Systems & Control Letters 62 (2013) 482-495

Contents lists available at SciVerse ScienceDirect

Systems & Control Letters

journal homepage: www.elsevier.com/locate/sysconle

Exact stability analysis of second-order leaderless and leader-follower consensus
protocols with rationally-independent multiple time delays”

Rudy Cepeda-Gomez?, Nejat Olgac™*

2 Department of Mechatronic Engineering, Universidad Santo Tomas, Bucaramanga, Colombia
b Mechanical Engineering Department, University of Connecticut, Storrs, CT 06268, USA

ARTICLE INFO ABSTRACT

Article history:

Received 1 May 2012
Received in revised form
20 November 2012
Accepted 15 February 2013
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1. Introduction

The consensus problem for multi-agent systems, a subtopic
of the field of cooperative control, has received a great deal of
attention in recent years. Following the work of Olfati-Saber and
Murray [1], many researchers have contributed to the knowledge
in this area. Some of these studies are limited to the systems with
first-order agents [1,2], while others focus on second-order agent
behavior [3]; some also include time delays in the communication
channels [3,4]. In particular, there is a large volume of literature
on the stability of time-delayed dynamics. However, very few
works, such as [5-7], offer a practicable procedure for the exact
(non-conservative) assessment of the stability properties of such
consensus systems with respect to the delays, when the delays are
rationally independent.

Although the treatment is applicable to a much broader
range of systems, we focus on a set of generally accepted
consensus protocols within this paper. This study presents the
first such deployment on group dynamics with directed topologies
considering leaderless and leader-follower strategies. Similar to
the settings presented in [8], the agents operating under these
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protocols are assumed to be affected by two rationally independent
time delays: a communication delay and an input delay. The
communication delay is imposed on the information coming
from other agents (both on position and velocity information).
The input delay affects all the state feedback, including that of
the states of its own agents. Other investigations [9,10] report
similar consensus studies, including “diverse” time delays in
the topology. Ref. [9] considers only discrete dynamics, and
rationally dependent delays, as they are integer multiples of the
base delay (sampling period). As such, the ensuing characteristic
equations (e.g., Eq. (7) in [9]) are simplified immensely to finite-
dimensional polynomials, instead of the infinite-dimensional
quasi-polynomials we will present here. From this standpoint
the attribute “diverse” is an important misnomer. The more
convincing terminology should have been “multiple rationally
dependent delays with commensurate conditions [11]”. Ref. [10],
on the other hand, is a treatment of the leader-follower consensus
in a continuous domain. But several aspects of the treatment
pose severe restrictions vis-a-vis the present paper: (a) symmetric
systems are considered with asymmetric perturbations, which
imply that the nominal behavior has to be symmetric, and (b) it
uses a generalized Nyquist treatment, which confines the work
to a fixed point analysis in the delay space. By contrast, the
study presented here is in the free delay space, and stability
charts are provided for a wide range of delays. Another study [12]
also presents a solution to the consensus stability problem under
multiple delays in the topology. That treatment, however, is
confined to undirected topologies only, as the authors of [ 12] state
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that “it is very difficult, if at all possible, to extend the presented
method for directed graphs” due to the complex eigenvalues
involved. The present paper, on the other hand, tackles directed
(as well as undirected) topologies using a completely different
approach, which overcomes the “complex eigenvalue” restriction
of [12].

The stability analysis utilized in [8] is based on the Lya-
punov-Razumikhin theorem; therefore it is conservative. The
methodology provides the sufficient conditions for stability, but
they are not necessary. The new technique which is performed
here, the Cluster Treatment of Characteristic Roots, CTCR, in
contrast, creates exact and exhaustive stability regions in the
parametric space [13-15]. It is interesting to note that such a
methodology, which can reveal the stability region(s) exhaustively,
opens a unique path to another interesting control design tool:
delay scheduling [16,17]. In essence, this tool offers a strategy
of artificially prolonging the existing delays in order to achieve
improved stability features. Although such capability is novel,
paradoxical and counter-intuitive, we will only present a couple
of example cases without getting into details in this text, due to
space limitations.

In the rest of the paper, bold face notation is used for vector
quantities, bold capital letters for matrices, and italic symbols for
scalars.

2. Problem statement and control laws

We consider a group of n agents driven by simple double-
integrator dynamics X; (t) = u; (t),j = 1,2,...,n, where x; (t)
is the scalar position of the agent and u; (t) the control input. This
paper is presented considering only one-dimensional cases for no-
tational simplicity, but the treatment can be easily scaled up to
a higher-dimensional case by using Kronecker product operator
as in [18]. It is common in group dynamics studies that the con-
sensus is declared when the agents reach a common position and
a common velocity, i.e., when lim,_, (; (t) — X (t)) = 0 and
lim;_, o (%; (t) — X (t)) = O for any j and k. In order to achieve this
objective, the members of the group share their position and veloc-
ity information with a limited number of neighbors, through some
one-directional communication channels. The group of peer agents
from which agent j receives information is called the informers of
agent j, denoted by N, and this set consists of §;(< n) agents.

The type of communication topology used here can be described
by a directed graph with n vertices. The adjacency matrix of this
graph is denoted by Ar = [aj] € %™", with a3 > 0 whenever
agent kis aninformer of agentjand aj, = 0 otherwise. The diagonal
elements are also taken as zero: a; = 0. Notice that this matrix is
not necessarily symmetric. The in-degree matrix of the graph is a
diagonal matrix A, with Aj = Y\, Gjx.

For this multi-agent system, four different control logics
are suggested considering leaderless and leader—follower cases.
These control laws are presented next, in order to establish the
foundations of this investigation.

2.1. Case A, Leaderless consensus

All agents are equal, and they drive themselves using a
weighted feedback on relative errors. The control logic utilized by
the agents is taken from [8]:

1 n
u (t) = A Zajk (xj (t — i) — X (t — Tin — Tcom))

I k=1

- % Zajk (%5 (¢ = Tin) — & (£ — Tin — Teom)) - W

I k=1

where 7, and 7, are the input and communication delays,
respectively, and y is a positive ratio between the derivative and
position error gains. It is also assumed that each agent has at least

one informer, i.e,, Ajj # 0 forj = 1, 2, ..., n. The control logic (1)
can be expressed in state space as

x(t) = <ln®[3 QDx(tH(ln@[_‘)l _OyD
x(t—rl)+(C®|:(]) 3]>x(t—r2), (2)

where X = [X1X1X2%3 - - - XaXn] € M2" is the state vector. In (2), I,
represents the identity matrix of order n, ® is the Kronecker
product operation [18], and C = A~!A[. Notice the renaming of
the rationally independent delays for convenience, as 7 = tj,
and 17, = Tj; + Teom. An important feature of this control logic is
that the final position of the agents is dictated by their initial
conditions and the communication structure, as in a typical
consensus protocol [8].

