IMPLEMENTACIÓN DE NUEVAS TECNOLOGIAS DE TOLERANCIAS GEOMÉTRICAS Y DIMENSIONALES PARA GARANTIZAR LOS REQUERIMIENTOS DE PRECISIÓN EN EL MOMENTO DE EMSAMBLE DE LOS COMPONENTES DEL ROBOT DELTA FIM-USTA.

Jeferson Corredor Salcedo

Director:
Ing. Jorge Andrés García Barbosa
Codirector:
Ing. Ubaldo García Zaragoza

UNIVERSIDAD SANTO TOMÁS
FACULTAD DE INGENIERÍA
PROGRAMA INGENIERÍA MECÁNICA
BOGOTÁ D. C.
2014
IMPLEMENTACIÓN DE NUEVAS TECNOLOGÍAS DE TOLERANCIAS GEOMÉTRICAS Y DIMENSIONALES PARA GARANTIZAR LOS REQUERIMIENTOS DE PRECISIÓN EN EL MOMENTO DE EMSAMBLE DE LOS COMPONENTES DEL ROBOT DELTA FIM-USTA.

Jeferson Corredor Salcedo
Cód.: 1018451537

Trabajo de grado para optar al título de Ingeniero Mecánico

Director:
Ing. Jorge Andrés García Barbosa
Codirector:
Ing. Ubaldo García Zaragoza

UNIVERSIDAD SANTO TOMÁS
FACULTAD DE INGENIERÍA
PROGRAMA INGENIERÍA MECÁNICA
BOGOTÁ D. C.
2014
Nota de aceptación

Jurado

Jurado
AGRADECIMIENTOS

- Al Ingeniero Jorge Andrés García, por su apoyo incondicional y su acompañamiento durante la realización de mi trabajo de grado.

- A nuestras familias, amigos y compañeros, quienes aportaron a su manera para que este proyecto fuera posible.
Tabla de Contenido

Objetivos .. 10

GENERAL ... 10

ESPECÍFICOS ... 10

Resumen ... 11

INTRODUCCION .. 12

1. **Modelamiento matemático para análisis de error de ensamble del sistema cinemático del robot delta.** .. 15
 1.1. Modelo matemático de transformación de matrices homogéneas de una de las cadenas cinemáticas para análisis de error de tolerancias de la cadena cinemática...................... 15
 1.1.1 Modelo matemático .. 16
 1.1.2 Transformación de matrices .. 16
 1.2. Análisis del margen de Error de tolerancias de una de las cadenas cinemáticas por medio de Matlab y NX ... 25
 1.3. Comparar el margen de error de las tolerancias de ensamblaje de una de las cadenas cinemáticas del robot delta ... 31
 1.4. Determinación de rango de tolerancias de cada uno de los componentes de la cadena cinemática ... 35
 1.5. Análisis del margen de Error de tolerancias del sistema cinemático del robot delta para determinar la ubicación del efector final por medio de NX siemens 40
 1.6. Determinación del rango de las tolerancias del sistema cinemático del robot delta para determinar la ubicación del efector final .. 50

2. **Generación de planos con especificaciones de tolerancias geométricas y dimensionales de cada uno de los componentes de la cadena cinemática** ... 55
 2.1. Generación de planos con especificaciones de tolerancias geométricas y dimensionales de cada uno de los componentes del robot delta implementando GD&T (Geometric Dimensioning and Tolerancing) ... 55
 2.2 Generar hoja de procesos de cada uno de los componentes de la cadena cinemática 87
Índice de Imágenes

IMAGEN 1. ROBOT DELTA ... 12
IMAGEN 2. TOLERANCIA IDEAL DE UNO DE LOS BRAZOS DEL ROBOT DELTA ... 13
IMAGEN 3. ROBOT DELTA UNIDIMENSIONAL .. 14
IMAGEN 4. ANÁLISIS DE UN BRAZO DEL ROBOT ... 15
IMAGEN 5. REPRESENTACIÓN DE UNA TRASFORMACIÓN .. 17
IMAGEN 6. ILUSTRACIÓN DE LA ECUACIÓN ... 20
IMAGEN 7. ILUSTRACIÓN DE COMPOSICIÓN TRANSFORMACIONES .. 21
IMAGEN 8. ÁNGULOS DE ROTACIÓN DE UNO DE LOS BRAZOS DEL ROBOT DELTA 22
IMAGEN 9. BRAZO SIMPLIFICADO DEL ROBOT DELTA ... 25
IMAGEN 10. ACTUADOR 1 CON SU LONGITUD NOMINAL .. 26
IMAGEN 11. ACTUADOR 2 CON SU LONGITUD NOMINAL .. 26
IMAGEN 12. EFECTOR FINAL CON SU LONGITUD NOMINAL ... 27
IMAGEN 13. BRAZO MECÁNICO CON SUS DIMENSIONES LINEALES ... 27
IMAGEN 14. ARTICULACIÓN DE UNO DE LOS BRAZOS DEL ROBOT CON SU DESVIACIÓN 28
IMAGEN 15. BRAZO MECÁNICO SIN TOLERANCIAS ... 29
IMAGEN 16. BRAZO MECÁNICO CON TOLERANCIAS .. 29
IMAGEN 17. BRAZO MECÁNICO CON SUS RESPECTIVOS ÁNGULOS .. 29
IMAGEN 18. BRAZO UNIDIMENSIONAL PARECIDO AL MODELO REAL .. 35
IMAGEN 19. BRAZO UNIDIMENSIONAL SIN TOLERANCIAS Y CON ELLAS .. 36
IMAGEN 20. PRUEBA 1 MÁXIMO RADIO DE TRABAJO DEL EFECTOR FINAL ... 40
IMAGEN 21. PRUEBA 2 MÁXIMO RADIO DE TRABAJO DEL EFECTOR FINAL ... 41
IMAGEN 22. PRUEBA 3 MÁXIMO RADIO DE TRABAJO DEL EFECTOR FINAL ... 42
IMAGEN 23. PRUEBA 4 CAMBIO DE RADIO DE TRABAJO DEL EFECTOR FINAL .. 43
IMAGEN 24. PRUEBA 5 CAMBIO DE RADIO DE TRABAJO DEL EFECTOR FINAL .. 44
IMAGEN 25. PRUEBA 6 CAMBIO DE ALTURAS E IGUAL RADIO DE TRABAJO DEL EFECTOR FINAL 45
IMAGEN 26. PRUEBA 7 CAMBIO DE ALTURAS E IGUAL RADIO DE TRABAJO DEL EFECTOR FINAL 46
IMAGEN 27. ROBOT DELTA ANÁLISIS DE RANGO DE TOLERANCIAS ... 50
IMAGEN 28. DIMENSIONES ACTUADOR INICIAL ... 52
IMAGEN 29. DIMENSIÓN PUNTA ESfÉRICA. .. 52
IMAGEN 30. DIMENSIÓN ACTUADOR PARAL ... 53
IMAGEN 31. DIMENSIÓN PARAL. .. 54
IMAGEN 32. DIMENSIONES EFECTOR FINAL .. 54
IMAGEN 33. IMPLEMENTACION DE PMI .. 55
IMAGEN 34. MODELO IMPLEMENTAR GD&T Y PMI .. 56
IMAGEN 35. TOLERANCIAS GEOMÉTRICAS .. 57
IMAGEN 36. TOLERANCIA GEOMÉTRICA ... 58
Índice de tablas

