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SUMMARY

Damage assessment can be considered as the main task within the context of structural health monitoring (SHM)
systems. This task is not only confined to the detection of damages in its basic algorithms but also in the generation
of early warnings to prevent possible catastrophes in the daily use of the structures ensuring their proper function-
ing. Changes in environmental and operational conditions (EOC), in particularly temperature, affect the perfor-
mance of SHM systems that constitutes a great limitation for their implementation in real world applications.
This paper describes a health monitoring methodology combining the advantages of guided ultrasonic waves to-
gether with the compensation for temperature effects and the extraction of defect-sensitive features for the purpose
of carrying out a nonlinear multivariate diagnosis of damage. Two well-known methods to compensate the tem-
perature effects, namely optimal baseline selection and optimal signal stretch, are investigated within the proposed
methodology where the performance is assessed using receiver operating characteristic curves. The methodology
is experimentally tested in a pipeline. Results show that the methodology is a robust practical solution to compen-
sate the temperature effects for the damage detection task. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The aim of an structural health monitoring (SHM) system is to reliably identify, at an early stage, the
presence of damage that can lead to the failure of individual components or a system [1]. SHM systems
are then a valuable tool for the assessment of the structural integrity in continuous operation for which
a long-lasting suspension of their function for inspection is unwanted [2]. During the last decades, a
huge amount of techniques for damage detection have been developed such as acoustic emission
(AE), acousto-ultrasonics (AU), ultrasonic guided waves and standard ultrasonics [3–5].

The main difference between AE and AU lies in the fact that the first one is a passive sensing and
the second one is an active sensing. That is, in AE, the occurrence of damages and their growth acts as
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the excitation signal. On the other hand, in AU, an external excitation signal is needed in order to an-
alyze the wave interaction with damages. This last is one of the most important advantages of AU over
AE. It is possible to excite the structure at any moment and study the wave correlations with damages.
On the other hand, by means of AE, it is possible to detect evolving damages during in-service life of
structures. Other notable work in the field of AE is given in [6–10].

The use of ultrasonic waves in SHM systems is a very attractive solution when large structural in-
spections are required. Nevertheless, additionally to the main problem related to the dispersive nature
of waves (in case of thin-walled structures), a restricting factor for the practical use of SHM ultrasonic-
based systems in field operation is the problem of distinguishing changes belonging to damage from
the ones coming from changing environmental and operational conditions [11,12]. These sources of
variability need to be identified and minimized in order to perform a reliable analysis and prognosis
of the structural integrity.

A number of methods have been developed for compensating the effects of temperature. For exam-
ple, Sohn used auto-associative neural networks for distinguishing extracted features related to damage
from those caused by the environmental and vibration variations of the system [12]. Lu and Michaels
computed differential features from diffuse ultrasonic signals and evaluated in terms of their efficacy
under changing environmental conditions [13]. Mujica et al. explored the use of principal component
analysis (PCA) and statistical distance measures to detect and distinguish damages in structures under
varying EOC [14]. Other efficient temperature compensation strategies for guided wave structural
health monitoring are discussed in detail in [13,15,16].

Farrar and Worden define that the SHM problem of damage detection can be essentially tackled as
one of the statistical pattern recognition [2]. The idea is to extract features characterizing the normal
condition, and then, these are used as a reference for comparison [17]. This approach was followed
by Torres et al. in order to develop a nonlinear multivariate methodology for the purpose of damage
detection and classification for AE and AU [18]. Within this methodology, new data were compared
only with reference data from the same environmental conditions. However, this strategy is only appro-
priate when the normal condition does not vary with time. One possible solution to the problem is to
collect the training data over a long time period in order to cover all the possible normal conditions
[19]. Nevertheless, collecting data representative of the full population and all possible conditions
for data-driven modelling is not an easy and realistic task for real world applications.