2.2. Case B, Consensus regulation with constant final velocity

The remaining cases in Sections 2.2-2.4 are consensus problems
in the “leader-follower” class in which it is assumed that there
is a virtual leader, labeled as agent n 4 1, and the other agents
behave in accordance with it. The particularities of the consensus
may vary (e.g., position tracking or velocity agreement), and they
are described for each case next.

In case B, the motion of the leader is described by a position
Xnt1 (t) = rq (t) and constant velocity X, 1 (t) = vq. The objective
of the control is to guarantee that all the agents in the group track
the virtual leader. For this case, and all the other leader—follower
cases, the adjacency matrix is augmented with an extra column
to indicate which agents are receiving position and velocity
information from the virtual leader. This new adjacency matrix
is denoted Ari1 = [ax] € %™ ™. The elements in the first
n columns declare the interactions between the agents, and the
elements in the last column are defined as a; .41 > 0 if agent j
has access to the virtual leader and a;,+1 = O otherwise. The
n-dimensional diagonal in-degree matrix for this case is defined
similarly as in the leaderless case, with Aj;; = ZI} Qj.

The proposed control law is

n+1

1
uj (t) = _X Zajk (Xj (t - Tin) — Xk (t — Tin — Tcom))

i k=1

n+1
14 . .
- Z Qjk (Xj (t — Tin) — X (t — Tjp — fcom)) (3)
Ajj 1=
forj=1,2,...,n lItis also taken from [8]. Again, t;, and 7, are

the input and communication delays, respectively, and y > 0.1t is
again assumed that A; # 0 for every agent.

By using the state vector X = [XiX1X2Xs - - - XpXn] € W27, the
control law (3) can be expressed in state space as

X (1) = <ln®[8 é])x(t)+<ln®[_01 _0,,D
x(t—r1)+<é®|:(1) g:Dx(t—tz)

o 0
+ (c"H ® |:Xd t—1)+ J/Ud]) ’ ()

where C = A™'Ar € W™ and €41 = A 'ayy; € R Here,
Ar € R includes the first n columns of the adjacency matrix
Ar,q,and a,; € W™ is its last column.

Notice that (4) can be seen as a special case of (2) in which a
forcing term, corresponding to the dynamics of the virtual leader,
is added. This term, however, does not affect the stability of the
consensus problem, as it is independent of the state x(t). It is only
a driving term in the dynamics. As such, it simply defines the final
agreement value.
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2.3. Case C, Consensus tracking with full access to the virtual leader

In this case, the virtual leader is assumed to be moving
with time-variant velocity. Its trajectory is defined such that its
velocity X, 1 (t) = vq (t), its acceleration X, 1 (t) = vq4 (t), and the
derivative of acceleration v4(t) are bounded. Full access implies
that all the agents have information about the acceleration of the
virtual leader. However, its position and velocity are available only
to a selected group of agents, defined by the n + 1th column of the
adjacency matrix A 1.

The control logic we consider is

n+1

1
uj (t) = - Zajk (Xj (t - 7:in) — Xk (t — Tin — 7:com))
Ajj =
y n+1
- Z aje (X (£ — Tin) — i (£ — Tin — Teom))
Ajj k=1
+Xpp1 (6 — Tin — Teom) (5)

which can be expressed in state space as

x (1) = (ln® [8 g])xm <In ® [_01 _OytD
X(t—11)+ (é@ [(1) 3])

X(t - tZ) + 1n><1 ® |:Xd (tO_ TZ)]

R 0
* <c““ ® [xd (t— 1) + X (t — rz)D ’ ®

where 1,41 is an n x 1 column vector, all the elements of which
are equal to 1.

It is evident that (4) and (6) have the same structure; the
only difference is in the forcing term which now has an added
acceleration term in (6). As in scenario B, the driving terms do not
influence the stability of the group.

2.4. Case D, Consensus tracking with partial access to the virtual
leader

We next consider the case where only a subset of the agents has
access to the state of the virtual leader. This is achieved by setting
ajn+1 = 1 for those agents which have access and gj ;1 = 0 for
the others. However, the latter group uses the acceleration of
their informers to obtain an indication of the acceleration of the
leader. This particularity brings an interesting twist that only in
this scenario does the agent acceleration come into the governing
equations with time delay. The resulting time-delayed dynamics
becomes neutral in nature [11], as we see later. The control law is
proposed as

1 n+1

4 (6) = ——— > e (3 (€ = Tin) = X (¢ = Tin — Teom))
U k=1
n+1

A Qjk (X] (t = Tin) — X (t — Tjn — fcom))
I k=1
1 n+1

+ X Z ajkjék (t — Tin — Teom) - (7)

k=1

This logic is similar to that given in Eq. (27) of [8], however with
an important difference. In its original form, the input delay is
intentionally ignored in order to reduce the complexity and to
simplify the stability analysis. In this paper, we include both the

communication and input delays, as this inclusion does not impose
a problem for the CTCR paradigm.
The state space version of (7) is

wo=(rofs i)xo+ (v 2))

X(t—1)+ (é@ [(1) ﬂ)x(t—fz)
+ (é@ [8 ?]))'((t—rz)

. 0
+ (Cn+1 ® |:Xd (t — 1)+ yxa (t — 1) + X4 (t — Tz)i|> . (8)

The homogeneous part of (8), which dictates the stability
posture of the dynamics, includes a delayed component of the
highest derivative of the state, making the dynamics a neutral-
type multiple time-delayed system, NMTDS. This class of systems has
some intriguing particularities, which make their stability analysis
more cumbersome [19,13,20]. The added complexity does not,
however, cause a difficulty for the CTCR process. More details about
this will be given in the following sections.

3. Factorization of the characteristic equation

The characteristic equations of the system described, (2),
(4), (6) and (8), are 2n-degree quasi-polynomials in which the
delay terms appear with up to 2n degrees of commensuracy
and with cross-talk terms. Obviously, the complexity of these
equations increases rapidly with the number of agents, n. To the
best knowledge of the authors, the only paradigm that provides
an exact determination of the stability posture of such systems
with respect to the time delays is the Cluster Treatment of
Characteristic Roots, CTCR [14,15]. The direct deployment of the
CTCR to those systems in its original form, however, is still very
tedious. Furthermore, the general problem of multiple time delay
systems is also known to be NP-hard. Once again, this process
becomes numerically intractable as the order of the characteristic
equation increases [21]. We circumvent this complication by
performing a factorization procedure followed by the application
of the CTCR to the simplified system.

The lemma below shows how this factorization methodology is
applied to cases A, B, and C. Notice that, in cases B and C, we are
interested only in the homogeneous part of the dynamics, since
it determines the stability. Furthermore, this homogeneous part
has the same structure as in case A. For case D, its structure is
different (i.e., neutral type), and the application of the respective
factorization is presented next.