<table>
<thead>
<tr>
<th>Tabla</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabla 1</td>
<td>Datos de ángulos para Matlab</td>
<td>30</td>
</tr>
<tr>
<td>Tabla 2</td>
<td>Margen de error de tolerancias NX y Matlab</td>
<td>30</td>
</tr>
<tr>
<td>Tabla 3</td>
<td>Prueba 1 datos de ángulos para Matlab</td>
<td>31</td>
</tr>
<tr>
<td>Tabla 4</td>
<td>Prueba 1 margen de error de tolerancias NX y Matlab</td>
<td>31</td>
</tr>
<tr>
<td>Tabla 5</td>
<td>Prueba 2 datos de ángulos para Matlab</td>
<td>32</td>
</tr>
<tr>
<td>Tabla 6</td>
<td>Prueba 2 margen de error de tolerancias NX y Matlab</td>
<td>32</td>
</tr>
<tr>
<td>Tabla 7</td>
<td>Prueba 3 datos de ángulos para Matlab</td>
<td>33</td>
</tr>
<tr>
<td>Tabla 8</td>
<td>Prueba 3 margen de error de tolerancias NX y Matlab</td>
<td>33</td>
</tr>
<tr>
<td>Tabla 9</td>
<td>Prueba 4 datos de ángulos para Matlab</td>
<td>34</td>
</tr>
<tr>
<td>Tabla 10</td>
<td>Prueba 4 margen de error de tolerancias NX y Matlab</td>
<td>34</td>
</tr>
<tr>
<td>Tabla 11</td>
<td>Coordenadas de brazo unidimensional</td>
<td>36</td>
</tr>
<tr>
<td>Tabla 12</td>
<td>Margen de error de tolerancias NX</td>
<td>37</td>
</tr>
<tr>
<td>Tabla 13</td>
<td>Prueba 1 cambio de signo de las tolerancias de los actuadores</td>
<td>37</td>
</tr>
<tr>
<td>Tabla 14</td>
<td>Prueba 2 cambio de signo de las tolerancias de los actuadores</td>
<td>38</td>
</tr>
<tr>
<td>Tabla 15</td>
<td>Prueba 3 cambio de signo de las tolerancias de los actuadores</td>
<td>38</td>
</tr>
<tr>
<td>Tabla 16</td>
<td>Análisis de tolerancias cambio de signo</td>
<td>39</td>
</tr>
<tr>
<td>Tabla 17</td>
<td>Tolerancias adecuadas para el robot Delta</td>
<td>39</td>
</tr>
<tr>
<td>Tabla 18</td>
<td>Prueba 1 toma de datos del robot Delta</td>
<td>41</td>
</tr>
<tr>
<td>Tabla 19</td>
<td>Prueba 2 toma de datos del robot Delta</td>
<td>42</td>
</tr>
<tr>
<td>Tabla 20</td>
<td>Prueba 3 toma de datos del robot Delta</td>
<td>43</td>
</tr>
<tr>
<td>Tabla 21</td>
<td>Prueba 4 toma de datos del robot Delta</td>
<td>44</td>
</tr>
<tr>
<td>Tabla 22</td>
<td>Prueba 5 toma de datos del robot Delta</td>
<td>45</td>
</tr>
<tr>
<td>Tabla 23</td>
<td>Prueba 6 toma de datos del robot Delta</td>
<td>46</td>
</tr>
<tr>
<td>Tabla 24</td>
<td>Prueba 7 toma de datos del robot Delta</td>
<td>47</td>
</tr>
<tr>
<td>Tabla 25</td>
<td>Verificación del cambio de tolerancias con el signo</td>
<td>47</td>
</tr>
<tr>
<td>Tabla 26</td>
<td>Prueba 1 cambio de signo de las tolerancias de los actuadores del robot Delta</td>
<td>48</td>
</tr>
<tr>
<td>Tabla 27</td>
<td>Prueba 2 cambio de signo de las tolerancias de los actuadores del robot Delta</td>
<td>48</td>
</tr>
<tr>
<td>Tabla 28</td>
<td>Prueba 3 cambio de signo de las tolerancias de los actuadores del robot Delta</td>
<td>49</td>
</tr>
<tr>
<td>Tabla 29</td>
<td>Análisis de tolerancias del robot Delta</td>
<td>50</td>
</tr>
<tr>
<td>Tabla 30</td>
<td>Tolerancias adecuadas para el robot Delta</td>
<td>51</td>
</tr>
<tr>
<td>Tabla 31</td>
<td>Verificación de datos del robot Delta</td>
<td>51</td>
</tr>
<tr>
<td>Tabla 32</td>
<td>Aplicaciones de condición de material</td>
<td>65</td>
</tr>
<tr>
<td>Tabla 33</td>
<td>Inspección de calidad de agujeros</td>
<td>69</td>
</tr>
<tr>
<td>Tabla 37</td>
<td>Inspección de calidad de agujeros</td>
<td>71</td>
</tr>
<tr>
<td>Tabla 38</td>
<td>Tolerancia punta esférica</td>
<td>74</td>
</tr>
<tr>
<td>Tabla 39</td>
<td>Tolerancia para agujero</td>
<td>77</td>
</tr>
</tbody>
</table>
TABLA 40 TOLERANCIAS ESTABLECIDAS PARA AGUJERO.
Objetivos

GENERAL

Planificar el proceso de manufactura de cada uno de los componentes de la cadena cinemática del robot delta FIM-USTA, con base en las especificaciones de tolerancias geométricas y dimensionales, para garantizar precisión en el momento de ensamble.

ESPECÍFICOS

- Realizar modelamiento matemático para análisis de error de ensamble del sistema cinemático del robot delta.
- Generar documentación de manufactura para la fabricación de componentes del robot delta.
Resumen

Se realizó el modelo matemático con base en matrices de transformación homogéneas para verificar la posición real del efector final respecto a un punto de origen y determinar la respectiva tolerancia dimensional de la cadena cinemática del robot delta. Se realizan varias pruebas en el proyecto, primero se realiza una cadena cinemática simplificada en uno de los brazos del robot delta para saber el rango de tolerancia adecuado para su espacio de trabajo, después se realizan pruebas con el robot delta con el fin de saber las tolerancia adecuadas que no sobrepase un radio de 0.1 mm en el efector final.

Se implementa una herramienta llamada PMI (PRODUCT AND MANUFACTURING INFORMATION) su función está en la acotación de un modelo CAD en 3D, esta herramienta tiene una opción llamada GD&T (Geometric Dimensioning and Tolerancing) esta consiste en dar un criterio de tolerancias geométricas y dimensionales a las acotaciones del modelo en 3D, esta herramienta da una mayor claridad en las modificaciones que sean necesarias. Con ASME Y14.5 realizamos los cálculos necesarios para dar una tolerancia a las partes de la cadena cinemática más críticas del sistema y dar un criterio de calidad con la medición dimensional de estas partes.
INTRODUCCION

Una máquina de arquitectura paralela es un sistema mecánico que utiliza cadenas cinemáticas independientes, controlados por ordenadores para apoyar una plataforma o efector. La importante de una máquina de arquitectura paralela son los movimientos de los actuadores de forma independiente. La función de una máquina de arquitectura paralela es realizar operaciones con una mayor rapidez, flexibilidad, precisión y libertad de movimiento, las ventajas aplicadas a este tipo de máquina son la operación a altas velocidades y se manejan varios grados de libertad. La aplicación de una máquina de arquitectura paralela está en la industria farmacéutica, de alimentos, automotriz. El concepto de una máquina de arquitectura paralela se utiliza en el robot delta GEAMEC de la universidad Santo Tomas como se observa en la imagen 1.

Imagen 1. Robot Delta

Fuente: (Autor)
Al realizar el análisis cinemático de uno de los brazos del robot delta es necesario explicar que es un margen de error y una tolerancia, un margen de error o error numérico es una medición respecto a un punto de origen entre un valor teórico y uno experimental para hallar el error entre estas dos magnitudes. La tolerancia es una herramienta numérica utilizada en el diseño de las piezas mecánicas con el fin de colocar su respectivo margen numérico en las longitudes de diseño con respecto a los estándares de fabricación.

En el desarrollo de este trabajo de grado se explica las delimitaciones del proyecto que se enfoca en el análisis de tolerancias en el sistema cinemático del robot delta del grupo de investigación GEAMEC para obtener parámetros de diseños reales y saber con precisión la posición del efector final. El análisis de error de tolerancias del sistema cinemático del robot delta se enfocará en el movimiento estático del efector final en el espacio de trabajo del robot. No se incluirá el análisis de error de tolerancias en las deformaciones causadas por cargas y movimientos dinámicos, también se analiza el margen de error entre las articulaciones del robot delta para determinar la tolerancia del efector final en un radio de 0.1 mm en su espacio de trabajo como se observa en la imagen 2.

Imagen 2. Tolerancia ideal de uno de los brazos del robot delta.

La implementación de la ecuación teórica se realiza por medio de matrices de trasformación homogénea que representa el estudio de la posición o la orientación de un sólido en el espacio tridimensional para
encontrar coordenadas respecto a la ubicación del sólido. La ecuación cinemática se realiza con las dimensiones del robot delta FIM-USTA para tener una posición teórica del comportamiento del robot en el espacio y se realiza el método de la cinemática directa. Para desarrollar este método se requieren las dimensiones de los actuadores de uno de los brazos del robot delta y las respectivas articulaciones que generan el movimiento de los actuadores que se observa en la imagen 3.

Imagen 3. Robot Delta unidimensional.

La cadena cinemática establece algunos parámetros de comportamiento en el espacio de trabajo de acuerdo al movimiento de uno de los brazos del robot. Las articulaciones de los brazos de los robots se representan con puntos en la imagen 3. La primera articulación con su respectivo actuador realiza movimiento en el plano X-Z, la segunda articulación realiza movimientos de en los seis grados de libertad y la tercera articulación, el efector final, depende del movimiento del actuador 2, realiza movimiento restringido porque su posición tiene que ser paralelo al motor o reductor.