The purpose of this paper is to extend a previously developed methodology presented by the authors
and to quantitatively analyze its performance by integrating different methods for temperature compen-
sation. The work presented in this paper completes the studies presented in [20,21]. This paper is or-
ganized in six sections starting with this introduction. Section 2 includes a brief theoretical
background about the different techniques used for feature extraction and nonlinear multivariate
modelling within the extended methodology. Section 3 presents an experimental study of temperature
variation on ultrasonic waves together with the techniques used for compensating the temperature ef-
fects. Section 4 explains in detail the damage assessment methodology. Finally, section 5 presents the
experimental validation of the proposed methodology and section 6 the conclusions.
2. THEORETICAL BACKGROUND

2.1. Discrete wavelet transform

The discrete wavelet transform (DWT) is a powerful tool used in areas dealing with the analysis of
transient signals and has been used by different authors in different applications normally focused
on reduction in computational cost for signal processing tasks. This transform allows representing
the variability of a given function at a specified time and scale by means of coefficients. According
to Mallat, the DWT analysis is performed by means of a fast, pyramidal algorithm related to a two-
channel sub-band coding scheme using a special class of filters called quadrature mirror filters [22].
Figure 1 shows a representation of the algorithm, where the signal X(t) is analyzed at different fre-
quency bands with different resolutions by means of approximation and detail coefficients. The detail
coefficients are the low-scale, high-frequency components. The approximation coefficients represent
Copyright © 2015 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2015; 22:1103–1118
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Figure 1. Multi-resolution analysis decomposition tree.

DAMAGE ASSESSMENT UNDER VARIABLE TEMPERATURE CONDITIONS 1105
low-frequency components of the signal. The previously mentioned coefficients will be used as fea-
tures in the process of damage detection (for further details, please refer to references [20,23]).

2.2. Hierarchical nonlinear principal component analysis

In many physical systems, there are only few ‘forces’ that drive the system. When this happens, it is
possible to take advantage of the redundancies, simplifying the problem by replacing a group of vari-
ables with a new single ‘virtual variable’.

PCA provides arguments on how to reduce complex dataset to a smaller dimension and also reveals
simpler patterns or ‘structures’ that may be hidden under the data. The ultimate goal of the technique is
to discern which data represent the most important dynamics of a particular system and which data, on
the other hand, are redundant or just noise [24].

Over the years, several variations and improvements to PCA have been developed in order to deal
with specific problems. Perhaps, one of the most common is nonlinear principal component analysis
(NLPCA) that allows dealing with nonlinear problems in a better way than linear PCA. When nonlin-
ear dependencies are present, a NLPCA model should be used instead of linear PCA. The NLPCA may
be considered as a nonlinear generalization of the standard linear PCA. This generalization is achieved
when the variables are projected onto surfaces or curves instead of planes or lines (like in PCA) [25].

As noticed by Scholz et al., NLPCA can be itself subdivided in two different variations: normal
NLPCA and hierarchical NLPCA (h-NLPCA). The main difference between them is that h-NLPCA
performs a dimensionality reduction by means of a hierarchical process. In this way, the data is
decomposed in a PCA-related way [26]. Hierarchical NLPCA is based on multi-layered perceptron
(MLP) architecture with an auto-associative topology. As with the traditional NLPCA, the network
is performing an identity mapping where the output is forced to equal the input with high accuracy.
In order to compress the data, there is a bottleneck layer in the middle with fewer units than the input
and output layers that force the data to be projected into a lower dimensional representation (refer to
Figure 2). Note that the nodes in the mapping and de-mapping layers must have nonlinear transfer
functions; nonlinear transfer functions are not necessary in the bottleneck layer.

With the purpose of guaranteeing that the calculated nonlinear components have the same hierarchi-
cal order as the linear components in standard PCA, and in contrast to standard NLPCA, the recon-
struction error is controlled by searching a k dimensional subspace of minimal mean square error
(MSE) under the constraint that the (k� 1) dimensional subspace is also of minimal MSE [27]. This
procedure is repeated for any k� dimensional subspace where all subspaces must be of minimal
MSE. It is expected that h-NLPCA will describe the data with greater accuracy and/or by fewer factors
than PCA, provided that there are sufficient data to support the formulation of more complex mapping
functions [27].

