5), represented
by point c in Figure 4. It is clear that delay combinations

corresponding to points inside the shaded region (a and
c) generate stable consensus, whereas points outside create
divergent behaviour.

A more interesting and counter-intuitive conclusion we
can make from Figures 4 and 5 is that larger time delays
not always imply worse performance of the system. Both
time delays are larger in c than in b, however, the system
is stable in the first case and unstable in the second. This
feature has been used in a control synthesis scheme named
the delay scheduling (Olgac & Cavdaroglu, 2011). It offers
wonderful options for the most effective control parame-
ter selections, because the control designer can manipulate
the feedback delay as a part of the control selection. Due
to the causality principles, the delay can only be increased
(i.e., one cannot sense the events before they happen). Any-
way, the control designer can always intentionally prolong

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
G

ue
lp

h]
 a

t 0
2:

09
 2

4 
D

ec
em

be
r 

20
14

 



International Journal of Systems Science 11

Figure 3. Stability regions in the domain of the time delays for the characteristic equation factors generated by the communication
topology of Figure 1 with P = 2 and D = 0.8. (a) λ = 1, (b) λ = 0.38, (c) λ = –0.5 and (d) λ = –0.44 ± 0.37i.

a given set of delays further. This is, however, a paradoxical
and counter-intuitive proposition. Some authors have also
reported cases in which introducing delays benefits the tran-
sient performance of the system. Liu and Tian (2009), for
example, show that introducing and increasing some self-
delays reduce the convergence time. However, they do not
offer an analytical framework to do this, and reason their
results on a pointwise trial-and-error effort at some fixed
delay compositions. Differently here, we present a brief
discussion, and a structured procedure, on how one should
perform the selection of the stabilising delay prolongation,
also known as the delay scheduling.

We first establish the stability chart of the particular
topology following the steps described in the earlier sec-
tions (i.e., Figure 4). As we inquire the effective delay com-
position in situ, we can ascertain the instantaneous stability
of the system from this chart. Let us assume the given

delays at the moment render the operating point b in Fig-
ure 4, which is unstable. The controller can now impose
an intentional delay to bring the combined delay compo-
sition to point c, where the stability is recovered. This de-
lay adjustment operation is named the delay scheduling
method.

The placement of the operating point by introducing
prolonged delays (i.e., the choice of point c) offers an ad-
ditional freedom to the control designer. As we make the
selection for point c, we also wish to operate at a stable
point which facilitates the fastest disturbance rejection ca-
pabilities to the swarm formation. As such, we query the
operational question of the speed for reaching consensus.
This information is crucial in tuning the delays in order to
achieve the most desirable (expeditious) speed of reaching
consensus. We explain next how the stability map, which is
given in Figure 5, can be utilised for this purpose.
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12 R. Cepeda-Gomez and N. Olgac

Figure 4. Complete stability picture for the communication
topology of Figure 1, using P = 2 and D = 0.8.

The speed of group consensus is dictated by the dom-
inant characteristic root of the infinite dimensional system
given in Equation (2). The dominant root of the character-
istic equation (4) is the rightmost of the dominant roots of
all the factors given by Lemma 1. These factors, qj(s, P, D,
τ 1, τ 2, λj), however, are quasi-polynomials and their roots
can only be determined by some numerical approxima-
tions (Breda, Maset, & Vermiglio, 2006; Vyhlidal & Zı́tek,
2009). We deploy the QPmR (Quasi-Polynomial, mapping-
based Root finding) algorithm (Vyhlidal & Zı́tek, 2009)
here. For some selected grid points (τ1, τ2), we determine
the dominant root and its real part, Re(sdom). For the ex-

Figure 5. Example agents’ behaviour for three different points
in Figure 4.

ample case study, the variation of Re(sdom) is displayed in
Figure 6.

We wish to stress several observations over this figure:

(1) The stable operating zones of Figure 4 are re-
created by the grid point evaluations of the dom-
inant roots over a (τ1, τ2) space of interest. Obvi-
ously, within these regions Re(sdom) < 0 is satisfied.