El desarrollo de este proyecto se inicia con la formulación de una ecuación cinemática de uno de los brazos del robot delta con el método de trasformación de matrices. En Matlab se digitan las matrices de transformación de la cadena cinemática, después en NX se realiza varias pruebas para verificar el margen de error del efector final con las longitudes de los actuadores con tolerancias y sin tolerancias, se.
compara los resultados de los dos métodos anteriores para garantizar numéricamente que los dos resultados sean iguales o su porcentaje de desviación sea mínimo, después de estas comprobaciones matemáticas se realizan diferentes pruebas para el analizar el margen de error en el brazo, ya realizado las anteriores pruebas se enfoca el análisis en el robot delta para determinar las tolerancias ideales con un margen de error de 0.1 mm de radio en el espacio de trabajo.

1. **Modelamiento matemático para análisis de error de ensamblaje del sistema cinemático del robot delta.**

La formulación de la ecuación cinemática se realiza en uno de las cadenas cinemáticas del robot delta, se utiliza Matlab para desarrollar las matrices de posición y saber la ubicación del efector final en el espacio de trabajo, el brazo mecánico se divide en tres actuadores que se observa en la imagen 4.

Imagen 4. Análisis de un brazo del robot.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Actuador 1</td>
</tr>
<tr>
<td>2</td>
<td>Actuador 2</td>
</tr>
<tr>
<td>3</td>
<td>Efector final</td>
</tr>
</tbody>
</table>

Fuente: Autor

1.1. **Modelo matemático de transformación de matrices homogéneas de una de las cadenas cinemáticas para análisis de error de tolerancias de la cadena cinemática.**
1.1.1 Modelo matemático

Este capítulo introduce un modelo matemático implementado en el desarrollo de una ecuación cinemática para saber la posición o ubicación de los componentes en el espacio de trabajo con respecto a un punto de referencia.

Se realiza esta ecuación cinemática en el robot delta para saber la posición del efector final respecto a un punto de origen hasta el efector final cambiando las dimensiones de los actuadores para determinar el margen de error entre una posición teórica y una real.

1.1.2 Transformación de matrices

La transformación de matrices homogéneas ayuda a determinar la posición de un objeto en un espacio de trabajo con modelos matemáticos de forma matricial que representa movimientos de rotación y traslación en el desplazamiento del objeto [1].

Propiedades básicas de transformación

La matriz de transformación 4X4 consiente en la ubicación de un objeto y su orientación que se define por puntos o vectores en una coordenada, es importante entender que la matriz representa la posición en una coordenada en el espacio.

\[
T = \begin{bmatrix} R & p \\ 0^T & 1 \end{bmatrix}
\] \hspace{1cm} (1)

En la ecuación 1, \(p \) es el desplazamiento del vector que indica la posición inicial, Mientras \(R \) es una matriz de rotación que indica la orientación de una nuevo posición respecto a la posición inicial (\(T \) indica un vector o la matriz traspuesta).
Imagen 5. Representación de una trasformación.

En la imagen 5 se observa una trasformación que representa una traslación por un vector p y una rotación representada por una matriz R.

Trasformación T es:

$$ T = \begin{bmatrix} r_{11} & r_{12} & r_{13} & p_1 \\ r_{21} & r_{22} & r_{23} & p_2 \\ r_{31} & r_{32} & r_{33} & p_3 \\ 0 & 0 & 0 & 1 \end{bmatrix} $$

(2)

En la ecuación 2, el vector p que representa las coordenadas de origen y r son la dirección de los cosenos de los ejes X Y Z.

Una transformación T es utilizada para calcular las coordenadas en un punto o vector en una posición diferente a su origen. Las coordenadas de un punto son dadas por:

$$ p = \begin{bmatrix} x \\ y \\ z \end{bmatrix} $$

(3)

Entonces en general, si q es el vector en segundo posición, sus coordenadas en el origen de la posición son dados por q':

$$ q' = \begin{bmatrix} R & p \\ 0^T & 1 \end{bmatrix} \begin{bmatrix} q \\ 1 \end{bmatrix} = Rq + p $$

(4)
En la ecuación 4, \(q' \) está conformado por la rotación \(q \) por \(R \) y por \(p \). La transformación \(T \) consiste en una matriz \(R \) y para encontrar las coordenadas finales con una unidad vectorial a lo largo del eje \(z \) de la rotación de una segunda posición con respecto a su origen. El cálculo es:

\[
q' = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} r_{13} \\ r_{23} \\ r_{33} \end{bmatrix}
\] (5)

En la matriz \(R \) se observa la rotación de los ejes. La primera columna es la rotación en el eje \(x \). Los elementos de cada columna son los cosenos, respectivamente, de los ejes \(x \) y \(z \).

Matriz \(R \) se realiza de diferentes maneras. Una manera es la rotación en un punto específico respecto al eje que se maneje. La matriz elemental es:

\[
\text{rot}(x,\emptyset) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\emptyset & -\sin\emptyset & 0 \\ 0 & \sin\emptyset & \cos\emptyset & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}
\] (6)

\[
\text{rot}(y,\beta) = \begin{bmatrix} \cos\beta & 0 & \sin\beta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\beta & 0 & \cos\beta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}
\] (7)

\[
\text{rot}(z,\alpha) = \begin{bmatrix} \cos\alpha & -\sin\alpha & 0 & 0 \\ \sin\alpha & \cos\alpha & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}
\] (8)

El orden en que \(T \) y \(R \) están multiplicando es importante, y diferente orden genera diferentes resultados, por ejemplo:

\[
w = \text{rot}(y, 90)\text{rot}(z, 90)u
\] (9)

Se rota el vector \(u \) en la nueva orientación \(w \) para la rotación de 90° sobre el eje \(y \) y su coordenada.

\[
w' = \text{rot}(z, 90)\text{rot}(y, 90)u
\] (10)
En la ecuación 9, se interpreta primero con una rotación de 90° en el eje Y después rota 90° sobre eje z. En la ecuación 10, se interpreta con una rotación de 90° en el eje z después rota 90° sobre eje y.

Una trasformación es una posición con su respectiva coordenada.

\[
T = \begin{bmatrix}
1 & 0 & 0 & px \\
0 & 1 & 0 & py \\
0 & 0 & 1 & pz \\
0 & 0 & 0 & 1
\end{bmatrix} = \text{trans}(px,py,pz)
\] \hspace{1cm} (11)

Se realiza un ejemplo con una trasformación T que genera un movimiento de translación \(px\) a lo largo de \(x\) después una rotación de 90° sobre el eje z entonces se escribe así:

\[
T = \text{trans}(px,0,0) \ rot(z,90)
\] \hspace{1cm} (12)

Ejemplos

La combinación de transformaciones son movimientos de traslación y rotación en una trayectoria. Se realiza el movimiento como se observa en la ecuación 13.

\[
\text{rot}(90)\text{trans}(px,0,0)
\] \hspace{1cm} (13)

Se aplica la trasformación de la trayectoria de la ecuación 13.

\[
\text{rot}(z,90) = \begin{bmatrix}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

\[
\text{trans}(px,0,0) = \begin{bmatrix}
1 & 0 & 0 & Px \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\] \hspace{1cm} (14)
Se observa en la imagen 6 dos maneras de interpretar la trayectoria de las ecuaciones 14 y 15 por medio de movimientos en el espacio.

\[
\begin{bmatrix}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & px \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 & -1 & 0 & px \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

(15)

Imagen 6. Ilustración de la ecuación.

Fuente: (1)

Composición de transformaciones

El uso principal de las transformaciones es ubicar en una cadena o un brazo en serie un punto de referencia en cualquier parte del sistema, como se observa en la imagen 7.
Las variaciones de transformaciones se usan en las ecuaciones 16 y 17 con dos tipos de movimiento rotación y traslación.

\[D_{rot}(x, \varphi) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \varphi & -\sin \varphi & 0 \\ 0 & \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \]

\[D_{rot}(y, \beta) = \begin{bmatrix} \cos \beta & 0 & \sin \beta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \beta & 0 & \cos \beta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \] \hspace{1cm} (16)

\[D_{rot}(z, \alpha) = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 & 0 \\ \sin \alpha & \cos \alpha & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \]

\[D_{trans} (dx, dy, dz) = \begin{bmatrix} 1 & 0 & 0 & dx \\ 0 & 1 & 0 & dy \\ 0 & 0 & 1 & dz \\ 0 & 0 & 0 & 1 \end{bmatrix} \] \hspace{1cm} (17)

Para realizar la ecuación cinemática de uno de los brazos de robot delta en el programa de matlab son necesarios los ángulos de rotación de los actuadores respecto a un plano cartesiano en cada uno de sus articulaciones como se observa en la imagen 8.
Matlab es un lenguaje de alto nivel y un entorno interactivo para el cálculo numérico, visualización y programación. Usando Matlab, puede analizar los datos, desarrollar algoritmos y crear modelos y aplicaciones. El lenguaje, las herramientas y funciones matemáticas integradas que permiten explorar múltiples enfoques y llegar a una solución más rápida que con hojas de cálculo o lenguajes de programación tradicionales [2].