There are statistical tools, which used along with h-NLPCA, that allow the detection of anomalous
behaviour in systems. The most common tool is the Q index (or squared prediction error (SPE)). The Q
index indicates how well each sample fits the h-NLPCA model. It is a measure of the difference be-
tween a sample and its projection in the main components retained by the h-NLPCA model. It is based

on analysis of residual data matrix eX to represent the variability of the projection data in a sub residual
space [25,28,29].
Copyright © 2015 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2015; 22:1103–1118
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Figure 2. Network architecture for h-NLPCA.
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The residuals of the h-NLPCA model can be assumed to follow a normal distribution because they
represent insignificant variations attributable to uncorrelated variations and measurement uncertainty.
These variations are not encapsulated in the nonlinear scores belonging to the h-NLPCA model [30].

For the h-NLPCA model, the residuals are given by

eX ¼ X � Pf g PTX
� �� �

; (1)

where P represents the principal components. Then, the Q index can be calculated as follows:

Qi ¼ exiexTi ¼ xi I � PrPr
T

� �
xi
T ; (2)

where xi is the row vector of the original matrix, X
� �

;exi is the projection into the residual subspace and
Pr represents the first r retained principal components Pr= (p1p2… pr)

Because the Q index is a quadratic form of the errors and because these errors are well approximated
by a multi-normal distribution, confidence limits also known as damage thresholds (based on Box’s
equation) can be defined as follows [31,32]:

UCLQ ¼ δ2 ¼ υ
2ϖ

� �
X2
2ϖ2=υ αð Þ; (3)

where X2
2ϖ2=υ αð Þ is the upper (100 α)-th percentile of a chi-square distribution with (2ϖ2/υ) degrees of

freedom at significance level α, withϖ and υ equal to the mean and the variance of the Q index sample,
respectively.

2.3. ROC curves

Receiver operating characteristic (ROC) curves are a tool for diagnostic test evaluation, and they are
well-known for describing the performance of diagnostic and detection systems in medical decision,
signal processing and communications. These curves represent the trade-off between the false positive
rate and the sensitivity for different cut-off points of a feature. The performance of the methods can be
shown by the ROC curve that is made by sweeping a threshold value from high to low, that is, sweep-
ing the false alarm rate from zero to one. The threshold is selected based on the statistics of signals
Copyright © 2015 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2015; 22:1103–1118
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recorded under the undamaged condition. Each point on the ROC curve represents a sensitivity/
specificity pair corresponding to a particular decision threshold, and the area under the curve represents
a measure that defined how well a parameter can distinguish between two groups. In the context of this
work, these two groups represent the pristine and damaged condition of the structure. As curves bow
more to the left, they indicate greater accuracy (a higher ratio of true positives to false positives). Ac-
curacy is indexed more precisely by the amount of area under the curve, which increases as the curves
bend [33].

ROC curves consisted in a unit square with the lower limit equal to zero and the upper limit equal to
one on both axes (refer to Figure 3).

In hypothesis testing, a compromise between the false positive (commonly called error type I) and
the false positive denoted by FPi and also commonly called error type II (defined as data corresponding
to an undamaged case and classified as damaged) is needed because these two different types of errors
cannot be reduced simultaneously. Therefore, the user needs to make decisions about which type of
error is more critical in a particular application. For instance, in SHM applications, it might be more
critical to minimize the false negative error denoted by FNi (defined as data corresponding to a dam-
aged case and classified as undamaged), because an unchecked damage could lead to a catastrophic
failure of a structure.

The classifier can be represented as one point in the ROC space (FP,TP) given by

FP; TPð Þ ¼ ∑FPi

∑Ni
;
∑TPi

∑Pi

� �
; (4)

where TPi (true positive) represents data corresponding to a damaged case and classified as damaged.
The ROC curve is a graphical visualization of the true positive rate as a function of the false positive
rate of a classifier, in this particular study, the Q index. Each Q index produces a single ROC point. The
ROC curves can be obtained in several ways, for example, modifying the damage threshold. It pro-
duces a series of ROC points.