Lemma 1 (Factorization Property). The characteristic equation of
scenarios A, B, and C can always be expressed as the product of a set
of second-order and fourth-order factors:
Q (s, y, 11, 2) = det (Slzn —A—Bje " — Bze_rzs)

{+m

= 1_[ qj (Sv Y, T1, T2, )"j)

j=1
L

=[][&+ s+ (e — re )]

j=1

m

1_[ [s* + 25 (ys + 1™ ™*
=41

—Re(A)e™") + (ys+ 1)*(e>™"*
—2Re(ly)e” TS 4 e =0,  (9)
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where matrices A, By, and B, are self-evident from (2), (4) and (6) in
each case (remember, only the homogeneous parts of (4) and (6) are
observed) and A;, j = 1,2, ..., n, represent the eigenvalues of the
matrix C in case A and the matrix C in cases B and C. It is assumed that
these matrices have ¢ real eigenvalues, denoted by j = 1,2, ..., 4,
and m complex conjugate eigenvalue pairs, (Aj, k;‘) j=L+1,2+
2,...,L+mn = £+ 2m. We assume, for simplicity, that each
eigenvalue is semi-simple.

Proof. In this proof, we refer to matrix C, corresponding to case A;
the results are the same for C in cases B and C. Let T be the non-
singular similarity transformation matrix that converts C into its
real Jordan canonical form: A = T~'CT. Matrix A € R"™"is a
block-diagonal matrix, of the form

A1 0 - 0 0 --- 0 -
0 A,z oo 0 0 o 0
A=]|0 0 0 x O 0 |, (10)
0 0 0 0 Jug 0
LO 0 0 0 O Jem-
where A;,j=1,2,...,¢, are the (size-1) Jordan blocks corre-
sponding to the real eigenvalues and
Re (2) —Im (1))
Ji= : A
Im (4))  Re (%)
j=¢+1,042,....,0+m (11)

are the size-2 Jordan blocks corresponding to the complex
conjugate eigenvalue pairs. The first £ columns of the matrix T
are composed of the ¢ eigenvectors of matrix C. The remaining
columns are the generalized real eigenvectors, obtained from the
complex conjugate eigenvectors that correspond to the complex
eigenvalues [22]. A state transformation x (t) = (TQ® L) £ (t) in
(2) results in

ED = (T L) (ln ® [g 5]) TOL)E()

+ (T7'Q®L) <C® [_01 _Oy]> TRL)E( — 1)

+ (T o) (C® [‘1’ ﬂ) TeLE(E—1). (12)

A convenient property of the Kronecker product [18] is (U ® V)
(W®Z) = UWQ®VZ, where (U, W) and (V, Z) are square matrices of
the same dimensions pairwise. Using this property, (12) becomes

é(t)=<1n®[8 é])s(twr(ln@[_ol _OVD
§(t—t1)+(A®|:(]) 3])&@—:2). (13)

Since I, and A are diagonal and block-diagonal matrices, respec-
tively, Eq. (13) is block-diagonalized; thus it can be represented as
a set of £ + m dynamically decoupled subsystems as

£ = [8 3] &)+ [_01 _Oy] £ (t—1)

0

Y [] (14a)

_Oy]’s'j(f—fz), forj=1,2,...,¢

o= (o s ool )
oo+ o[22

§i(t—1) forj=£+1,£+2,...,m. (14b)

The characteristic equation of the complete system therefore
becomes a product of £ + m individual subsystems, which are

gG(s. vy .t ) =+ (ys+ 1) (e — re ™)
=0, (15a)
g (s v t1, 1, ) = 5T+ 2% (ys+ 1)
x (e7™° —Re (%) e ™)
+ (ys+ 1)? (e72"° — 2Re(}))

x e” (M2l 4 |3 2e 2% = 0, (15b)

corresponding to ¢ of (14a) and m of (14b), respectively. O

Remark. In Lemma 1, we have assumed that the real eigenvalues
of matrix C always create Jordan blocks of size 1. If a multiple real
eigenvalue creates a Jordan block of size 2 or larger (which implies
that the corresponding eigenvectors are not linearly independent),
the relevant characteristic equation factor, similar to (15b), can still
be obtained and analyzed. Such instances are, however, extremely
rare. Although the procedure remains unchanged, the complexity
increases. We ignore further pursuit along this line, within the
scope of this work. In the example section, the case of a Jordan
block of size 2 arising from complex conjugate eigenvalues is
displayed.

A similar procedure to the one described in Lemma 1 can be
applied to the homogeneous part of the control logic in case D. It
leads to factors

i (s, v, 71, Tas &) = (1= 2je ™) + (ys+ 1)

(e — e ™) =0 (16a)
for real eigenvalues, and
4 (5. v 7172 y) = (1= 2Re (1) 7 4 oy o) f
+5* (ys+ 1) (e7™ —Re (}) e ™) + (ys+ 1)°
(7205 = 2Re (1) e 5 4 P e 2) =0 (16b)

for complex conjugate eigenvalue pairs.

Remark. We want to emphasize here that (16a) and (16b),
the factors created in case D, have transcendental terms which
multiply the highest power of s. This implies that the highest-order
term in the dynamics is affected by delays. Specifically, (16a) and
(16b) become neutral-type quasi-polynomials [11]. The stability
analysis of these factors has some extra intricacies when compared
to (15a) and (15b). More details will be given in the following
sections.

This factorization technique simplifies the problem consider-
ably, by transforming it from a 2n-order system with time delays of
commensuracy degree up to n and delay cross-talk into £ second-
order and m fourth-order systems with highest commensuracy of
2 (e.g., e~2™%) and single-delay cross-talk (e.g., e~ (F17%2)%), Notice
that, since the only discriminating element from one factor to the
other is the eigenvalue ;, the stability analysis in the domain of
the delays must be performed only twice, once for a generic real
A and once for a generic complex A. These tasks are detailed later.
The stability problem of the system is now reduced to obtaining the

specific eigenvalues of a known matrix C or C, and superposing the



486 R. Cepeda-Gomez, N. Olgac / Systems & Control Letters 62 (2013) 482-495

stability outlook of each characteristic equation factor [(15a) and
(15b) or (16a) and (16b)] to obtain the ensemble stability tableau
for the system.

4. Consensusability and tracking capabilities

In this section, we investigate the conditions which guarantee
the consensus when the operation is under protocol A, and the
agents are able to track the virtual leader when protocols B, C, or D
are used.