Figure 6. Variation of the real part of the dominant root for the complete system. Grid represents the zero real part partitioning.
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(2) The dominant time constant, −1/Re(sdom), i.e., the
basis for the ‘speed of reaching consensus’, in the
example case a of Figure 4 concurs with the lo-
cation of sdom. For this point Re(sdom) = −0.06,
which corresponds to a time constant of 16.4 sec-
onds, and a settling time (the speed of consensus) of
approximately 66 seconds, as observed in Figure 5.

(3) Although the fastest consensus is achieved at τ 1 =
τ 2 = 0, larger delays do not always mean longer
consensus time. Compare, for instance, points d
and e in Figure 4. For the first one, (τ1, τ2) =
(0.05, 0.8) and Re(sdom) = −0.04, whereas for e
(τ1, τ2) = (0.1, 3.5) and Re(sdom) = −0.05. Obvi-
ously, the latter makes a better choice from the point
of speed of reaching consensus, although both de-
lays are larger in the second case.

This example captures the core concept of delay
scheduling (Olgac & Cavdaroglu, 2011). In order to trigger
the delay selections under this methodology, one has to have
the complete system stability tableau in the delay space, i.e.,
Figures 4 and 6. The procedures discussed in this paper to
obtain the stability outlook are very efficient. Just to give
an idea to the reader, in order to create one of the stability
tableaus in Figure 3 for an arbitrary factor in Equation (6),
we encounter an average computational cost, of 1 second
of CPU time (including display operations) on a 2.93 GHz
Intel Core 2 Duo based computer with 4 GB RAM, running
Matlab 2010a without an elaborate code optimisation for
speed.

Another test is conducted over this example case study,
by simply demonstrating the real-time control repercus-
sions of the delay scheduling phenomenon. Figure 7 shows
the time traces of the agent behaviour under delay combina-
tions of (0.5, 0.5), (1, 2.5) and (1.3, 4.5) seconds in the time
intervals A (from 0 to 6 seconds), B (from 60 to 100 seconds)

Figure 7. Behaviour of the agents when the delay changes, show-
ing the effect of delay scheduling.

Figure 8. Desired formation for the example case.

and C (beyond 100 seconds), respectively. In duration of A,
a perfectly stable group dynamic is observed. As both de-
lays increase in the time interval B, the dynamics become
unstable only to be recovered by prolonging the delays even
further for the time interval C. This intriguing phenomenon,
the delay scheduling, deserves much deeper understanding
than the space allows. Interesting discussions on the steps
of control decisions for delay scheduling, selection stan-
dardisation, the transition behaviour during scheduling and
alike are reserved for future investigations and reporting.

5.2. Formation control

In order to test the formation control algorithm of
Section 4, we start by defining a desired formation,
which is presented in Figure 8. If these final positions
(steady state) in x and y coordinates were selected as

Figure 9. Traces of the motion of the agents for the formation
control example case (centroid is uncontrolled).
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14 R. Cepeda-Gomez and N. Olgac

Figure 10. Traces of the motion of the agents for the formation
control example case with centroid forcing (centroid is controlled).

xss = [−1 1 0 1 0] and yss = [0 0 1 1 −1], they
would impose the final values for the disagreement terms
as ξ x

ss = [0.88 0.28 1.51 1.11 0.39] in x-direction and
ξ y

ss = [0.68 −1.63 2.20 −2.21 0.61] in y-direction.
This leads to the forcing terms in the transformed domain
�x = [0 0 0 −0.31 0 4.55 0 3.32 0 0.48]T and
�y = [0 0 0 −0.633 0 5.13 0 −0.63 0 0.75]T as
evaluated from Equation (22). The actual forcing terms to
be applied to the agents are found as discussed in Sec-
tion 4: Fx = [0 −4 0 2 0 −2 0 2 0 −1]T and
Fy = [0 0 0 −1 0 1 0 2 0 −3]T . These forcing
terms with a delay combination (τ1, τ2) = (0.1, 0.1) yield
the results presented in Figure 9. It is clear that the agents
reach the desired formation.