The area under the ROC curve (AUC) serves as comparison parameter, being a measurement of the
accuracy of the classifier. The value of AUC is always between zero and one. If the AUC is close to
one, the classifier presents a very good diagnostic test. The AUC represents the probability that the
classifier will evaluate randomly chosen positive instance higher than a randomly chosen negative
instance.

For calculating the ROC curves, the code published by Giuseppe Cardillo was used [34]. The cost-
effective cut-off point was selected for calculate the performance. The cost-effective cut-off represents
a point on the actual ROC curve whose distance from the upper left corner of the graph is minimal. It
corresponds to the optimal cut-off value for the Q index.
Figure 3. ROC curve.
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3. TEMPERATURE EFFECTS AND COMPENSATION TECHNIQUES

3.1. Effects of temperature on wave propagation characteristics

As it was discussed before, changing environmental conditions augment the complexity for the reliable
monitoring of a structure. It is well known that temperature as well as damage can have similar effects
on the dynamic behaviour of a structure. As a result, dynamic responses obtained for wave
propagation-based methods can be affected by these effects and lead to false alarms or wrong damage
locations. Therefore, it is very important to understand the impact of these changing conditions and
take them into account. Well-known effects such as increase in time of flight and changes in sensor
response magnitude with temperature [35] are analyzed and discussed in this section.

A plate made of six equal layers with a total thickness of 3mm made of roving glass composite lam-
inate from Bond Laminates GmbH is studied. The constitutive laminas were built with woven fibres.
The experimental set-up is depicted in Figure 5(a) showing the structure with dimensions
200×250mm. Temperature tests were conducted in a temperature-controlled oven. During the test
runs, the temperature was raised stepwise from T=20±2°C up to T=60±2°C. The temperature was
measured by two PT100 sensors mounted on the plate opposite corners. Nine piezoelectric transducers
PIC151 from PI Ceramics were attached to the surface of the structure. The structure was excited by a
piezoelectric transducer located in the middle of the structure using pair of transducers operating in
pitch-catch mode. The input signal to the actuators was generated using the arbitrary signal generation
capability of a HandyScope HS3 (a combined signal generator and oscilloscope instrument
manufactured by TiePie Engineering, Holland). The receiver sensors are connected to the input chan-
nels of an auxiliary HandyScope HS4. The processing engine for transmitting the waveform signal and
acquiring the dynamic responses was written in Matlab® 7.9 using the DLLs provided by TiePie En-
gineering running under Windows operating system. The excitation voltage signal is a 12V Hanning
windowed tone burst with a carrier frequency of 50 kHz with 5 cycles. Sinusoidal signals with rectan-
gular window or ‘Hanning’ windrow are usually used in AU applied to nondestructive testing and
SHM in composite materials. These signals are called a ‘tone burst’. An example of a 12V Hanning
windowed cosine train signal with 5 cycles at 50KHz central frequency is presented in Figure 4. Trans-
ducer P5 was used as actuator.

The influence of the variation in temperature causes an evident change of the structural dynamics.
The dynamic response signal for sensor number two, three and six decreased monotonically in peak-
to-peak magnitude with increasing temperature, and it can be seen from Figure 5(b) to (d). According
to experimental results depicted in Figures 5(b) to (d), the increase in the temperature causes a right
time shift of the dynamic responses. Inversely, the decrease in the temperature causes a left shift.
The reason of these time shifts is both thermal expansion and changes in wave velocities with temper-
ature. The attenuation of the waves can be regarded to both wave dispersion as a result of frequency-
Figure 4. 12V Hanning windowed cosine train signal with 5 cycles at 50KHz central frequency.

Copyright © 2015 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2015; 22:1103–1118
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Figure 5. Influence of temperature on the propagated ultrasonic guided waves: (a) experimental set-up, (b) ultra-
sonic signals collected at transducer P2, (c) ultrasonic signals collected at transducer P3 and (d) ultrasonic signals

collected at transducer P6.
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dependent phase velocities and attenuation loss as a result of frequency/temperature-dependent mate-
rial damping.

