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Abstract The use of evolutionary algorithms in the

boolean synthesis is an attractive alternative to generate

interesting and efficient hardware structures, with a high

computational load. This paper presents the implementa-

tion of a parallel genetic programming (PGP) for boolean

synthesis on a GPU-CPU based platform. Our implemen-

tation uses the island model, that allows the parallel and

independent evolution of the PGP through the multiple

processing units of the GPU and the multiple cores of a

new generation desktop processors. We tested multiple

mapping alternatives of the PGP on the platform in order to

optimize the PGP response time. As a result we show that

our approach achieves a speedup up to 41 compared to

CPU implementation.
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1 Introduction

One of the main goals in combinatorial synthesis consists

of finding compact boolean expressions in the sum of

products (SOP) form with the smallest possible number of

variables and terms. Boolean algebra techniques such as

Karnaugh maps, Quine-McCluskey algorithm and Reed-

Muller algorithm offers a way to find compact expressions

but in some cases an optimal structure depends on the

designer’s experience, resulting in non-optimal or inade-

quate expressions. Also, these algorithms have disadvan-

tages such as exponential complexity, lack of restrictions

management, and multiple solutions.

Bio-inspired algorithms are an alternative to create new

structures of combinatorial circuits that can not be obtained

with the traditional methods and to add some restrictions to

the design such as delay, area, etc. These designs have a

very low limited number of variables [9] and they are

mainly oriented to obtain a few basic structures. Nicholson

[15] has used Simple Genetic Algorithms (SGAs) with a

fixed length representation for small problems. Also,

Kajitani [11] has worked with Variable-length Genetic

Algorithms (VGAs) evolving up to 6-bit problems, Aguirre

et al. [1] used tree-based genetic programming (GP) for

evolving small circuits, Xu [23] has worked with adaptive

immune GA obtaining only 4-variable circuits, as well as

Coello with ant colony algorithms [5]. Other techniques

use cartesian genetic programming (PGP) as a strategy in a

multiobjective algorithm [3, 10, 24].

Others authors have proposed a platforms to use

reconfiguration techniques with hard-time restrictions due

the high reconfiguration latency [14, 20, 21]. Due the high

computational requirements for implementing any bio-

inspired algorithm, response times usually are too high and

only small circuits can be created in reasonable time [12,

22]. Some of these authors have made efforts to reduce the

response time by using different platforms such as ultimate

CPUs, Field Programmable Gate Arrays (FPGAs) [22],

computer clusters [16, 17] and Graphics Processing Units
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(GPUs) [13], allowing to implement parallel versions of the

bio-inspired algorithms.

A technique called virtual reconfigurable circuit (VRC)

on Field Programmable Gate Arrays was proposed by

Sekanina [19, 22] and similar to the one developed by

Torresen [7, 8], which uses registers as reconfigurable

elements to change the functionality of a given circuit.

These works showed high performance but caused a high

consuming resources, low frequency response due the

critical path and high cost of the project.

To solve the problem of the response time of creating

digital circuits by using parallel genetic programming

(PGP), we have developed a parallel genetic program in a

multi-GPU ? CPU architecture. To find the best configu-

ration of the algorithm in the parallel platform, the island

model were adopted and different schemes for building it

on the GPU-CPU based platform were tested.

2 Genetic programming and boolean synthesis

Evolutionary algorithms are computational techniques that

Perform a heuristic search based on the principles of the

natural evolution, by means of the natural selection. The

search space (population) is constituted by a set of solu-

tions called individuals. The initial population is consti-

tuted by random generated individuals. In each step, the

individuals are evaluated according to the fitness function

which determines the adaptation degree. Some individuals

of the population are selected and employed to create new

individuals through variation operators. The most adapted

individuals have higher probability to be part the new

population. After some generations is expected to find one

or more individuals that satisfy the fitness function.

The way a logic circuit is represented using a bit vector

to be used in the evolution process [18] must be ensure to

represent all the possible solutions to the problem, and

must avoid to the crossover and mutation operators not to

generate infeasible individuals. The 2-D tree representation

used here is shown in Fig. 1. Each cell has 3 functions f and

4 input variables v coded in binary.