En el modelo Matemático Matlab se realizó el código correspondiente a la formulación de la ecuación cinemática del robot delta, a continuación se muestra el código .m del movimiento del robot delta con dimensiones teóricas.

CODIGO MATLAB

```matlab
clc;
clear all; %borrar variables
syms theta1 theta2 theta3 a1 ; %definicion de variables simbolicas
a01=[1 0 0 a1*cos(theta1); 0 1 0 0; 0 0 1 0; 0 0 0 1]
a02=[cos(theta2) -sin(theta2) 0 0; sin(theta2) cos(theta2) 0 a1*cos(theta2); 0 0 1 0; 0 0 0 1]% rotacion en z
a03=[1 0 0 0; 0 cos(theta3) -sin(theta3) 0; 0 sin(theta3) cos(theta3)
a1*cos(theta3); 0 0 0 1]%rotacion en x

/%SEGUNDA ARTICULACION

syms theta4 theta5 theta6 a2 ; %definicion de variables simbolicas
a04=[1 0 0 a2*cos(theta4); 0 1 0 0; 0 0 1 0; 0 0 0 1]
a05=[cos(theta5) -sin(theta5) 0 0; sin(theta5) cos(theta5) 0 a2*cos(theta5); 0 0 1 0; 0 0 0 1]% rotacion en z
a06=[1 0 0 0; 0 cos(theta6) -sin(theta6) 0; 0 sin(theta6) cos(theta6)
a2*cos(theta6); 0 0 0 1]%rotacion en x
```

Fuente: Autor
%TERCERA ARTICULACION

syms theta7 theta8 theta9 a3 ; %definicion de variables simbolicas
a07=[1 0 0 a3*cos(theta7); 0 1 0 0; 0 0 1 0; 0 0 0 1];
a08=[cos(theta8) -sin(theta8) 0 0; sin(theta8) cos(theta8) 0 a3*cos(theta8); 0 0 1 0; 0 0 0 1]; % rotacion en z
a09=[1 0 0 0; 0 cos(theta9) -sin(theta9) 0; 0 sin(theta9) cos(theta9) a3*cos(theta9); 0 0 0 1]; % rotacion en x
A=a01*a02*a03
T01=simple(A)
B=a04*a05*a06
T02=simple(B)
C=a07*a08*a09
T03=simple(C)

Las longitudes y los ángulos de los actuadores son importantes para determinar la posición final del efector, a continuación se darán las longitudes y sus respectivos ángulos teóricos del robot delta suministradas por FIM-USTA de un modelo CAD de NX.
Implementación de dimensiones del 1 actuador.

Longitud= 310 mm

\[
\text{rot}(z, \alpha) = \begin{bmatrix}
\cos \alpha & -\sin \alpha & a1\cos \alpha & 0 \\
\sin \alpha & \cos \alpha & a1\sin \alpha & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

a1 = longitud del actuador

Implementación de dimensiones del 2 actuador.

Longitud= 840
$\mathbf{trans} = \begin{bmatrix} 1 & 0 & 0 & a2\cos\beta \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

$\mathbf{rot}(x, \emptyset) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\emptyset & -\sin\emptyset & 0 \\ 0 & \sin\emptyset & \cos\emptyset & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

$\mathbf{rot}(z, \alpha) = \begin{bmatrix} \cos\alpha & -\sin\alpha & 0 & 0 \\ \sin\alpha & \cos\alpha & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

$a2 = \text{longitud del actuador}$

Formular la ecuación efector final

Longitud = 50 mm

$\mathbf{trans} = \begin{bmatrix} 1 & 0 & 0 & dx \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

$\mathbf{rot}(x, \emptyset) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\emptyset & -\sin\emptyset & 0 \\ 0 & \sin\emptyset & \cos\emptyset & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

$\mathbf{rot}(z, \alpha) = \begin{bmatrix} \cos\alpha & -\sin\alpha & 0 & 0 \\ \sin\alpha & \cos\alpha & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

$a3 = \text{longitud del actuador}$
1.2. Análisis del margen de Error de tolerancias de una de las cadenas cinemáticas por medio de Matlab y NX.

Se realiza el análisis de uno de los brazos del robot delta de la cadena cinemática para determinar el margen de error de las tolerancias del sistema, se desarrolla con la ayuda de Matlab y NX para saber el comportamiento del efector final con respecto a las longitudes teóricas y reales de los actuadores. Para desarrollar el margen de error de las tolerancias se utiliza NX en este caso, en este software se realiza un modelo simplificado para hacer los respectivos análisis, A continuación se observa en la imagen 9 uno de los brazos mecánicos del robot delta según su diseño estructural y su esquema simplificado.

Imagen 9. Brazo simplificado del robot delta.

Fuente: Autor

Para realizar el modelo cinemático de uno de los brazos del robot delta se especifica las longitudes de los tres actuadores en las articulaciones del sistema. En la imagen 10 se observa la dimensión nominal del primer actuador entre su punto de origen hasta su articulación.
En la imagen 11 se observa la dimensión nominal del actuador entre la longitud de los centros de las articulaciones entre el primer actuador y el efector final, este actuador tiene varios elementos en su ensamblaje.

En la imagen 12 se observa las dimensiones nominales del efector final entre su punto de origen hasta la articulación.
Para desarrollar el análisis de uno de los brazos del robot delta se realiza una hipótesis ubicando los tres actuadores de forma lineal con sus respectivas tolerancias para saber si el margen de error de 0.1 mm del brazo como se observa en la imagen 13 es igual a la posición de los actuadores de la imagen 15 en su espacio de trabajo.

Imagen 12. Efector final con su longitud nominal.

Imagen 13. Brazo mecánico con sus dimensiones lineales.

Fuente: Autor
Se observa la dimensión nominal y la desviación de los centros del actuador para explicar realmente como afectan las tolerancias respecto a la posición del efector final al momento de ensamblar todas las piezas del robot delta.

Imagen 14. Articulación de uno de los brazos del robot con su desviación.

La imagen muestra la articulación de uno de los brazos del robot con su desviación. La longitud del vector que inicia en el punto de origen del actuador inicial del brazo mecánico hasta el efector final, la longitud de los actuadores no tiene ninguna tolerancia como se observa a continuación.

Imagen 15. Brazo mecánico sin tolerancias.

Fuente: Autor
Después de realizar la medición de la longitud del vector sin tolerancias en los actuadores el próximo paso es tomar el vector desde el actuador inicial hasta el efector final adicionado las tolerancias a los actuadores como se observa a continuación.

Imagen 16. Brazo mecánico con tolerancias.

Fuente: Autor

La obtención correcta en la medición de los ángulos que forman los actuadores respecto a su plano cartesiano se observa a continuación.

Imagen 17. Brazo mecánico con sus respectivos ángulos

Fuente: Autor.
Las mediciones obtenidas son importantes para analizar la ubicación de efector final y saber el margen de error del sistema. Con la herramienta MATLAB se realiza el mismo objetivo de saber el margen de error del efector final de forma real con sus tolerancias o de forma teórica sin tolerancias para verificar si NX y Matlab son confiables para el análisis de tolerancias dimensional del robot delta, las tolerancias estipuladas en los tres actuadores inicialmente es de 0.0333 mm para cada uno, estos datos son la primera prueba para determinar la posición real del efector final, para ejecutar el código en Matlab se requieren los ángulos que se forman con respecto a un plano coordenado de los actuadores del brazo mecánico, la medición de estos ángulos se debe hacer correctamente para no generar errores en el resultado que se observa en la tabla 1.

Tabla 1. Datos de ángulos para Matlab.

<table>
<thead>
<tr>
<th>Componentes del brazo</th>
<th>longitud teórica (mm)</th>
<th>longitud real (mm)</th>
<th>Ángulo X</th>
<th>Ángulo Y</th>
<th>Ángulo Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAZO 1</td>
<td>310</td>
<td>310,0333</td>
<td>23,0837</td>
<td>90</td>
<td>113,0837</td>
</tr>
<tr>
<td>BRAZO 2</td>
<td>840</td>
<td>840,0333</td>
<td>130,7605</td>
<td>113,2424</td>
<td>130,2802</td>
</tr>
<tr>
<td>BRAZO 3</td>
<td>50</td>
<td>50,0333</td>
<td>135,1071</td>
<td>134,8927</td>
<td>90</td>
</tr>
</tbody>
</table>

Fuente: Autor

A través del resultado de la tabla 2 se observa el margen de error de las tolerancias dimensionales de uno de los brazos del robot delta con los dos métodos propuestos para analizar.

Tabla 2. Margen de error de tolerancias NX y Matlab.