The second study carried out with this structure was performed in order to analyze the influence of
the temperature cycles under which the structure was subjected at different excitation frequencies.
Without loss of generality, the A0 mode was selected in this study for the analysis of the influence
of temperature gradient sign in the mode amplitude changes because this mode is easier to excite with
the provided sensor arrangement.

The first effect that can be noticed from Figure 6(a) to (c) is the change of amplitudes for a given
frequency and orientation of the sensor. This effect is explained because of the changing ratio of dis-
placement and stress amplitudes with respect to the frequency and angular orientation for a particular
mode along the plate thickness. As it can be inferred from all the results presented till now, the under-
standing of these wave propagation phenomena plays a critical role in the selection of the optimal in-
spection frequencies for the improvement of the sensitivity and for the optimization of sensor networks
in terms of sensor placement and number of sensors. It can be observed as well that the temperature
gradient has a strong effect on the trajectories of the peak-to-peak amplitudes with respect to the
Copyright © 2015 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2015; 22:1103–1118
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Figure 6. Temperature gradient effect on peak-to-peak amplitude of one of the contained modes (A0).
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heating or cooling cycles. It is good to bear in mind that the capacitance of piezoelectric materials is
known to be temperature sensitive. As temperature increases, the capacitance value of the PZT nor-
mally increases and this effect modifies the response of the sensor. Even when not depicted for this
plate, the dynamic response signals of all sensors decreased monotonically in peak-to-peak magnitude
with increasing temperature for all the tested frequencies.

3.2. Temperature compensation techniques

As it was depicted before, temperature has a great influence on wave propagation. Approaches to over-
come this problem are presented in [35,36] and are called optimal baseline selection (OBS) and optimal
signal stretch (OSS). The OBS method is based upon a dataset of available baseline signals recorded at
different temperatures. The idea behind this method is to select a single waveform x(n) in the baseline
dataset whose temperature is the closest to that of the monitored signal y(n). According to Lu, the as-
sumption is that the baseline waveform whose shape most closely matches that of the monitored signal
is the one whose temperature is also the closest match [13]. In order to eliminate the effects of ampli-
tude differences, Michaels and Michaels propose that the waveforms must be normalized in amplitude
to obtain scaled waveforms [37]. The monitored signal (n) is normalized to unit energy:

y’ nð Þ ¼ y nð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

n¼1y nð Þ2
q ; (5)

where N is the total number of samples of the discrete signal. The baseline waveform x(n) is scaled to
minimize the MSE between it, and the unity energy monitored signal y ’ (n) as follows:

x’ nð Þ ¼ x nð Þ∑
N
i¼1x ið Þy’ ið Þ
∑N

i¼1x ið Þ2 : (6)

Finally, the normalized MSE E of the difference between the two scaled signals, which is used for
Copyright © 2015 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2015; 22:1103–1118
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the baseline selection, is calculated as [37]

E ¼ ∑N
n¼1 y’ nð Þ�x’ nð Þð Þ2: (7)

After finding the optimal baseline signal, the optimal signal stretch method is applied in order to fur-
ther reduce the difference between the monitored signal and the optimal baseline. The method de-
scribed here is exactly the same described by Croxford in [38]. This compensation is carried out in
the frequency domain by stretching the frequency axis (stretch refers to both dilation and compression).
The frequency step Δf of the monitored signal is increased or reduced until a minimum in the residual
of the subtraction between it and the optimal baseline signal is achieved. Iterating this process yields to
the optimal signal stretch between the two spectra, which corresponds to obtaining the minimum resid-
ual in the subtraction of the two signals in the time domain [39]. An example of using both techniques,
that is, OBS+OSS, is depicted in Figure 7.
4. DAMAGE ASSESSMENT METHODOLOGY

To assess the structural integrity, a data-driven methodology is proposed. It consists of the analysis of
data obtained from a structure instrumented with a piezoelectric distributed sensor network working in
several actuation phases. At each actuation phase, a PZT is defined as actuator and the rest work as sen-
sors collecting the information about the propagation of the excitation signal through the structure at
different points. In this way, there are so many actuation phases as sensors in the system.