4.1. Consensusability of protocol A

This discussion is centered on the special features of the
eigenvalues of matrix C. From the way this matrix is created,
any row sum is always 1. This property makes C a row-stochastic
matrix [22]. Using Gershgorin’s disk theorem [23], it can be shown
that the norm of each eigenvalue is always equal to or less than 1.
Furthermore, it has been proven [24] that, if the topology has at
least one spanning tree, A = 1 is one of the eigenvalues of matrix
C with multiplicity 1. Then, from (15a), the corresponding

GGy A==+ (ys+ (e —e ) =0 (17)

is always a factor in the characteristic quasi-polynomial (9)
for protocol A. Without loss of generality, we will assign
this eigenvalue to the state &;. It can be shown that the
normalized eigenvector corresponding to this state is always

t = 1/ﬁ[1 1 ... 1]T € M", and it is selected as the first
column of the earlier defined transformation matrix T for this
case. Factor (17) governs the dynamics of &;, which is a weighted
average of the positions of the agents. Thus we call &; the weighted
centroid. It is topology dependent, since the weights for the
computation of &; arise from the first row of the inverse of matrix
T. Furthermore, it is evident that s = 0 is a stationary root of
(17) independent of the delays 7; and t,, which implies that the
weighted centroid dynamics is at best marginally stable. The other
factors of characteristic equation (9) are related to the disagreement
dynamics. When these are stable the agents reach a consensus
among themselves.

If the communication topology does not have a spanning tree, 1
becomes multiple eigenvalue of C and Eq. (17) appears as a factor
multiple times within (9). These factors represent the dynamics
of the centroids of the subgroups created by the subgraphs that
are spanned by a tree. If all the disagreement factors are stable,
the swarm members within a subgroup reach stationary positions
which are generally different. Thus a consensus is not achieved.
These facts are stated in the following lemmas.

Lemma 2 (Consensusability in Case A). Assume that the communi-
cation topology has at least one spanning tree. Then, the agents in
the group reach a consensus under protocol A if and only if the fac-
tor (17) is marginally stable and all the remaining factors of (9) are
stable. Furthermore, the agents reach a final group consensus value
given by X = (1/3/n) & (t = 00) = (1/4/n) &, whereas the other
states & (t =o00) =0forj=2,3,...,n

Proof. First, we prove the necessity condition. From the definition
of the new state, & = [£1 (t) & (1) -+ & (D]" = T [xq (©) %2 (t)

- Xp (t)]T. If a consensus is reached, the agents have a common
steady-state value. This implies that lim;— . % (t) = X, j = 1,
2,...,n.Then
lim [£(6) & () £®]

=z '[1 1 - 1] (18)

Since the communication topology is assumed to have a
spanning tree, 1 is a simple eigenvalue of C, corresponding to
the eigenvector t; =1./n[1 1 1]T, the first column
of the earlier Tdefined transformation matrix T. STince T!
[T 1 - 1] = nT 'y = /a1 0 0], Eq. (18)
leads to lim;_,o & (t) = +/nX, which indicates marginal stabil-
ity for (17) and lim;_, o & (t) = 0, forj = 2,3, ..., n, indicating
asymptotic stability in the other factors of (9).

Next, the sufficiency condition is proven. If (17) is marginally
stable and all the other factors in (9) are stable, the steady-
state value of &; (t) will be constant, whereas the remaining
& (t),j=2,3,...,n will tend to zero as t goes to infinity.

Then, lim;_, o [£1 (1) & () -+ - & (D]" = [£0-- .o]T. Going back
to the x domain using the inverse transformation, limt_mo[xl (t)

% (0% ()] = T[E0---0]" = &t = nxty = [7%---X".

This implies consensus. [

Lemma 3 (Topologies Without Spanning Trees). If the given commu-
nication topology does not have a spanning tree, the control logic de-
scribed by (1) cannot result in a consensus.

Proof. Assume that the communication topology does not have
a spanning tree but instead it can be separated into r <n
components, i.e., disjoint subgraphs that are spanned by a tree.
Then matrix C has 1 as a repeated eigenvalue with multiplicity r.
Since Cis stochastic, the eigenvalue 1 is always semi-simple [24], so
there are r linearly independent eigenvectors corresponding to this
eigenvalue. These eigenvectors are assigned to the first r columns

of T matrix and they should have the form t; = [ - -~ @]’
j=1,2,...,r,where aj is 1if agent k belongs to the component
j and 0 otherwise [25]. Each one of these r eigenvalues creates a
factor of the form (17) in the characteristic equation of the system.
These factors represent the dynamics of the transformed states
& (t),j=1,2,3,...,r,which are at best marginally stable; recall
the stationary zero characteristic root of (17).

If the remaining n — r factors are all stable, the steady-state
value of the system in the transformed domain is lim;_, 5o [£1(t)
Et) - & (OE 1) - &DO] = [1132 - 0], Where)_’] #
Vi in general. Recovering the original states usmg the inverse
transformation, lim,_, o0 [X1 (¢) X2 (£) - - - X5 ()] [y1y2 “Vm

T
0- -~0] = yit; + yot, + --- + y,t.. Due to the orthogonal
construction of the t; vectors and the y; # y, condition, the agents
do not reach a common state. For the degenerate case of y; =
Yk, the jth and kth subgroups have a joint steady-state behavior,
but the rest of the group does not. Therefore a consensus is not
achieved. O

According to Lemma 2, the characteristic polynomial given
by q; in (17) is related to the motion of the topology-
dependent centroid. The remaining factors in (9) are related
to the stability of the relative motion of the agents with re-
spect to the expected consensus. A stable swarm consensus is
reached if q; (s, y¢, 1, T2, A1 = 1) is marginally stable and all the
qj (S, ve, 71, T2, Aj), forj = 2, ..., n, are stable.

4.2. Leader tracking ability

The factorization procedure presented in the previous section
also allows us to demonstrate the tracking capabilities of the
control logic in cases B, C, and D.

As opposed to matrix C used in (2), matrix Cin (4), (6) and
(8) is no longer a row-stochastic matrix, since the row sums
corresponding to those agents who have access to the leader are
no longer 1. This means that 1 is no longer an eigenvalue of
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these matrices, and factors of the form (17) do not appear in the
characteristic equation of the system. Then, all the factors created
in this case can be considered as disagreement factors; if they are
stable, the agents reach a common final position.

In order to show that the common position is dictated by the
virtual leader, we use the fact that matrix C can be augmented
with column vector €,,; to create a new row-stochastic matrix.
The proof of the following lemma details the crucial idea.

Lemma 4 (Tracking in Protocols B, C, and D). Assume that the
communication topology has a spanning tree and that the dynamics
of the disagreement factors are all stable. Then, the final positions of
the agents will converge to the position of the virtual leader.