<table>
<thead>
<tr>
<th>Posición Teórica efector final NX</th>
<th>Posición Real efector final NX</th>
<th>Margen de error (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>815,6858</td>
<td>815,7203</td>
<td>0,0345</td>
</tr>
<tr>
<td>Posición teórica efector final MATLAB</td>
<td>Posición real efector final MATLAB</td>
<td>Margen de error (mm)</td>
</tr>
<tr>
<td>815,6865</td>
<td>815,7215</td>
<td>0,0335</td>
</tr>
</tbody>
</table>

Fuente: Autor

El resultado de la tabla 2 concluye que la hipótesis propuesta respecto al margen de error de los actuadores de forma lineal no es igual a la posición real de uno de los brazos de robot delta como se observa en la imagen 16, el resultado es la tercera parte del margen de error propuesto en la hipótesis, ésta conclusión permite aumentar las tolerancias dimensionales de los actuadores.
1.3. Comparar el margen de error de las tolerancias de ensamblaje de una de las cadenas cinemáticas del robot delta.

Para determinar la tolerancia ideal de uno de los brazos del robot delta se realiza varias pruebas cambiando la posición del efector final en el espacio de trabajo. Es necesario comparar el error de tolerancias dimensionales en diferentes posiciones para obtener un criterio específico del rango de las tolerancias en un espacio real del funcionamiento del sistema. A continuación se observa en la tabla 3 los ángulos respectivos para determinar la posición del efector final de uno de los brazos del robot delta con el código de MATLAB.

Tabla 3. Prueba 1 datos de ángulos para Matlab.

<table>
<thead>
<tr>
<th>Componentes del brazo</th>
<th>longitud teórica (mm)</th>
<th>longitud real (mm)</th>
<th>Angulo X</th>
<th>Angulo Y</th>
<th>Angulo Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAZO 1</td>
<td>310</td>
<td>310,0333</td>
<td>23,0837</td>
<td>90</td>
<td>113,0837</td>
</tr>
<tr>
<td>BRAZO 2</td>
<td>840</td>
<td>840,0333</td>
<td>148,8430</td>
<td>121,1467</td>
<td>89,2755</td>
</tr>
<tr>
<td>BRAZO 3</td>
<td>50</td>
<td>50,0333</td>
<td>98,4122</td>
<td>171,5851</td>
<td>90</td>
</tr>
</tbody>
</table>

Fuente: Autor

En la tabla 4 se observa la primera prueba para determinar la tolerancia final de uno de los brazos del robot delta con sus respectivos datos para analizar.

Tabla 4. Prueba 1 Margen de error de tolerancias NX y Matlab.

<table>
<thead>
<tr>
<th>Posición Teórica efector final NX</th>
<th>Posición Real efector final NX</th>
<th>Margen de error (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>664,0096</td>
<td>664,0338</td>
<td>0,0242</td>
</tr>
<tr>
<td>Posición teórica efector final MATLAB</td>
<td>Posición real efector final MATLAB</td>
<td>Margen de error (mm)</td>
</tr>
<tr>
<td>664,0097</td>
<td>664,0345</td>
<td>0,0248</td>
</tr>
</tbody>
</table>

Fuente: Autor

El resultado del margen error de las tolerancias de uno de los brazos del robot delta da un criterio en los movimientos reales en el espacio de trabajo del robot delta, con esta información se analizan el margen de error de la ubicación del efector final entre el punto de origen y el efector final.

A continuación se observa en la tabla 5 los ángulos respectivos con una nueva distancia desde el punto de origen hasta el efector final.
Tabla 5. Prueba 2: datos de ángulos para Matlab.

<table>
<thead>
<tr>
<th>Componentes del brazo</th>
<th>longitud teórica (mm)</th>
<th>longitud real(mm)</th>
<th>Angulo X</th>
<th>Angulo Y</th>
<th>Angulo Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAZO 1</td>
<td>310</td>
<td>310,0333</td>
<td>83,5101</td>
<td>90</td>
<td>173,5101</td>
</tr>
<tr>
<td>BRAZO 2</td>
<td>840</td>
<td>840,0333</td>
<td>128,0958</td>
<td>52,6484</td>
<td>120,0824</td>
</tr>
<tr>
<td>BRAZO 3</td>
<td>50</td>
<td>50,0333</td>
<td>48,7861</td>
<td>318,7861</td>
<td>90</td>
</tr>
</tbody>
</table>

Fuente: Autor

En la tabla 6 se observa el margen de error de las tolerancias dimensionales de uno de los brazos del robot delta con los dos métodos propuestos para analizar.

Tabla 6. Prueba 2: Margen de error de tolerancias NX y Matlab.

<table>
<thead>
<tr>
<th>Posición Teórica efector final NX</th>
<th>Posición Real efector final NX</th>
<th>Margen de error (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1017,0669</td>
<td>1017,1043</td>
<td>0,0374</td>
</tr>
<tr>
<td>Posición teórica efector final MATLAB</td>
<td>Posición real efector final MATLAB</td>
<td></td>
</tr>
<tr>
<td>1017,0673</td>
<td>1017,1046</td>
<td>0,0373</td>
</tr>
</tbody>
</table>

Fuente: Autor

En la tabla 6 se observa que el margen de error aumenta al tener una posición mayor entre el punto de origen y el efector final. A continuación se observa en la tabla sus respectivos ángulos con una nueva distancia desde el punto de origen hasta el efector final.

Tabla 7. Prueba 3: datos de ángulos para Matlab.

<table>
<thead>
<tr>
<th>Componentes del brazo</th>
<th>longitud teórica (mm)</th>
<th>longitud real(mm)</th>
<th>Angulo X</th>
<th>Angulo Y</th>
<th>Angulo Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAZO 1</td>
<td>310</td>
<td>310,0333</td>
<td>23,0837</td>
<td>90</td>
<td>113,0837</td>
</tr>
<tr>
<td>BRAZO 2</td>
<td>840</td>
<td>840,0333</td>
<td>130,7605</td>
<td>113,2424</td>
<td>130,2802</td>
</tr>
<tr>
<td>BRAZO 3</td>
<td>50</td>
<td>50,0333</td>
<td>135,1071</td>
<td>134,8927</td>
<td>90</td>
</tr>
</tbody>
</table>
En la siguiente tabla se observan nuevos datos para determinar la tolerancia final de uno de los brazos del robot delta con sus respectivos datos para analizar.

Tabla 8. Prueba 3: Margen de error de tolerancias NX y Matlab.

<table>
<thead>
<tr>
<th>Posición Teórica efector final NX</th>
<th>Posición Real efector final NX</th>
<th>Margen de error (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>815,6858</td>
<td>815,7203</td>
<td>0,0345</td>
</tr>
<tr>
<td>Posición teórica efector final MATLAB</td>
<td>Posición real efector final MATLAB</td>
<td>Margen de error (mm)</td>
</tr>
<tr>
<td>815,6865</td>
<td>815,7215</td>
<td>0.0335</td>
</tr>
</tbody>
</table>

En la tabla anterior se observa otra prueba realizada a uno de los brazos del robot delta para determinar el comportamiento del margen de error del efector final en el espacio de trabajo. A continuación se observa en la tabla sus respectivos ángulos con una nueva distancia desde el punto de origen hasta el efector final.

<table>
<thead>
<tr>
<th>Componentes del brazo</th>
<th>longitud teórica (mm)</th>
<th>longitud real(mm)</th>
<th>Angulo X</th>
<th>Angulo Y</th>
<th>Angulo Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAZO 1</td>
<td>310</td>
<td>310,0333</td>
<td>64,3590</td>
<td>90</td>
<td>154,3590</td>
</tr>
<tr>
<td>BRAZO 2</td>
<td>840</td>
<td>840,0333</td>
<td>128,2319</td>
<td>121,8286</td>
<td>125,602</td>
</tr>
<tr>
<td>BRAZO 3</td>
<td>50</td>
<td>50,0333</td>
<td>138,9909</td>
<td>131,0091</td>
<td>90</td>
</tr>
</tbody>
</table>

En la siguiente tabla se observa diferentes datos para determinar la tolerancia final de uno de los brazos del robot delta con sus respectivos datos para analizar.
La Tabla 10 muestra el márgen de error de tolerancias NX y Matlab.

<table>
<thead>
<tr>
<th>Posición Teórica efector final NX</th>
<th>Posición Real efector final NX</th>
<th>Margen de error (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>998,1148</td>
<td>998,1673</td>
<td>0,0525</td>
</tr>
<tr>
<td>Posición teórica efector final MATLAB</td>
<td>Posición real efector final MATLAB</td>
<td>Margen de error (mm)</td>
</tr>
<tr>
<td>998,1149</td>
<td>998,1655</td>
<td>0,0506</td>
</tr>
</tbody>
</table>

Fuente: Autor

El resultado de la tabla 10 indica el cambio del margen de error en una posición del brazo en el espacio de trabajo, no necesariamente el margen de error aumenta cuando es mayor el vector entre la posición de origen hasta el efector.