Equation 1 shows the fitness function for the genetic

program. Constants x1, x2 and x3 are used for establishing

the weights of the parameters that will determine the fitness

function. The double-summation term calculates the num-

ber of matches of the individual X for all the possible

combinations at the output with the objective function Y;

the P(X) function is used for calculating the number of

logic gates of an individual taking into account some of the

introns or segments of the genotype string that will not

have any associated function and that do not contribute to

the result of the logic circuit that they represent. The

function L(X) is used for determining the critical path of

the circuit. The m constant is the number of outputs in the

circuit and n the number of possible combinations of inputs

in the circuit.

fitness¼x1:
Xm

j¼1

Xn

i¼1

Yðj; iÞ�Xðj; iÞ
" #

þx2:PðxÞþx3:LðxÞ

ð1Þ

In order to keep the quality of the individual in the

population by means of the diversity, the selection and

mutation operators were implemented in the algorithm.

2.1 Parallel genetic programming and the island

approach

The evolutionary algorithms are highly parallelizable because

the evaluation of the fitness function of each individual of the

population at each iteration is independent. The island model

is a way where the initial population is splitted into subpop-

ulations, able to evolve in a parallel and an independent way

according to a common fitness function. These subpopulations

are not completely isolated, once they are connected through a

ring, torus or hypercube network topology.

After some iterations it occurs an exchange of individuals

of each subpopulation with their neighbours through a new

operator called migration. The number of iterations is known

as migration intervals. The size of the migrated population and

the size of each subpopulation remains an open problem [6].

3 GPU and CPU implementation

3.1 GPU

One of the most interesting applications to be implemented on

GPUs are bio-inspired algorithms. The intrinsic parallelism of

(a)

(b)

Fig. 1 Cell-based structure representation
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these algorithms allows to the designers easily map them on

massive parallel platforms such as GPUs. Afterwards are

shown the most important aspects in the implementation of the

PGP on a GPU-CPU platform. Two main parts can be iden-

tified to implement the system on GPUs: (1) The random

number generator; and (2) the GP. The GP requires random

numbers for generating the initial population, to mutate and

cross the individuals. Because the GPU cannot generate ran-

dom numbers by using C classical libraries, it was important to

find another way to get them. The number generation and later

communication from the CPU to the GPU is not viable

because it will increase the system latency. To solve this

problem a Mersenne-twister algorithm is executed on the

GPU before the the kernel-GP in order to make a buffer of

random numbers on its own global memory.

3.2 Kernel structure

Figure 2 shows our implementation of the GP on the graphics

device. A thread t executes a kernel-GP (a common segment

of code that process different data in each instance), and gen-

erates a l-population, it performs the operators of selection,

mutation and crossover operators. After P generations,

M individuals will be transferred to the global memory and then

to the host device (CPU system). P is known as the frequency of

migration and the M number is called the migration factor.

It can be observed that each thread can cooperate with

other threads inside the same block through the shared

memory, sharing the best individuals and improving the

efficiency of the GP.

3.3 CPU

One technique to improve the performance of a GP is

implement it in parallel form. Nowadays devices such as

CPUs offers multiple processing cores that can be exploi-

ted for this purposes. By launching multiple processes on

the CPU, identical copies of the evolutionary algorithm

evolved individuals such as the island model. The best

m individuals were selected and migrated each p iterations

via pipes that connect the parent process with the rest of the

processes. Figure 3 shows the communications scheme

used to run the algorithm in the CPU platform.

However the Amdahl law limits the performance

improvement of the algorithm [2], because when an ele-

ment has been improved, the total performance is upgraded

in a fraction of the time spent by the component.

In order of mitigating the law’s effect, the Intel Core i7

processors employ the Turbo boost technology which allows

to increase the main clock frequency to the cores during

small periods of time. These overclock is made according to

the the quantity of active cores, the estimated current con-

sumption, the estimated power consumption and the pro-

cessor temperature. With this function in the experiments

described here it was obtained an improvement between 3

and 12 %, however the measurements are concentrated

between 4 and 6 %.