As mentioned in the previous section, by having ϕx
1 =

ϕ
y
1 = 0, the agents end in a static formation, with the cen-

troid at a position dictated by the initial conditions. This
is the behaviour displayed also in Figure 9. If the forcing
terms corresponding to the centroid are also set to constant
values, the steady-state value of the factor corresponding
to λ = 1 presents constant velocity and linearly increasing
position, due to the static root at the origin. This results in
a coordinated motion of the agents, with constant velocity
while keeping the formation (i.e., the marginal stability).
An example of this behaviour is presented in Figure 10.
For this case, the centroid forcing terms were set to ϕx

1 = 1
and ϕ

y
1 = 0.5, which create a consensus in the group with

a constant speed of 2.5 along the vector direction (2, 1).

6. Conclusions

In this paper, we study an n-agent system, considering di-
rected communication topologies and multiple time delays.
A consensus protocol for this group of agents is presented
and extended to a formation control algorithm. Two con-
stant and rationally independent time delays are taken into

account, one affecting the position and the other the velocity
information exchange channels.

The stability analysis of the consensus protocol and the
ensuing formation control are based on an enabling fac-
torisation of the characteristic equation of the system. The
factors involved are only distinguished from one another by
a set of n eigenvalues of a particular system matrix. This
factorisation procedure reduces the complexity of the sta-
bility analysis considerably and converts it into a repeated
and efficient application of a reduced-order core analysis n
times. The CTCR methodology and the new concept of SDS
are utilised to obtain the exact stability bounds in the do-
main of the time delays. As the number of agents increases,
the only remaining procedural complexity is shown to be in
determining the set of eigenvalues of a given system matrix.
Numerical example cases verify these claims.

An extension on this consensus protocol to create a
formation is also presented. It is achieved by introducing
some additional forcing terms that keep the agents apart
from one another. A new algorithm for the selection of
these forcing terms is also detailed. Example case studies
show the viability of this idea.

We also look at the parametric variations of the speed
of reaching consensus (as well as disturbance rejection ca-
pabilities) as the two delays in the communication channels
vary. It becomes clear that the control designer may have
the option to intentionally prolong the delays to achieve a
faster consensus (a procedure called the delay scheduling).
This ability requires, however, the precise knowledge of the
parametric stability picture of the system (which is a ma-
jor contribution of this paper) as well as the corresponding
consensus speed variations.
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Appendix. Proofs of the lemmas

Lemma 1 (Factorisation property): The characteristic equation
of system (2) can always be expressed as the product of a set of
second- and fourth-order factors:

Q (s, P,D, τ1, τ2)

= det(sI2n − A − B1e
−τ1 s − B2e

−τ2 s)

=
�+m∏
j=1

qj (s, P,D, τ1, τ2, λj ) =
�∏

j=1

[
s2 + Ds + P − λj

× (
Dse−τ2 s + Pe−τ1 s

)] ×
m∏

j=�+1

[
s4 + 2Ds3

+ (D2 + 2P )s2 + 2DPs + P 2 − 2Re(λj )

× (s2 + Ds + P )(Dse−τ2 s + Pe−τ1 s) + |λj |2
× (Dse−τ2 s + Pe−τ1 s)2

] = 0 (A1)

where λj represents the eigenvalues of C = �−1A� . This ma-
trix has � real eigenvalues, denoted by j = 1, 2, 3, . . . , � and m
complex conjugate eigenvalue pairs

(
λj , λ

∗
j

)
, j = � + 1, � + 2,

� + 3, . . . , � + m. Then, n = 2m + �.

Proof: Let T be the non-singular similarity transformation ma-
trix that converts C into its Jordan canonical form: � = T−1CT.
The matrix � ∈ �n×nis block diagonal in the form

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1 0 · · · 0 0 · · · 0
0 λ2 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 0 λ� 0 · · · 0
0 0 0 0 J�+1 · · · 0
...