Proof. This proof is similar to that of Lemma 2, but requires some
extra definitions first. Consider the following augmented square
matrix, created by the concatenation of C, ¢, 1, and a vacuous row
vector:

C
G =
|:01><n

where 01,, is a row vector with all its elements being zero. By
construction, G is a row-stochastic matrix. If the communication
topology has a spanning tree, of which the root has to be at
the n + 1th node, since the leader does not receive information
from any agent, it is guaranteed that 1 is an eigenvalue of G with
corresponding normalized eigenvector v = (1/«/n + 1) 1541-

Let S be the matrix that transforms G into its Jordan canonical
form H, S™'GS = H. By construction, the eigenvalues of G are the
same as those of é with the extra 1 added by the row-stochastic
property. Then we have

én+1] € grHixnt (19)

H= [Olen 0“1“] (20)
And the transformation matrix is
T ;lnxl
s— @ , (1)
01xn Nors|

where T is the matrix that creates the Jordan canonical form of

C, as described in Lemma 1. Using (20) and (21), the following
expression can be obtained:

_ ' ¢! ¢ ¢
S ]GS — n+1 n+1
_0]><n A/n+ 1] |:01><n 1
r 1
—1nx1
/n +11
0
L 1xn \/m
(A 0
= lon "1“] (22)

with t;]; € %" representing the first n rows of the last column of
the inverse of matrix S. We then define a new state transformation,
including the positions of the agents and the leader:

[Aé(f) } zsl[ X () }
Env1 () Xnt1 (£)
_ T_l t;l x(t)
B |:01><n \/ﬁ] |:Xn+1 (f)] . (23)

From (23), we can see that the new states éj (t),forj=1---n,will
be a combination of the states of the agents with a contribution

form the leader, whereas the state §n+1 (t) is only affected by the
state of the leader:

|:A§(t) ] _ [T—lx(t) + Xny1 (0) tn+11] (24)
Ent1 (D) V4 1% (1) ’

The dynamics of the first n states is dictated by the disagreement
factors generated by the eigenvalues of CIf they are stable, as
assumed, they vanish, i.e., lim;_, o % (t) =0forj = 1---n.Then,
once the transient behavior has settled, the transformed states
have the form

Aé(oo) _ 0,1 (25)
&nt1 (00) Vit 1xa1 (0) |

When (25) is back transformed to obtain the actual states of the
swarm members, one obtains

[ X(©) ]:S[Aé(t) }
Xn+1 () Ens1 (1)

r 1
T 1n><1
_ Jn+1 0,1
- 0, 1 v+ 1xq11 (t)
xXn
L J/n+1
_1n><1xn+l (t)
= 26
Xner () (26)

indicating that the n agents are tracking the leader. O

The previous result shows that, if the virtual leader settles, the
agents will be able to track it in consensus when protocol B, C, or
D is in use. However, when the leader is constantly moving, there
may be some bounded tracking errors depending on the shape
of the leader trajectory. The analysis of the steady-state tracking
errors and their transient behaviors for different types of leader
maneuver is left for future publications.

Lemmas 2-4 have shown that the proposed control laws
satisfy their intended purposes provided that the factors are
stable. In the following section, we deploy the Cluster Treatment
of Characteristic Roots (CTCR) paradigm to solve this stability
problem with respect to the time delays in an exact (i.e., non-
conservative), exhaustive and efficient manner.

5. Stability analysis using the CTCR paradigm and spectral delay
space domain

This section is devoted to the stability analysis of the individual
factors generated in each case. First, we present a brief review of
the CTCR paradigm and the novel concept of spectral delay space
(SDS). Then, we show how this technique is applied to the specific
problem at hand, making a special distinction in the case of (16a)
and (16b).

5.1. Brief review of the CTCR paradigm

The main philosophy behind the Cluster Treatment of Char-
acteristic Roots (CTCR) paradigm [14,15] is the “clustering” of all
possible imaginary root crossings in the (t1, ;) € R?* domain
for a given linear time-invariant multiple time delay system. It
pertains to any quasi-polynomial characteristic equation, such as
(15a) or (15b). The method starts with the exhaustive determina-
tion of such crossings, and then takes advantage of their special
features. The following paragraphs present some preparatory def-
initions and the key propositions of the CTCR paradigm.
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delays, 7j, increases by ¢, 0 < ¢ < 1, while all the others remain

direction of transition of the imaginary root as only one of the
constant:

are called the offspring hypercurves.
Definition 3 (Root Tendency, RT). The root tendency indicates the

<

i, o € R and satisfy the constraint 0 < Tw < 27,

are called the kernel curves. The points on this curve contain

X = —0.233 £ 0.255i. Red: building hypercurves; blue: reflection hypercurves. (For interpretation of the references to colour in this figure legend, the reader is referred to

Fig. 1. SDS representation of the stability switching curves of six agents interacting under protocol A. (a) . = 1,(b) A = —0.846, (c) . = 0.295, (d) A = —0.003, and (e)
the web version of this article.)

the points (11, T,) € M2+, exhaustively, which cause an imaginary
the smallest delay compositions which correspond to all possible

imaginary roots.
kernel curve by the following pointwise nonlinear transformation,

Definition 1 (Kernel Hypercurves gg). The curves that consist of all
Definition 2 (Offspring Curves g). The curves obtained from the

root s
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Tcom

Fig. 2. Stability map for protocol A and in the domain of the time delays. The shaded
zone represents the stable region.

Positions

, Velocities

Fig. 3. Traces of the agents operating under protocol A with a stable delay
combination corresponding to point a in Fig. 2.

There are two overarching propositions which support the CTCR
paradigm. We will state them here from [ 14] without proof.

Proposition 1 (Small Number of Kernel Hypercurves). The number
of kernel hypercurves is manageably small. To be specific, for a linear
time-invariant time delay system of state dimension n, the maximum
possible number of kernel hypercurves is n> [26].

Proposition 2 (Invariant Root Tendency Property). Take an imagi-
nary characteristic root, wi, caused by any one of the infinitely many
grid points on the kernel and offspring hypercurves in (t;, T,) € R+
defined by expression (27). The root tendency of these imaginary roots
remains invariant from one ‘offspring hypercurve’ to the other when
one of the delays is kept constant. That is, the root tendency with re-
spect to the variations of 1 (or 1) is invariant from the kernel to the
corresponding offspring as t, (or 1) is fixed.

5.2. Spectral delay space (SDS)

As we mentioned earlier, the first step required for the
deployment of the CTCR paradigm is to find exhaustively all the
potential stability switching curves, i.e., the kernel and offspring. A
new procedure is described in this segment of the preparations.
It is a formalized treatment from a recent thesis work [15,27].
The procedure is developed on a new domain: the spectral delay
space (SDS). It is defined by the coordinates v; = tjw for every

Positions

Velocities

[ T |

Fig. 4. Traces of the agents operating under protocol A with an unstable delay
combination corresponding to point b in Fig. 2.

point (71, 7o) € R%* on the kernel or the offspring curves. This
transformation presents a conditional mapping: if a delay set
(11, 7o) creates an imaginary root wi, (i.e., if the point is on the
kernel or the offspring curves) then (7w, T,) forms a point in the
SDS. In contrast, (1, 72) points that do not generate an imaginary
root have no representation in the SDS.