An AU approach is used to collect all the waveform energy that is available, that is, instead of
selecting specific wave packets from the recorded signal, all the multiple reverberations are collected
for their subsequent analysis. These dynamic responses collected from each actuation step, when the
structure is known to be healthy, are pre-processed by the DWT in order to calculate the approximation
coefficients. The two-channel sub-band coding scheme is applied to the recorded structural dynamic
responses in order to produce a signal reconstruction to the level in which the signal could be properly
reconstructed from the calculated coefficients with the minimum loss of information.

Determining the optimal basis function, that is, mother wavelet, for the signal decomposition is also
a very important step in wavelet analysis because it guarantees an accurate decomposition of the orig-
inal signal into the different frequency bands. The family of Daubechies wavelets (‘db8’) was chosen
for this study. The optimum number of level decompositions was determined based on a minimum-
entropy decomposition algorithm [40]. In this way, from the decomposition process, the approximation
coefficients are obtained and stored into a matrix with dimensions (E×T), where E represents the num-
ber of experiments and T the number of approximation coefficients for each defined baseline, that is, at
different temperature ranges.

Denoting S as the number of piezoelectric transducers that are collecting the dynamical responses by
each experiment, there are S matrices with the information from each sensor by each actuation step and
Figure 7. Process for OBS and OSS from a monitored signal.

Copyright © 2015 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2015; 22:1103–1118
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temperature range. Therefore, the whole set of the data collected in each actuation step and pre-
processed by the DWT can be organized in a 3D matrix (E×T× S) or in a 2D matrix (E×TS) where
data from each sensor are located besides the other sensors for each temperature range by each actua-
tion step as can it be seen in Figure 8. This step is very important within the proposed methodology
because of the fact that different baselines at different temperature ranges are defined for each actuation
step instead of generating a huge baseline including all the data. This provides the advantage of reduc-
ing variability in the models and increasing their sensitivity.

After this step, the matrices by each actuation step are pre-processed by means of group scaling
method. This is carried out in order to remove the mean trajectories by sensor, and all sensors are made
to have equal variance. Different methods can be used for this purpose; however, the authors found in a
previous work that this method shows better results with this type of signals [41]. Using these pre-
processed matrices, a statistical model using h-NLPCA is built for each actuation step at each temper-
ature range using the approximation coefficients obtained from the undamaged structure data. After-
wards, the data from new collected structural responses in different states, that is, damaged or
undamaged, are first temperature compensated using the OBS and OSS techniques. In the OBS tech-
nique, the best matching signal is searched along all of the stored baselines and then stretched with re-
spect to the best match in the selected baseline.

Next, the DWT coefficients are extracted from the compensated responses, fused (as in the
unfolding matrix previously explained) and projected into every model at the selected optimal baseline
by each actuator in order to obtain the SPE indices. Subsequently, an outlier analysis is performed by
each actuation step in order to determine the structural state. Figure 9 shows all the steps previously
explained.
5. EXPERIMENTAL SET-UP AND RESULTS

In order to evaluate the practical performance of the proposed methodology, a pipeline is used as an
experimental test bed. Figure 10 shows the pipeline that is instrumented with eight piezoelectric trans-
ducers PIC-151 from PI Ceramics at both ends of the structure. These are attached to the surface of the
pipe with equidistant angular spacing on both sides at a distance of approximately 35mm from the
flanges. The piezoelectric transducers have a diameter of 10mm and a thickness of 2.5mm. The mon-
itored pipe has a length of approximately 850mm. It was made of stainless steel with an outer radius of
20mm and 2.15mm wall thickness.

In order to test the performance of the temperature compensation techniques inside the data-driven
methodology, a first round of experiments were executed in order to collect data from the pristine con-
dition. The temperature was varied in order to generate different datasets at several environmental con-
ditions. For these experiments, baseline measurements were collected for a temperature span of
Figure 8. Pre-processing step.

Copyright © 2015 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2015; 22:1103–1118
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Figure 9. Methodology flow diagram.

Figure 10. Experimental set-up.