Con estas pruebas realizadas con NX y Matlab en uno de los brazos del robot delta se comprueba que la tolerancia lineal de 0.1 mm se comporta diferente en el espacio de trabajo, con este análisis se podrá modificar las tolerancias de los actuadores hasta encontrar un radio de esfera de 0.1 mm de tolerancia. Se analiza estas pruebas para identificar la variación del error de las tolerancias.
1.4. Determinación de rango de tolerancias de cada uno de los componentes de la cadena cinemática.

Para determinar el rango de tolerancias de uno de los brazos del robot delta se realizan un modelo unidimensional simplificado con respecto a la configuración real del delta para determinar el margen de error de las tolerancias dimensionales del sistema que se observa a continuación.

Para realizar el modelo simplificado se necesita las coordenadas de cada actuador del brazo del modelo real del robot como se observa en la imagen 18, el análisis de esta cadena cinemática se realiza con las mismas pruebas anteriores de la actividad 1.3 para determinar la tolerancia real en el espacio de trabajo como se observa a continuación.
Tabla 11. Coordenadas de brazo unidimensional.

<table>
<thead>
<tr>
<th>Coordenada del brazo</th>
<th>Primera Coordenada</th>
<th>Segunda Coordenada</th>
<th>Tercera Coordenada</th>
<th>Cuarta Coordenada</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>100,0000</td>
<td>403,1207</td>
<td>486,2077</td>
<td>436,1744</td>
</tr>
<tr>
<td>y</td>
<td>-9,0000</td>
<td>-13,4000</td>
<td>364,2118</td>
<td>363,2178</td>
</tr>
<tr>
<td>z</td>
<td>0,0000</td>
<td>-65,1038</td>
<td>-820,0000</td>
<td>-820,0000</td>
</tr>
</tbody>
</table>

Fuente: Autor

El objetivo de esta prueba es saber el margen de error de las tolerancias de los actuadores del brazo del robot delta en el espacio de trabajo con una tolerancia de 0.0333 mm para cada actuador y establecer cuál será la tolerancia real del brazo.

Fuente: Autor

En el siguiente cuadro se observa el margen de error de la tolerancia final del brazo mecánico del robot delta.
Tabla 12. Margen de error de tolerancias NX.

<table>
<thead>
<tr>
<th>Posición Teórica efector final NX</th>
<th>Posición Real efector final NX</th>
<th>Tolerancia del brazo</th>
</tr>
</thead>
<tbody>
<tr>
<td>954.8144</td>
<td>954.8035</td>
<td>-0.0109</td>
</tr>
</tbody>
</table>

Fuente: Autor

Los resultados de la posición del efector final en el espacio de trabajo de uno de los brazos del robot delta es de 0.0109 mm, con este resultado obtenido se analiza otro aspecto importante en el cambio de signo de las tolerancias de los actuadores del brazo del robot delta.

Se realizan pruebas al brazo del robot delta para analizar la posición del efector final cuando se cambie el signo de las tolerancias de los actuadores de forma positiva y negativa para determinar el margen de error real.

En las siguientes tablas se observa el cambio de signo de las tolerancias en los tres actuadores para determinar el margen de error correspondiente a este análisis. En estas pruebas se cambia el signo para observar el margen de error en el efector final y comparar este resultado de la tabla 12.

Tabla 13. Prueba 1 cambio de signo de las tolerancias de los actuadores.

<table>
<thead>
<tr>
<th>Tolerancias (mm)</th>
<th>Prueba cambio de tolerancias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actuador 1</td>
<td>Distancia teórica 954,8144</td>
</tr>
<tr>
<td>Actuador 2</td>
<td>Distancia real 954,8253</td>
</tr>
<tr>
<td>Efector final</td>
<td>Margen de error +0,0109</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tolerancias (mm)</th>
<th>Prueba 2 cambio de tolerancias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actuador 1</td>
<td>Distancia teórica 954,8144</td>
</tr>
<tr>
<td>Actuador 2</td>
<td>Distancia real 954,8035</td>
</tr>
<tr>
<td>Efector final</td>
<td>Margen de error -0,0109</td>
</tr>
</tbody>
</table>

Fuente: Autor

El cambio de signo de las tolerancias no afectó el margen de error del efector final comparado con el resultado obtenido en la tabla 12. En la prueba 2 se analiza el comportamiento del efector final para saber el cambio del margen de error de las tolerancias de uno de los brazos del robot delta.
Tabla 14. Prueba 2 cambio de signo de las tolerancias de los actuadores.

<table>
<thead>
<tr>
<th>Tolerancias (mm)</th>
<th>Prueba cambio de tolerancias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actuador 1</td>
<td>0,0333</td>
</tr>
<tr>
<td>Actuador 2</td>
<td>-0,0333</td>
</tr>
<tr>
<td>Efector final</td>
<td>-0,0333</td>
</tr>
</tbody>
</table>

Fuente: Autor

Se interpreta que el cambio de signo en las tolerancias de los actuadores aumento el margen de error del efector final comparado con el resultado de la tabla 12. En la prueba 3 se analiza el comportamiento del efector final para determinar el cambio del margen de error de las tolerancias de uno de los brazos del robot delta.

Tabla 15. Prueba 3 Cambio de signo de las tolerancias de los actuadores.

<table>
<thead>
<tr>
<th>Tolerancias (mm)</th>
<th>Prueba cambio de tolerancias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actuador 1</td>
<td>-0,0333</td>
</tr>
<tr>
<td>Actuador 2</td>
<td>0,0333</td>
</tr>
<tr>
<td>Efector final</td>
<td>0,0333</td>
</tr>
</tbody>
</table>

Fuente: Autor

El cambio de signo en las tolerancias de los actuadores aumento el margen de error del efector final comparado con el resultado de la tabla 12. Los resultados obtenidos en la tabla 14 correspondiente a la prueba 2 son importantes en el análisis del margen de error del efector final en el cambio del signo de las tolerancias de los actuadores. En las siguientes tablas se realiza el mismo análisis de las pruebas anteriores pero con un tolerancias de 0.1 mm en cada actuador, se realiza una variación de los signos más críticos en el espacio de trabajo suministrados por las tablas 13, 14 y 15.

En esta tabla se realiza el análisis del margen de error del brazo con una tolerancia de 0.1 mm para cada actuador.
Tabla 16. Análisis de tolerancias cambio de signo.

<table>
<thead>
<tr>
<th>Tolerancias (mm)</th>
<th>Prueba cambio de tolerancias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actuador 1</td>
<td>0,1</td>
</tr>
<tr>
<td>Actuador 2</td>
<td>-0,1</td>
</tr>
<tr>
<td>Efector final</td>
<td>-0,1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tolerancias (mm)</th>
<th>Prueba 2 cambio de tolerancias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actuador 1</td>
<td>-0,1</td>
</tr>
<tr>
<td>Actuador 2</td>
<td>-0,1</td>
</tr>
<tr>
<td>Efector final</td>
<td>0,1</td>
</tr>
</tbody>
</table>

Fuente: Autor

El resultado obtenido con una tolerancia de 0.1 mm en cada actuador es de 0.033 mm el margen de error del efector final en el espacio de trabajo. Se debe aproximar el margen de error a 0.1 mm. En la siguiente tabla se aumenta la tolerancia de los actuadores.

Tabla 17. Tolerancias adecuadas para el robot delta

<table>
<thead>
<tr>
<th>Tolerancias (mm)</th>
<th>Prueba cambio de tolerancias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actuador 1</td>
<td>0,3</td>
</tr>
<tr>
<td>Actuador 2</td>
<td>-0,3</td>
</tr>
<tr>
<td>Efector final</td>
<td>-0,3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tolerancias (mm)</th>
<th>Prueba 2 cambio de tolerancias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actuador 1</td>
<td>-0,3</td>
</tr>
<tr>
<td>Actuador 2</td>
<td>-0,3</td>
</tr>
<tr>
<td>Efector final</td>
<td>0,3</td>
</tr>
</tbody>
</table>

Fuente: Autor

Se aumentó considerablemente las tolerancias de los actuadores y el resultado se aproxima a un radio 0.1 mm en el espacio de trabajo. En la tabla 17 se analiza cual es la diferencia entre los dos márgenes de error y el resultado es de 19 milésimas de milímetro.

Con las pruebas realizadas anteriormente se establece el rango de tolerancias de cada uno de los actuadores del brazo del robot delta está entre 0.25 y 0.3 mm para alcanzar un tolerancia de 0.1 mm de radio del efector final en el espacio de trabajo.
1.5. Análisis del margen de Error de tolerancias del sistema cinemático del robot delta para determinar la ubicación del efector final por medio de NX siemens.