4 Performance evaluation

The PGP were tested in a Multi-GPU architecture based on

two NVIDIA Tesla devices, each one made by 448 CUDA

Fig. 2 GPU implementation of

the evolvable algorithm

Island 0

Island 7

Fitness
value +
Chromosome

Select the
best Parent}

Fig. 3 Processes scheme for evolving individuals in different

processor desktop cores
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cores, working at 1.15 GHz and a DDR5-3GB global

memory. On the other side, a Intel Core i7 CPU 4GB RAM

platform were used to test the performance of the PGP on

this kind of architectures.
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4.1 Experiment setup

Several scenarios have been tested with different input

parameter configurations: (1) number of input variables (4,

8 or 12, corresponding to a comparator problem of 2, 4 and

6 bits), (2) population size (512, 1,024 or 2,048) and (3)

number of threads and islands running the experiment,

ranged from 1 to 16 in the CPU, and 1 to 64 in the Multi-

GPU platform. The first and second parameters determine

the size of the problem. The last one gives an idea about the

scalability of the system. Results of these configurations

were compared to other works when dedicated hardware

with Field Programmable Gate Array devices were

developed.

4.2 Response time

Figures 4, 5 and 6 show the response time for the Multi-

GPU platform using 1 and 2 GPUs with different numbers

of islands and variables with 1,024 and 32,768 individuals

during 100 generations.

These results show the high performance of the platform

for the algorithm. This experiment demonstrates that the

response time depends on the size of the problem because

individuals complexity is increased exponentially with the

number of variables of the problem, and they had to be

evaluated by software. In contrast, response time in [17]

Table 1 Speedup and response time for GPU vs GPU shared

configuration

Blocks GPU shared

1,024 indiv vs

GPU

GPU shared vs

GPU 32,768

indiv

RT/indiv

1 GPU

(ls)

RT/indiv

GPU shared

(ls)

2 1.1001 1.8010 1,230 682

4 1.1100 1.8105 843 466

8 1.1200 1.8200 799 440

16 1.1540 1.8200 801 440

32 1.3101 1.8205 800 440

64 1.3200 0.8315 825 451

Table 2 Speedup and response time for CPU vs GPU configurations

Processes CPU vs

GPU

shared 1K

indiv

CPU vs

GPU 32K

indiv

shared

CPU vs

GPU 1K

indiv

CPU vs

GPU

32K

indiv

RT/

Indiv

CPU

(ls)

1 2.1353 41.9185 1.9413 23.2751 28,600

2 1.0685 30.7348 0.9627 16.9759 1,430

4 0.5383 16.2565 0.4806 8.9553 7,160

8 0.3978 12.0240 0.3447 6.6066 5,300

16 0.3998 11.9683 0.3052 6.5742 5,260

Table 3 Speedup for CPU with and without turbo boost - 12 variables

Islands Indiv Time TB Speedup TB Time Speedup Improvement (%)

1 512 14.6482 1 15.4918 1 5.4452

2 512 7.3266 1.9993 7.7456 2.0006 5.4097

4 512 3.6667 3.9948 3.8756 4.0007 5.3892

8 512 2.6934 5.4383 2.8347 5.47126 4.9835

16 512 2.6961 5.4329 2.8343 5.4730 4.8733

1 1,024 29.3095 1 31.0001 1 5.4536

2 1,024 14.6615 1.9990 15.4963 1.9996 5.3867

4 1,024 7.3294 3.9988 7.7497 4.0006 5.42297

8 1,024 5.3867 5.4410 5.67026 5.47037 4.9993

16 1,024 5.3913 5.4364 5.6693 5.4603 4.9028

1 2,048 58.6177 1 61.9610 1 5.3958

2 2,048 29.3135 1.9996 31.0192 1.9966 5.4988

4 2,048 14.6599 3.9985 15.5009 3.9946 5.4260

8 2,048 10.7777 5.4387 11.3294 5.4674 4.8693

16 2,048 10.76422 5.4456 11.3521 5.4661 5.1787

1 4,096 117.2707 1 123.9318 1 5.3748

2 4,096 58.6455 1.9996 61.9928 2.0008 5.3994

4 4,096 29.3497 3.9956 31.0108 3.9957 5.3562

8 4,096 21.5426 5.4436 22.6566 5.48167 4.9169

16 4,096 21.4975 5.45507 22.6500 5.47263 5.0882
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has not a high dependency of the size of the problem. Also,