The main advantage of the SDS is that the representation
of the kernel curve in the SDS, denoted as p3°° and called
the building curve, is confined into a square of edge length 2.
Then, it is only necessary to explore a finite domain to find
the representation of the building curves in the SDS. This finite
domain is known as the building block (BB), i.e., 2t x 27 squares,
as per (27). Another advantage of these coordinates is that the
transitions from the building to the reflection curves (i.e., the
representation of the offspring curves in the SDS) is achieved
simply by stacking the copies of the BB as opposed to using
the pointwise nonlinear transformation (27), which results in an
undesirable shape distortion. There are several other intriguing
properties of the SDS and BB concepts which can be found in [15].

5.3. Stability analysis of the factors

We now deploy the CTCR method to the factors of the
characteristic equation, using the SDS concept. For this, we follow
the mathematical procedure described in the Appendix of [27]
which evaluates the building curves.

As an example, let us take the factor in (15a). For a certain
eigenvalue A; and parameter y, it can be expressed in a generic
form (suppressing A; and y terms) as

gi(s, 71, 2) =d1 (8) +da () e " +d3(s)e” ™ =0, (29)

where the d;(s),i = 2, 3, terms represent the expressions multiply-
ing the respective exponential terms, and d(s) is the polynomial
of s free of transcendental terms.

In order to obtain the imaginary roots of (29), s = wi is
substituted. Then, the exponential terms are replaced by

—Twi

e =cos (vg) —isin(vy), ve=Tvw, k=12, (30)

and the sine and cosine functions are expressed in parameterized
form of the half-angle tangent function:

cos (vg) ! —z,f sin (vg) 2
V) = ——, in(y) = ——,
YTy T2
7, = tan (v /2) . (31)
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qj (w, 21, 23)

[Qj (w,21,22)

where f(z1, z2) and gi(z1, z2) symbolize the coefficients of the

powers of w in the respective equations. The condition for (33a)

simultaneously:

Re
Im

T,I(U

(32)

0,

=0

Fig. 5. SDS representation of the stability switching curves of six agents interacting under protocol B or C.
k

and (e) A = 0.011£0.032i. Red: building hypercurves

to the web version of this article.)
in y, A, z1,and z,. Notice that (15a) is quadratic in free s terms;

thus the power of wi goes up to 2 in (32). If there is a solution
® € R to (32), it will represent an imaginary root of (29). For

where ¢y, is the coefficient of the kth power of wi, parameterized
such a root, both the real and imaginary parts of (32) must be zero

Eq. (29) can now be written as a polynomial in w:

2
g (w,21,22) = Z c (v, A, 21, 22) (i)
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Fig. 6. Stability map for protocols B and C in the domain of the time delays. The
shaded zone represents the stable region.

and (33b) to share a common root is simply stated using a
Sylvester’s resultant matrix:

f(z1,22) fi(@z,2) fo(z,22) 0
M = 0 L@,z fi@,z) f(z,22) (34)
£ (21,22) &1(z21,22) 8 (21,22) 0 ’
0 2(z1,22) &1 (z1,22) & (21, 22)

In order for (33a) and (33b) to be satisfied, M should be singular.
This results in the following expression in terms of z; and z;:

F (z1,2) dgdet (M) = F (tan (v1/2) , tan (v/2)) = 0, (34a)

which constitutes a closed-form description of the kernel curves
in the SDS (vq, v;), i.e., the building curves. To obtain its graphical
depiction, one of the parameters, say v, can be scanned in the
range of [0, 27r], and the corresponding vy values are calculated
again in [0, 27r]. Notice that every point (vq, v,) on these curves
brings an imaginary characteristic root at +wi which can be
evaluated from (33a) or (33b). Through this process we create a
continuous sequence of (vi, vo, ) along the kernel curves. We
then back transform from the SDS domain (vq, v;) to the delay
space (11, T2), using the inverse transformation of (30) with the
appropriate w values. This generates the kernel and offspring
curves.
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Fig. 8. Traces of the agents in the consensus regulation case with an unstable delay
combination corresponding to point b in Fig. 6.

The kernel and offspring curves divide the (77, ;) domains
into regions of possible stability and instability. To determine the
stability nature of these regions, we start from the non-delayed
system (i.e., 71 = 7, = 0). The quadratic expression (15a) is always
stable because A; < 1and y > 0 (except the case when A; = 1,
which creates double roots at the origin). If one also considers the
non-delayed behavior of the factor given in Eq. (15b), it reads as

g (s, v, 11,12, &) =s* +25* (s + 1) (1 — Re (%))
+ (ys+ 1) (1 — 2Re (i) + Mz) —o. (35)

Conventional deployment of Routh’s array results in the following
necessary and sufficient condition for this non-delayed behavior to
be stable:

> y = max I 3,)*
vevs= 471\ (1 —Re(A))((Re(A)) — 1)% + Im(Aj)z)'

j=1-n

(36)

This bound is clearly known to facilitate the selection of a proper
y, as we will demonstrate in the examples later.

Since the homogeneous dynamics of protocols A, B, and C are
identical, (36) applies to all three of them. A similar condition can
be easily obtained for protocol D using Eq. (16b).

Starting from the non-delayed case, one can follow a practical
path (for instance parallel to t; axis, and varying only t5),
and determine the root tendencies on the kernel hypersurfaces

Posifions

Velocities

Fig. 7. Traces of the agents operating under protocols B and C with a stable delay combination corresponding to point a in Fig. 6. (a) Consensus regulation (protocol B) case.

(b) Tracking with full access (protocol C) case.
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Fig. 9. SDS representation of the stability switching curves of six agents interacting under protocol D. (a) A = 0.731, (b) A = —0.697, (c) A = —0.388, (d) > = 0.332, and
(e) 2 = 0.011 &£ 0.032i. Red: building hypercurves; blue: reflection hypercurves. (For interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)

(which are in small number as per Proposition 1). The root
tendency invariance property (Proposition 2 in Section 5.1) is then
deployed from one region to the other. This yields a complete and
exact stability outlook of the factors in the space of the delays,
(11, 2) € N2,

5.4. The special case D: neutral factors

The application of the CTCR to the factors generated by
protocols A, B, and C has no particularities. They are retarded-type

multiple time delay systems, and their stability analysis is performed
as explained above. The factors created by protocol D, however,
belong to a special case, and they need to be treated differently.

As mentioned earlier, in (8), (16a) and (16b) the highest
derivative of the state, and the highest degree of s, are accompanied
by delay terms. This fact makes this system a neutral-type multiple
time delay System (NMTDS), the generic form of which can be
presented as

X(t) =AX(t) +Bix(t — 71) + ByX(t — 1) + DX (t — o). (37)
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Fig. 10. Stability map for protocol D in the domain of the time delays. The shaded
zone represents the stable region.