DAMAGE ASSESSMENT UNDER VARIABLE TEMPERATURE CONDITIONS 1113
approximately 23°C. Temperature varied from T=15°C to T=38°C. The temperature was measured by
two PT100 sensors mounted on opposite corners of the pipe. The excitation voltage signal was a 12V
Hanning windowed cosine train signal with 5 cycles and carrier frequency of 136 kHz. The carrier fre-
quency was chosen not only to maximize the propagation efficiency but also to specially excite the L
(0,2) mode that provides an optimal wave energy distribution along the pipe’s wall so that the detection
capabilities of the system can be increased [42].

Afterwards, damage was introduced into the structure with an angular grinder, located close to the
flange depicted in Figure 10(b) on the top of the pipe, in several steps and measurements that were re-
corded under similar environmental conditions to the ones mentioned before. The damage depth and its
vertical extension were enlarged in four steps, starting with a cut of 0.3mm depth. This cut was in-
creased in depth in a second step until the wall was almost penetrated, followed by an increase in vertical
direction. Finally, the pipe wall is penetrated, increasing the depth in the middle of the former notch.

Analyses of the baseline data for the purpose of the feature extraction step showed that a level 8 of
decomposition was the optimal decomposition level for the discrete wavelet. After this step, a review
of the variances retained in the components was performed in order to define the optimal number of
components required for building the nonlinear models with the help of standard PCA. It was found
that the first three components included around 90% of the total variance into the reduced model.
Copyright © 2015 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2015; 22:1103–1118
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For the experiments depicted here, 35 neurons were used for both hidden layers of the auto-associative
neural networks for the different actuation steps. This value was found by searching a compromise be-
tween the dimensions in the mapping and de-mapping layers and the minimum reconstruction error
generated by the network.

Once the models for each actuation step were generated by training the network, new data (under
pristine and damaged conditions) were presented and processed according to the proposed methodol-
ogy. An analysis of the ROC curves was then performed in order to depict the advantages of using the
proposed methodology and to provide a statistical evaluation of its performance in comparison to tra-
ditional methods based solely on PCA projections.

Figure 11(a) and (b) show the ROC curves depicting the performance of the traditional procedure at
each actuation step. As it could be seen, their performance is not so satisfactory. This is not surprising
because the ability of the models is not robust to handle the experimental uncertainty because they ei-
ther do not compensate the input data or do not include data that are representative of the conditions
under which the classification is searched. This is further supported by the results depicted in Figure 12
(a) and (b) where the rate of false positives and negatives is relatively high. It can be seen from these
results that the fused DWT features employed display a great sensitivity to temperature condition
changes. Nevertheless, it is good to bear in mind that generating models able to properly generalize
to the classification of new data, that is, models including data representative of the full population,
could be a very expensive or even impossible process in real-life operating structures, and another
strategy must be sought in order to tackle this problem.

In order to overcome this problem, an experimental application of OBS is considered and evaluated.
In this analysis, only compensation by means of optimal baseline selection is carried out, that is, only
one database of a group of several baseline databases at different temperature ranges for each actuation
Figure 11. ROC curves for analysis without temperature compensation.

Figure 12. Prediction results without temperature compensation.
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step is selected. It is good to bear in mind that the OBS procedure only minimizes the temperature dif-
ference by selecting the database containing the baseline that which is more similar to the signal to be
projected and does not modify the collected signals. According to Figures 13 and 14, there was a con-
siderable improvement in the results after using the compensation method. These results validates that
better discrimination may be possible if baseline signals at similar temperatures are used. It can be seen
how the AUC is increased for every actuation step. and the rate of true positive and negatives is in-
creased, that is, the probability of detecting damage and differentiating it from a simple temperature
Figure 13. ROC curves for analysis only with OBS.

Figure 14. Prediction results only with OBS.

Figure 15. ROC curves for analysis with OBS+OSS.
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Figure 16. Prediction results with OBS+OSS.
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change is also increased. Another way to see that all actuation steps have a better performance is given
by the fact that the ROC curves in Figure 13(a) and (b) are closer to the upper left comer compared with
the previously depicted curves.