El análisis cinemático del robot delta se desarrolla en NX con el objetivo de saber la ubicación del efector final con respecto a las tolerancias dimensionales de los actuadores, se realizarán varias pruebas al robot delta para determinar su correcto funcionamiento con una tolerancia de 0.1 mm de radio en el espacio de trabajo.

A continuación se observa la ubicación del efector final en los límites de operación en el espacio de trabajo para saber el error de tolerancia final, se colocan las tolerancias a los actuadores para averiguar cuál es el desplazamiento real del efector final con respecto a la ubicación del efector sin tolerancias.

Imagen 20. Prueba 1 máximo radio de trabajo del efector final.

La prueba consiste en determinar el margen de error de la tolerancia del efector final por medio de un vector respecto a su punto de origen hasta el efector final tomando datos importantes que se observan en la tabla 18.
Tabla 18. Prueba 1 toma de datos del robot Delta.

<table>
<thead>
<tr>
<th>Coordenadas</th>
<th>Iniciales</th>
<th>Tolerancias (mm)</th>
<th>Margen de error</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>-394,3985</td>
<td>Actuador inicial</td>
<td>0,0333</td>
</tr>
<tr>
<td>Y</td>
<td>-399,5100</td>
<td>Actuador paral</td>
<td>0,1332</td>
</tr>
<tr>
<td>Z</td>
<td>-830,0000</td>
<td>Efector final</td>
<td>0,0666</td>
</tr>
</tbody>
</table>

En la siguiente prueba se cambian algunos parámetros respecto a la posición del efector final e igual radio de trabajo como se observa en la imagen 21.

Fuente: Autor
Para determinar el margen de error de la tolerancia final en el efector se cambió algunos datos para saber numéricamente si el margen de error final coincidía con la anterior prueba que se observan en la tabla 19.

<table>
<thead>
<tr>
<th>Coordenadas Iniciales</th>
<th>Tolerancias (mm)</th>
<th>Margen de error</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>-272,2054</td>
<td>Actuador inicial</td>
</tr>
<tr>
<td>X</td>
<td>489,3043</td>
<td>Actuador paral</td>
</tr>
<tr>
<td>Z</td>
<td>-830,0000</td>
<td>Efector final</td>
</tr>
</tbody>
</table>

Fuente: Autor

Se Analiza en la siguiente prueba el cambio de la posición del efector final en el espacio de trabajo y se verifica si afecta el margen de error de las tolerancias dimensiones al momento de cambiar su ubicación con el mismo radio de trabajo de la prueba anterior.

Imagen 22. Prueba 3 máximo radio de trabajo del efector final.
Para determinar el margen de error de la tolerancia final en el efector se cambiaron algunos datos para saber si el margen de error final coincidía con la anterior prueba que se observan en la siguiente tabla.

Tabla 20. Prueba 3 toma de datos del robot Delta.

<table>
<thead>
<tr>
<th>Coordenadas Iniciales</th>
<th>Tolerancias (mm)</th>
<th>Margen de error</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>430,9924</td>
<td>Actuador inicial</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Distancia teórica</td>
</tr>
<tr>
<td>Y</td>
<td>363,1749</td>
<td>Actuador paral</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Distancia real</td>
</tr>
<tr>
<td>Z</td>
<td>-830,0000</td>
<td>Efector final</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Margen de error</td>
</tr>
</tbody>
</table>

Fuente: Autor

Se concluye que el margen de error de las pruebas realizadas en diferentes posiciones respecto al efector final son las mismas, no afectara el movimiento del robot delta con un mismo radio de trabajo y su altura.

También se analiza los movimientos del robot delta cambiando el radio de giro para determinar cuál es el margen de error de la tolerancia del efector final. A continuación se observa la ubicación del robot en un radio de giro diferente a la anterior prueba.

Imagen 23. Prueba 4 cambio de radio de trabajo del efector final.

Fuente: Autor
Para determinar el margen de error de la tolerancia final en el efector se adicionaron algunos datos importantes que se observan en la siguiente tabla.

Tabla 21. Prueba 4 toma de datos del robot Delta.

<table>
<thead>
<tr>
<th>Coordenadas Iniciales</th>
<th>Tolerancias (mm)</th>
<th>Margen de error</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>283,3655</td>
<td>Actuador inicial</td>
</tr>
<tr>
<td>Y</td>
<td>242,1162</td>
<td>Actuador paral</td>
</tr>
<tr>
<td>Z</td>
<td>-830,0000</td>
<td>Efector final</td>
</tr>
</tbody>
</table>

**Fuente: Autor**

Se analiza los movimientos del robot delta cambiando el radio de trabajo para determinar cuál es el margen de error de la tolerancia del efector final. A continuación se observa la ubicación del robot en una diferente posición.

Imagen 24. Prueba 5 cambio de radio de trabajo del efector final.

Para determinar el margen de error de la tolerancia final en el efector se adicionaron algunos datos importantes que se observan en la siguiente tabla.
Tabla 22. Prueba 5 toma de datos del robot Delta

<table>
<thead>
<tr>
<th>Coordenadas Iniciales</th>
<th>Tolerancias (mm)</th>
<th>Margen de error</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>139,.1542</td>
<td>Actuador inicial</td>
</tr>
<tr>
<td>Y</td>
<td>121,0582</td>
<td>Actuador paral</td>
</tr>
<tr>
<td>Z</td>
<td>-830,0000</td>
<td>Efector final</td>
</tr>
</tbody>
</table>

Fuente: Autor

Se realizaron estas pruebas con el fin de analizar el margen de error del efector final al variar el radio de trabajo con una misma altura y determinar el comportamiento respecto al cambio de estas variables, se concluye que el margen de error disminuye cuando el efector final se acerca a la posición de origen.

Se analiza los movimientos del robot delta cambiando la altura del efector final en el espacio de trabajo para determinar cuál es el margen de error de la tolerancia del efector final. A continuación se observa la ubicación del robot en una altura menor.

Imagen 25. Prueba 6 cambio de alturas e igual radio de trabajo del efector final.

Fuente: Autor

Para determinar el margen de error de la tolerancia final en el efector se adicionaron algunos datos importantes que se observan en la siguiente tabla.
Tabla 23. Prueba 6 toma de datos del robot Delta.

<table>
<thead>
<tr>
<th>Coordenadas Iniciales</th>
<th>Tolerancias (mm)</th>
<th>Margen de error</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>430,9924</td>
<td>Actuador inicial</td>
</tr>
<tr>
<td>Y</td>
<td>363,1749</td>
<td>Actuador paral</td>
</tr>
<tr>
<td>Z</td>
<td>-715,0000</td>
<td>Efector final</td>
</tr>
</tbody>
</table>

Fuente: Autor

Se analiza los movimientos del robot delta cambiando la altura del efector final en el espacio de trabajo para determinar cuál es el margen de error de la tolerancia del efector final. A continuación se observa la ubicación del robot en una altura mínima de trabajo del robot.

Imagen 26. Prueba 7 cambio de alturas e igual radio de trabajo del efector final.

Fuente: Autor
Para determinar el margen de error de la tolerancia final en el efector se adicionaron algunos datos importantes que se observan en la siguiente tabla.

Tabla 24. Prueba 7 toma de datos del robot Delta.

<table>
<thead>
<tr>
<th>Coordenadas Iniciales</th>
<th>Tolerancias (mm)</th>
<th>Margen de error</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>430,9924</td>
<td>Actuador inicial</td>
</tr>
<tr>
<td>Y</td>
<td>363,1749</td>
<td>Actuador paral</td>
</tr>
<tr>
<td>Z</td>
<td>-590,0000</td>
<td>Efector final</td>
</tr>
</tbody>
</table>

Fuente: Autor

Se realizaron estas pruebas para analizar el margen de error del efector final al variar la altura con el mismo radio de trabajo y determinar el comportamiento respecto al cambio de estas variables, se concluye que el margen de error disminuye cuando el efector final se acerca la altura mínima del espacio de trabajo del robot delta.

Se realizan pruebas del robot delta para saber la posición del efector final cuando se cambie el signo de las tolerancias de los actuadores de forma positiva y negativa para determinar el margen de error real. En la tabla 25 se observa el cambio de signo de las tolerancias del robot delta para determinar si el margen de error.

Tabla 25. Verificación del cambio de tolerancias con el signo.