the figures show the response time when a high number of

individuals are evolved (32,768), it is demonstrated that

using two GPUs is more suitable for this purposes. Despite

population were incremented from 1,024 to 32,768 indi-

viduals, response time did not increase dramatically, this is

because communications time is included in both

scenarios.

In the same way, Figs. 7, 8 and 9 show the same sce-

nario when the algorithm is executed in the CPU platform,

launching 1 up to 16 processes on each one of its cores.

Again, it is demonstrated the high dependency of the

number of variables for the algorithm. Also, it can be

notice a small improvement of the algorithm when the

Intel Turbo Boost were activated when a problem of any

number of variables were evolved. In the same way, it is

shown the response time becomes constant when 8 or more

processes were launch, because the 4 HT cores of the Intel

Core i7.

4.3 Speedup

Tables 1 and 2 show the speedup numbers for different

configurations of the algorithm on GPU and CPU plat-

forms. In Table 1 can be observed the speedup number

when compared the performance in 1 GPU vs 2 GPUs, it is

clear a better performance on multiple GPUs when a high

number of individuals are present in the population. Also, it

is shown the time response for evolving one individual,

which is around some hundreds microseconds.

In the other case, the algorithm were tested in the CPU

architecture with different number of processes. In this case

it can be observed a high performance of GPUs vs CPUs

when many individuals are evolved. Also, the response

time for individual was calculated, resulting in some hun-

dred of microseconds. It can be deduced a higher response

time in CPU configuration when large populations of

individuals are evolved.

The Table 3 shows the results obtained for evolving

problems of 12 variables and a population size of

512–4,096 individuals. The values of execution time and

speedup with Turbo boost (Time TB and speedup TB) and

without Turbo Boost (Time and speedup) respectively. The

last column shows the improvement in the execution time

with and without the Turbo boost funcionality. For the

others cases evaluated the results were similar.

As shown in Table 3, the results of using the Intel Turbo

Boost Technology are similar to the obtained in [4]. An

improvement up to 5.1% shows the advantages of using

this technology.

The Figs. 10, 11 and 12 show the speedup for the PGP

executed on CPUs and 4, 8 and 12 variables.

Finally, Figs. 10, 11 and 12 show the speedup number

for the CPU scenarios. This metric were calculated com-

paring the performance when one process were launch

against 2, 4, 8 and 16 launched processes. In all cases the
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speedup is about 5, which demonstrates the use of the 4

cores with the Hyper Threading technology.

5 Conclusions and future work

This paper presented a novel and fast way to evaluate

individuals in an evolvable algorithm on a Multi-GPU and

CPU platforms and results were compared to a FPGA-

based accelerated work. Despite there are other works

related with genetic programs over GPUs [?], this paper

showed an specific application of them to the acceleration

process in creation of digital hardware.

Results showed a speedup up to 41 evolving upto 32 K

individuals on the Multi-GPU system compared to CPU,

even when 4 cores were used in the last one. When the

number of individuals is close to 1,024, the GPU-shared

architecture showed a low performance compared to the

CPU because the communications processes become

important. When compared single GPU, Multi-GPU con-

figuration showed a speedup up to 1.3 with large popula-

tions. In contrast, small populations are faster evolved in

one GPU. In the same way, CPU improvements up to 5 %

with Turbo Boost Technology were achieved.

Significant speedup numbers were obtained in [17] due

individuals had been directly tested in hardware, getting a

combination of their true table on each cycle of the system

clock. Tests proved that the algorithm is more effective for

4-bit and 8-bit problems. 12-bit problems in GPU had excel-

lent performance, but because the search space is too long,

converging to a suitable solution was difficult for the algo-

rithm. This problem could be solved as future work with some

improvements in terms of GPUs memory optimization.
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