Finally, the results obtained for the temperature effect compensation methodology using the OBS
+OSS techniques through the experiments performed on the pipe are shown in Figures 15 and 16. It
can be seen that the fusion of OBS and OSS for temperature compensation provides to a certain extent
a better performance while using baseline models built with a reasonably small number of signals. This
fact is of high importance because it validates the feasibility of the system for real-time monitoring in
applications under temperature variations. Nevertheless, the biggest problem encountered during this
study was the cost of recording enough baseline traces as a result of the necessity of acquiring data rep-
resentative of the different environmental conditions under which the structure will operate. One obser-
vation is that all sensors located close to the damage provided a better performance for damage
detection. This could be explained by the fact that the interactions of the incident waves with the dam-
age and their response are less attenuated and consequently captured by the sensors located near to the
damage in comparison to the sensors located far away. This observation also indicates the need to con-
sider sensor placement for the design of the sensor network (maximum sensitivity with minimum sen-
sor density). Of the three variants considered, the traditional multivariate approach is the least
successful for detecting damage. The other two variants offered a higher likelihood for successful dam-
age discrimination because they do take into consideration the time-varying nature of the signals as a
result of temperature. As a future work, it would be interesting to analyze if there are obvious charac-
teristics of the features that could distinguish damage from environmental changes. Similarly, it would
be important to analyze the sensitivity of the system for the detection of damages with different
severities.
6. CONCLUSIONS

The approach presented in this work is based on the analysis of ultrasonic signals from a piezoelectric
active sensing system working on several actuation steps for the purpose of damage detection. In order
to tackle the problem posed by temperature effects, a methodical temperature compensation strategy
was proposed for structural health monitoring wave-based systems using AU.

Besides the temperature compensation, some relevant aspects related to AU must be taken into ac-
count when damage assessment is performed based on AU techniques. For instance, the selection of
parameters such as the optimal number of cycles and excitation frequency together with an analysis
of spreading of ultrasonic guided waves in space and time are important variables. The mode shapes
of different guided wave modes need to be analyzed in order to depict the importance of the selection
of the actuation signal for an optimized damage detection strategy. This is explained by the fact that it
is possible that the modes that are excited in the structure could not be able to interact with damage.
This is given because of the changing ratio of displacement and stress amplitudes along the wall
thickness.

In the detection process, the compensation approach is based on the recording of a dataset of base-
line signals covering the expected temperature range of operation of the structure followed by a feature
Copyright © 2015 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2015; 22:1103–1118
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extraction step together with multi-sensor data fusion and nonlinear modelling in which baseline selec-
tion and signal correction for each monitored signal is accomplished. This step allowed lessening the
difficulty of analyzing directly the complex time traces by extracting relevant damage-related informa-
tion and reducing the dimensionality of the problem. The proposed methodology was experimentally
evaluated in a pipework with incremental real damage, and it was shown that the multivariate data-
driven modelling methodology was a robust practical solution to temperature compensation and dam-
age detection.

As it is well-known, influences such as temperature and changing operational conditions, which
modify the structural dynamic responses, can be sufficient to disguise any changes correlated to dam-
age to a level that it might not be detected. This fact makes, in the authors’ opinion, automatic damage
identification using data-driven methods still a very challenging task. Environmental and operational
changes continue to represent a main concern for structural health monitoring systems, and robust tech-
niques are still required to properly overcome this problem. These changes can be considered as one of
the main disadvantages for implementing active guided wave-based techniques in real world applica-
tions. This is of special attention in baseline-based methods where the detection and characterization of
damage are performed normally by means of metric indices by comparison of two dynamic response
signatures.

Therefore, the influence of temperature must be compensated so that the damage assessment capa-
bilities are not degraded. It is good to bear in mind that the effects of temperature on the transducer
performance were not studied here. Nevertheless, it has been shown that these effects are significantly
less than the effect of temperature on wave propagation within the structure. According to the authors’
opinion, the development of an improved modelling technique incorporating the effects of variable
temperature in wave propagation and sensor response as well as the analysis of sensor fault detection
would be of great support for the design of a virtual SHM system.
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