The feature of an NMTDS that discriminates it from the retarded
class is that an NMTDS which is asymptotically stable for the non-
delayed case may not be stable for infinitesimally small delays
while the retarded class is always stable. If that is the case, the
system will have infinitely many unstable characteristic roots
for any value of the delays, and further stability analysis is not
required.

A necessary condition for an NMTDS system like (37) to be
stable for small delays (also known as the delay stabilizability
feature), is that the discrete operator

X({t)—Dx(t—1) =0 (38)

must be stable. This condition can be obtained as a consequence
of the application of the CTCR propositions, as proven in [19]. In
essence, the stability of (38) is guaranteed if the spectral radius of
matrix D is less than 1. In the case of the subsystems created after
the factorization procedure is applied to case D, we observe that
the D matrix is either

"y [g (1’] (39)

for real eigenvalues of matrix C, or

Re (%) —Im (%) 00
|:—Im () Re(y) |®lo 1 (40)
in the case of complex conjugate eigenvalues. By using Gersh-
gorin’s disk theorem, it is easy to see that the norms of the eigen-
values of C are always strictly less than 1, and therefore the spectral

radius of matrices (39) and (40) is less than 1. This implies that the
factors created by protocol D are delay stabilizable.

Once this stabilizability condition is satisfied, the deployment
of the CTCR for this case follows exactly the same steps as in
the retarded systems, described in the previous segment. The end
result, again, is a unique non-conservative and exhaustive stability
table for these group dynamics in the domain of the independent
delays. The following section presents some numerical examples
which validate the results.

6. Example cases

The results of some numerical simulations are presented here
to validate the analytical developments. We borrow the examples
from [8]. A group of six agents is considered. The following
adjacency matrix is used for the leaderless consensus problem
(case A):

0 5 0 25 0 25
8 001 0 1 0
0 2 0 2 3 3

Ar=17 0 1 0 8 ol (41)
0 12 0 18 0 7
5 1.0 2 2 0

and for the leader-follower examples (cases B, C, and D) we use

01 0 1 00 1
8 0 1 0 10 0
0O 3 0 0 0 3 4

Art1=17 0 0 0 1 0 8 (42)
0 12 0 18 0 7 0
5 1.0 0 4 0 0

6.1. Leaderless consensus

Matrix C generated by (41) has eigenvalues 1, 0.295, —0.003,
—0.846,and —0.22340.255i. The control gainis selectedas y = 1,
well beyond the lower bound y = 0.192 defined by (36). After
the procedure described in Section 5 is applied, the building and
reflection curves in SDS for each one of the factors are obtained.
They are presented in Fig. 1.

Then, by mapping these curves to the (1, 7;) domain, and to the
original (ti;, Teom) Space, the stability tables for all the factors in (9)
are created. These stability tables are later superposed to generate
the complete stability map for the system, as displayed in Fig. 2.

To validate this stability analysis, we reproduce one of
the example cases presented in [8]. The point a in Fig. 2
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Fig. 11. Traces of the agents operating under protocol D. (a) Stable delay combination, point a in Fig. 10; (b) unstable delay combination, point b in Fig. 10.
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(tin = 0.3, T.om = 0.1) represents a stable behavior. Fig. 3 shows
the traces of the agents, which are obtained using the same initial
conditions as in the referred paper. It is identical to Fig. 2(a) in [8].

Furthermore, Fig. 4 shows the traces for delay values selected at
point b in Fig. 2. This point is outside the shaded region, and thus
it is an unstable operating point, as is demonstrated by the traces
in Fig. 4.

Certainly, Fig. 2 is a more comprehensive and exhaustive
stability result than that presented by Theorem 5.1 of [8]. This exact
and exhaustive stability map is made possible by deploying the
unique features of the CTCR paradigm.

6.2. Consensus regulation and tracking with full access

The stability analysis for cases B and C is the same, since the
homogeneous parts of systems (4) and (6) are identical. Matrix
C created from (42) has eigenvalues —0.6972, —0.3883, 0.3323,
0.7311, and —0.011 £ 0.0322i. The SDS representation of the
imaginary crossings for these factors is given in Fig. 5, and the
corresponding stability map in the domain of the delays is in Fig. 6.
Again, the stability results presented here are more precise than
those in [8], and we do not require the pursuit of a different stability
criterion for each protocol.

We also reproduce the tracking results from [8], using x4 (t) =
—0.2 + 0.1t for case B, consensus regulation (constant leader
velocity), and x4 (t) = —0.2 + 0.3t — 1.6sin (t/4) for case C,
consensus tracking with full access to the virtual leader; the traces
of the agents in these cases are shown in Fig. 7. They are operating
with a delay composition of (z;; = 0.3, T,m = 0.1), corresponding
to point a in Fig. 6.

As an example of an unstable delay combination, Fig. 8 shows
the traces of the agents operating under protocol B, with a delay
combination of (tj; = 0.3, 7w = 1.4), point b in Fig. 6, which
clearly represents an unstable operating point.

6.3. Consensus tracking with partial access

For case D, the same matrix (42) is used. Here, of course, the
stability outlook is different from that of the previous subsection
because of the different structure of the factors. The SDS represen-
tation for this case is shown in Fig. 9, and the corresponding stabil-
ity chart in the domain of the delays is given in Fig. 10. In this figure
we also visit the “delay scheduling” concept [16,17]. Imagine that
the present delays are (7, = 0.4, t,m = 0.1), and that this setting
imposes unstable consensus according to Fig. 10. The CTCR method
provides the control option of artificially prolonging the delays to
(tin = 0.4, 1om = 0.4) in order to regain the stability. Since this is
a practicable operation, such delay scheduling steps can be used as
an effective tool in multi-agent dynamics. We leave further details
of this deployment to other investigations, due to space limitations
here.

Notice again that in this paper we have considered both time
delays for case D, as opposed to the single delay treatment
of [8], where the agents were assumed to be affected only by the
communication delay. This is a demonstrable advantage of using
the CTCR paradigm over the Lyapunov-based techniques. However,
the shaded region in Fig. 10 includes the axis t;; = 0, meaning
that in this case the system is stable independently of tyy. This
verifies the result of Theorem 5.4 in [8], where the system is proven
to be delay-independent stable provided that some conditions are
satisfied. That is obviously the case for the example case selected
and reproduced here.

Fig. 11 shows the traces of the agents tracking the virtual leader
for stable (Fig. 11(a)) and unstable (Fig. 11(b)) delay compositions,
belonging to points a and b in Fig. 10, respectively.