...
...

...
...

. . .
...

0 0 0 0 0 · · · J�+m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A2)

where λj, j = 1, 2, 3, . . . , �, are the size-1 Jordan blocks corre-
sponding to the real eigenvalues and

Jj =
[

Re
(
λj

) −Im
(
λj

)
Im

(
λj

)
Re

(
λj

) ]
, j = � + 1, � + 2, . . . , � + m

(A3)

are the size-2 (2 × 2) Jordan blocks corresponding to the m
complex conjugate eigenvalue pairs. If we implement the state

transformation x (t) = (T ⊗ I2) ξ (t) in Equation (3), it becomes

ξ̇ (t) = (
T−1 ⊗ I2

) (
In ⊗

[
0 1

−P −D

])
(T ⊗ I2) ξ (t)

+ (
T−1 ⊗ I2

) (
C ⊗

[
0 0
P 0

])
(T ⊗ I2) ξ (t − τ1)

+ (
T−1 ⊗ I2

) (
C ⊗

[
0 0
0 D

])
(T ⊗ I2) ξ (t − τ2)

(A4)

A convenient property of the Kronecker product is
(U ⊗ V) (W ⊗ Z) = UW ⊗ VZ where the pairs of square ma-
trices (U, W) and (V, Z) are of the same dimensions (Schaefer,
1996). Using this property in Equation (A4), one obtains

ξ̇ (t) =
(

In ⊗
[

0 1
−P −D

])
ξ (t) +

(
� ⊗

[
0 0
P 0

])
ξ (t − τ1)

+
(

� ⊗
[

0 0
0 D

])
ξ (t − τ2) (A5)

Since I and � are diagonal and block diagonal matrices, re-
spectively, Equation (A5) is block-diagonalised, thus it can be
represented as a set of � + m dynamically decoupled subsystems
with the following dynamics:

ξ̇j (t) =
[

0 1
−P −D

]
ξ j (t) + λj

[
0 0
P 0

]
ξ j (t − τ1)

+ λj

[
0 0
0 D

]
ξ j (t − τ2) , j = 1, 2, . . . , �

(A6a)

ξ̇j (t) =
(

I2 ⊗
[

0 1
−P −D

])
ξ j (t)

+
(

Jj ⊗
[

0 0
P 0

])
ξ j (t − τ1)

+
(

Jj ⊗
[

0 0
0 D

])
ξ j (t − τ2)

j = � + 1, � + 2, . . . , m (A6b)

The common characteristic equation corresponding to the
subsystems with dynamics given by Equation (A6a) is

qj (s, P,D, τ1, τ2, λj )

= s2 + Ds + P − λj (Dse−τ2 s + Pe−τ1 s) = 0 (A7a)

whereas Equation (A6b) generates the characteristic equation as

qj

(
s, P,D, τ1, τ2, λj

)
= s4 + 2Ds3 + (

D2 + 2P
)
s2 + 2DPs + P 2

− 2Re
(
λj

) (
s2 + Ds + P

) (
Dse−τ2 s + Pe−τ1 s

)
+ ∣∣λj

∣∣2 (
Dse−τ2 s + Pe−τ1 s

)2 = 0 (A7b)

The characteristic equation of the complete system is then
formed by the product of these � + m individual factors.
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Lemma 2 (Group behaviour): Assume that the communication
topology has at least one spanning tree and every agent has at least
one informer. Then, the agents in the group reach a consensus if
and only if the factor (8) is marginally stable and all the remaining
factors of Equation (6) are stable. Furthermore, the consensus
value will be limt→∞ xj (t) = limt→∞

√
nξ1 (t = ∞), whereas the

other states tend to ξj (t = ∞) = 0 for j = 2, 3, . . . , n.