7. Conclusion

This paper investigates four different consensus protocols for
multi-agent systems, from several novel perspectives. The agents
communicate through a directed network. Their dynamics is
affected by a communication delay and an input delay which are
rationally independent. The first delay influences the information
coming from the peer agents, whereas the second one appears in
both its own state and the state of the informers.

Earlier performed conservative stability analysis, based on the
Razumikhin theorem, is replaced here with a novel technique that
decouples the dynamics into a set of second-order and fourth-
order subsystems. Then the CTCR paradigm is deployed on these
subsystems which are discriminated from each other only by a
parameter. These parameters happen to be the eigenvalues of a
certain matrix which is related to the communication topology
only. Utilizing these eigenvalues, we factorize the characteristic
equation of the group dynamics in some generic primitives
(factors). We then use a practical paradigm, CTCR, for stability
assessment of each factor.

The deployment of the CTCR takes advantage of the spectral
delay space concept to generate an exact and exhaustive stability
map of each factor in the domain of the time delays efficiently.
Example cases validate the technique.

References

[1] R. Olfati-Saber, R. Murray, Consensus problems in networks of agents with
switching topology and time delay, IEEE Transactions on Automatic Control
49 (8) (2004) 1520-1533.

[2] W. Ren, RW. Beard, Consensus seeking in multi-agent systems under
dynamically changing interaction topologies, IEEE Transactions on Automatic
Control 50 (5) (2005) 655-661.

[3] Y. Sun, L. Wang, Consensus problems in networks of agents with double
integrator dynamics and time varying delays, International Journal of Control
82(9)(2009) 1937-1945.

[4] Y. Sun, L. Wang, Consensus of multi-agent systems in directed networks with
non-uniform time-varying delays, IEEE Transactions on Automatic Control 54
(7)(2009) 1607-1613.

[5] R. Cepeda-Gomez, N. Olgac, An exact methodology for the stability analysis of
linear consensus protocols with time delay, IEEE Transactions on Automatic
Control 56 (7) (2011) 1734-1740.

[6] R.Cepeda-Gomez, N. Olgac, Exhaustive stability analysis in a consensus system
with time delay and irregular topologies, International Journal of Control 84
(4) (2011) 746-757.

[7] R. Cepeda-Gomez, N. Olgac, Consensus analysis with large and multiple
communication delays using spectral delay space (SDS) concept, International
Journal of Control 84 (12) (2011) 1996-2007.

[8] Z. Meng, W. Ren, Y. Cao, Y. Zheng, Leaderless and leader-follower consensus
with communication and input delays under a directed network topology, IEEE
Transactions on Systems Man and Cybernetics—Part B 41 (1) (2011) 75-88.

[9] Y. Tian, C. Liu, Consensus of multi-agent systems with diverse input and
communication delays, IEEE Transactions on Automatic Control 53 (2008)
2122-2128.

[10] Y. Tian, C. Liu, Robust consensus of multi-agent systems with diverse input
delays and asymmetric interconnection perturbations, Automatica 43 (2009)
1347-1353.

[11] J.K. Hale, S.M. Verduyn-Lunel, Introduction to Functional Differential Equa-
tions, Springer Verlag, New York, 1993.

[12] U. Miinz, A. Papachristodoulou, F. Allgower, Delay robustness in consensus
problems, Automatica 45 (2010) 1252-1265.

[13] N.Olgac, R. Sipahi, The cluster treatment of characteristic roots and the neutral
type time-delayed systems, Journal of Dynamics, Measurement and Control—
Transactions of the ASME 127 (2005) 88-97.

[14] R. Sipahi, N. Olgac, A unique methodology for the stability robustness of
multiple time delay systems, Systems and Control Letters 55 (10) (2006)
819-825.

[15] H. Fazelinia, R. Sipahi, N. Olgac, Stability robustness analysis of multiple time-
delayed systems using building block concept, IEEE Transactions on Automatic
Control 52 (5) (2007) 799-810.

[16] N. Olgac, R. Sipahi, A.F. Ergenc, Delay scheduling, an unconventional use of
time delay for trajectory tracking, Mechatronics 17 (4-5) (2007) 199-206.

[17] N. Olgac, AF. Ergenc, R. Sipahi, Delay scheduling: a new concept for
stabilization in multiple time delay systems, Journal of Vibration and Control
11(9)(2005) 1159-1172.



R. Cepeda-Gomez, N. Olgac / Systems & Control Letters 62 (2013) 482-495 495

[18] R.D. Schaefer, An Introduction to Nonassociative Algebras, Dover, New York,
1996.

[19] N. Olgac, T. Vyhlidal, R. Sipahi, A new perspective in the stability assessment
of neutral systems with multiple and cross-talking delays, SIAM Journal of
Control and Optimization 47 (1) (2008) 327-344.

[20] W. Michiels, T. Vyhlidal, An eigenvalue based approach for the stabilization of
linear time-delay systems of neutral type, Automatica 41 (2005) 991-998.

[21] O. Toker, H. Ozbay, Complexity issues in robust stability of linear delay-
differential systems, Mathematics of Control, Signals and Systems 9 (4) (1996)
386-400.

[22] M. Marcus, H. Minc, A Survey of Matrix Theory and Matrix Inequalities, Dover,
New York, 1996.

[23] H.E. Bell, Gershgorin’s theorem and zeros of polynomials, American Mathe-
matical Monthly 74 (1965) 292-295.

[24] R.Agaev,P.W. Chebotarev, On the spectra of nonsymmetric Laplacian matrices,
Linear Algebra and its Applications 399 (2005) 157-168.

[25] N. Biggs, Algebraic Graph Theory, Cambridge University Press, New York,
1993.

[26] AF. Ergenc, N. Olgac, H. Fazelinia, Extended Kronecker summation for cluster
treatment of LTI systems with multiple delays, SIAM Journal on Control and
Optimization 46 (1) (2007) 143-155.

[27] H.Fazelinia, A novel stability analysis of systems with multiple time delays and
its application to high speed milling chatter, Ph.D. Dissertation, University of
Connecticut, Storrs, Connecticut, 2007.



	Exact stability analysis of second-order leaderless and leader--follower consensus protocols with rationally-independent multiple time delays
	Introduction
	Problem statement and control laws
	Case A, Leaderless consensus
	Case B, Consensus regulation with constant final velocity
	Case C, Consensus tracking with full access to the virtual leader
	Case D, Consensus tracking with partial access to the virtual leader

	Factorization of the characteristic equation
	Consensusability and tracking capabilities
	Consensusability of protocol  A 
	Leader tracking ability

	Stability analysis using the CTCR paradigm and spectral delay space domain
	Brief review of the CTCR paradigm
	Spectral delay space (SDS)
	Stability analysis of the factors
	The special case  D : neutral factors

	Example cases
	Leaderless consensus
	Consensus regulation and tracking with full access
	Consensus tracking with partial access

	Conclusion
	References