Proof: First, we prove the necessity condition. From the defini-
tion of the state ξ , we have [ ξ1 ξ2 · · · ξn ]T = T−1[ x1 x2 · · · xn ]T .
If consensus is reached, the agents have a common steady-state
value which we denote by x̄ = limt→∞ xj (t), j = 1, 2, . . . , n.
Then,

lim
t→∞

[
ξ1 (t) ξ2 (t) . . . ξn (t)

]T = x̄ T−1
[

1 1 . . . 1
]T

(A8)

Since the communication topology is assumed to have a span-
ning tree, λ = 1 is a simple eigenvalue of C, corresponding to the
eigenvector t1 = 1/

√
n[ 1 1 . . . 1 ]T , which is also the first col-

umn of the transformation matrix T. Since T−1[ 1 1 . . . 1 . . .]T =√
nT−1t1 = √

n [ 1 0 . . . 0 ]T , Equation (A8) leads to limt→∞
ξ1 (t) = √

nx̄, which indicates marginal stability for Equa-
tion (8), while limt→∞ ξj (t) = 0 for j = 2, 3, . . . , n, indicating
asymptotic stability in the other factors of Equation (6).

Next, the sufficiency clause is proven. If Equation (8)
is marginally stable (due to the characteristic root at the
origin) and all the other factors in Equation (6) are sta-
ble, the steady-state value of ξ 1 will be constant whereas
the remaining ξ j(t), j = 2, 3, . . . , n, tends to zero.
Then, limt→∞[ ξ1 (t) ξ2 (t) . . . ξn (t) ]T = [

√
nx̄ 0 . . . 0 ]T . Us-

ing the inverse transformation, the original states be-
come limt→∞[ x1 (t) x2 (t) · · · xn (t) ]T = T[

√
nx̄ 0 . . . 0 ]T =√

n x̄ t1 = [ x̄ x̄ . . . x̄ ]T implying that the agents reach consensus.

Lemma 3 (Topologies without spanning trees): If the given com-
munication topology does not have a spanning tree, the control
logic described by Equation (1) cannot result in consensus.

Proof: Assume that the communication topology does not have
a spanning tree but it can be separated into r < n components, i.e.,
disjoint subgraphs within the graph that have spanning trees them-
selves. Then, the matrix C has a repeated eigenvalue 1 with mul-
tiplicity of r, i.e., one for each component. Since C is stochastic,
the eigenvalue 1 is always semi-simple (Marcus & Minc, 1996),
there are r linearly independent eigenvectors corresponding to this
repeated eigenvalue. These eigenvectors are assigned to the first r
columns of T matrix for convenience. These columns should have
the form tj = [aj1 aj2 . . . ajn]T , j = 1, 2, . . . , r, where ajk is 1, if
agent k belongs to the component j and 0 otherwise (Biggs, 1993).
Each one of these r eigenvalues creates a factor of form (9) in the
characteristic equation of the system. These factors represent the
dynamics of the transformed states ξ j, j = 1, 2, 3, . . . , r, which
are at best marginally stable (for marginality, recall the stationary
zero characteristic root of Equation (8)).

If the remaining n−r factors, which represent the
disagreement dynamics, are all stable, the steady-
state value of the system in the transformed do-
main is limt→∞ [ξ1 (t) ξ2 (t) . . . ξr (t) ξr+1 (t) . . . ξn (t)]T =
[ȳ1 ȳ2 . . . ȳr 0 . . . 0]T , where ȳj �= ȳk in general. One can
recover the original states using the inverse transformation,
limt→∞ [x1 (t) x2 (t) . . . xn (t)]T = T [ȳ1 ȳ2 . . . ȳm 0 . . . 0]T . This
leads to limt→∞ [x1 (t) x2 (t) . . . xn (t)]T = ȳ1t1 + ȳ2t2 + · · · +
ȳr tr . Due to the orthogonal construction of the tj vectors and
theȳj �= ȳk condition, the agents typically do not reach a common
state. For the degenerate case of ȳj = ȳk , then jth and kth
subgroups have a joint steady-state behaviour, but the rest of the
group does not. Therefore, consensus is not achieved.
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