<table>
<thead>
<tr>
<th>Tolerancias (mm)</th>
<th>Margen de error positiva</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actuador inicial</td>
<td>0,0333</td>
</tr>
<tr>
<td>Actuador paral</td>
<td>0,1332</td>
</tr>
<tr>
<td>Efector final</td>
<td>0,0666</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tolerancias (mm)</th>
<th>Margen de error negativa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actuador inicial</td>
<td>-0,0333</td>
</tr>
<tr>
<td>Actuador paral</td>
<td>-0,1332</td>
</tr>
<tr>
<td>Efector final</td>
<td>-0,0666</td>
</tr>
</tbody>
</table>

Fuente: Autor

Al realizar esta comprobación se determina que el margen de error de las tolerancias de los componentes del robot delta son iguales. En las siguientes tablas se observa el cambio de signo de las tolerancias en los actuadores para determinar el margen de error correspondiente a este análisis.
Tabla 26. Prueba 1 cambio de signo de las tolerancias de los actuadores del robot delta.

<table>
<thead>
<tr>
<th>Tolerancias (mm)</th>
<th>Prueba cambio de tolerancias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actuador inicial</td>
<td>-0,0333</td>
</tr>
<tr>
<td>Actuador paral</td>
<td>0,1332</td>
</tr>
<tr>
<td>Efector final</td>
<td>-0,0666</td>
</tr>
</tbody>
</table>

Distancia teórica 1057,2377
Distancia real 1057,3545
Margen de error 0,1168

Tabla 27. Prueba 2 cambio de signo de las tolerancias de los actuadores del robot delta.

<table>
<thead>
<tr>
<th>Tolerancias (mm)</th>
<th>Margen de error positiva</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actuador inicial</td>
<td>0,0333</td>
</tr>
<tr>
<td>Actuador paral</td>
<td>-0,1332</td>
</tr>
<tr>
<td>Efector final</td>
<td>-0,0666</td>
</tr>
</tbody>
</table>

Distancia teórica 1057,2377
Distancia real 1057,1522
Margen de error 0,0855

Fuente: Autor

Se interpreta que el cambio de signo en las tolerancias de los actuadores aumento el margen de error del efector final comparado con el resultado de la tabla 25. En la siguiente prueba se analiza el comportamiento del efector final para determinar el cambio del margen de error de las tolerancias del robot delta.

Tabla 26. Prueba 2 cambio de signo de las tolerancias de los actuadores del robot delta.

<table>
<thead>
<tr>
<th>Tolerancias (mm)</th>
<th>Margen de error positiva</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actuador inicial</td>
<td>-0,0333</td>
</tr>
<tr>
<td>Actuador paral</td>
<td>0,1332</td>
</tr>
<tr>
<td>Efector final</td>
<td>0,0666</td>
</tr>
</tbody>
</table>

Distancia teórica 1057,2377
Distancia real 1057,3234
Margen de error 0,0855

Fuente: Autor

El cambio de signo de las tolerancias afectó el margen de error del efector final comparado con el resultado obtenido en la tabla 25. En la siguiente prueba se analiza el comportamiento del efector final para saber el cambio del margen de error de las tolerancias del robot delta.
Tabla 28. Prueba 3: Cambio de signo de las tolerancias de los actuadores del robot delta.

<table>
<thead>
<tr>
<th>Tolerancias (mm)</th>
<th>Margen de error positiva</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actuador inicial</td>
<td>-0,0333</td>
</tr>
<tr>
<td></td>
<td>Distancia teórica</td>
</tr>
<tr>
<td></td>
<td>1057,2377</td>
</tr>
<tr>
<td>Actuador paral</td>
<td>-0,1332</td>
</tr>
<tr>
<td></td>
<td>Distancia real</td>
</tr>
<tr>
<td></td>
<td>1057,1143</td>
</tr>
<tr>
<td>Efector final</td>
<td>0,0666</td>
</tr>
<tr>
<td></td>
<td>Margen de error</td>
</tr>
<tr>
<td></td>
<td>0,1234</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tolerancias (mm)</th>
<th>Margen de error positiva</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actuador inicial</td>
<td>0,0333</td>
</tr>
<tr>
<td></td>
<td>Distancia teórica</td>
</tr>
<tr>
<td></td>
<td>1057,2377</td>
</tr>
<tr>
<td>Actuador paral</td>
<td>0,1332</td>
</tr>
<tr>
<td></td>
<td>Distancia real</td>
</tr>
<tr>
<td></td>
<td>1057,3611</td>
</tr>
<tr>
<td>Efector final</td>
<td>-0,0666</td>
</tr>
<tr>
<td></td>
<td>Margen de error</td>
</tr>
<tr>
<td></td>
<td>0,1234</td>
</tr>
</tbody>
</table>

Fuente: Autor

El cambio de signo en las tolerancias de los actuadores en las tablas 26, 27 y 28 determina un cambio del margen de error comparado con el resultado de la tabla 25.

Los resultados obtenidos en la tabla 28 correspondiente a la prueba 3, es importante el análisis del margen de error del efector final en el cambio del signo de las tolerancias de los actuadores.
1.6. Determinación del rango de las tolerancias del sistema cinemático del robot delta para determinar la ubicación del efector final.

Se Analiza el rango de las tolerancias en el robot delta para saber cuál es la tolerancia lineal en un plano de diseño respecto a la tolerancia de radio de 0.1 mm en el espacio de trabajo.

Imagen 27. Robot delta análisis de rango de tolerancias.

En la siguiente tabla se disminuye la tolerancia de los actuadores del robot delta hasta llegar a la tolerancia de 0.1 mm de radio en el espacio de trabajo. Se cambió los signos de los actuador según los resultados obtenidos de las tablas 26,27 y 28 para saber el comportamiento más crítico en el margen de error del efector final.

Tabla 29. Análisis de tolerancias del robot delta.

<table>
<thead>
<tr>
<th>Tolerancias (mm)</th>
<th>Prueba cambio de tolerancias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actuador inicial</td>
<td>-0,03</td>
</tr>
<tr>
<td>Actuador paral</td>
<td>0,12</td>
</tr>
<tr>
<td>Efector final</td>
<td>-0,06</td>
</tr>
</tbody>
</table>

Distancia teórica 1057,2377
Distancia real 1057,3429
Margen de error 0,1052

<table>
<thead>
<tr>
<th>Tolerancias (mm)</th>
<th>Prueba 2 cambio de tolerancias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actuador inicial</td>
<td>-0,03</td>
</tr>
<tr>
<td>Actuador paral</td>
<td>-0,12</td>
</tr>
<tr>
<td>Efector final</td>
<td>0,06</td>
</tr>
</tbody>
</table>

Distancia teórica 1057,2377
Distancia real 1057,1266
Margen de error 0,1111

Fuente: Autor
Al modificar las tolerancias de los actuadores se observa que el margen de error de las tolerancias está por encima de 0.1 mm y se necesita reducir las tolerancias. En la siguiente tabla se sigue disminuyendo la tolerancia hasta llegar a 0.1 mm de radio en el espacio de trabajo.

Tabla 30. Tolerancias adecuadas **para el robot delta.**

<table>
<thead>
<tr>
<th>Tolerancias (mm)</th>
<th>Prueba cambio de tolerancias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actuador inicial</td>
<td>-0,025</td>
</tr>
<tr>
<td>Distancia teórica</td>
<td>1057,2377</td>
</tr>
<tr>
<td>Actuador paral</td>
<td>0,1</td>
</tr>
<tr>
<td>Distancia real</td>
<td>1057,3254</td>
</tr>
<tr>
<td>Efector final</td>
<td>-0,05</td>
</tr>
<tr>
<td>Margen de error</td>
<td>0,0877</td>
</tr>
</tbody>
</table>

Fuente: Autor

Al reducir las tolerancias de los actuadores se observa que el margen de error de las tolerancias es óptimo. Se disminuye considerablemente las tolerancias de los actuadores y el resultado se aproxima a un radio de 0.1 mm en el espacio de trabajo. En la tabla 30 se observa analiza la diferencia entre los dos márgenes de error y el resultado es de 49 milésimas de milímetro.

Se determinar el margen de error de las tolerancias positiva del robot delta colocando los datos de la tabla 30 para verificar la posición del efector final y si estas pruebas están relacionadas con las pruebas realizadas anteriormente, como se puede observar en la tabla 31.

Tabla 31. Verificación de datos del robot Delta.

<table>
<thead>
<tr>
<th>Coordenadas Iniciales</th>
<th>Tolerancias (mm)</th>
<th>Margen de error</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>430,9924</td>
<td>Actuador inicial</td>
</tr>
<tr>
<td></td>
<td>Distancia teórica</td>
<td>1057,2377</td>
</tr>
<tr>
<td>Y</td>
<td>363,1749</td>
<td>Actuador paral</td>
</tr>
<tr>
<td></td>
<td>Distancia real</td>
<td>1057,3069</td>
</tr>
<tr>
<td>Z</td>
<td>-830,0000</td>
<td>Efector final</td>
</tr>
<tr>
<td></td>
<td>Margen de error</td>
<td>0,0692</td>
</tr>
</tbody>
</table>

Fuente: Autor

Con las pruebas realizadas anteriormente se concluye el rango de tolerancias de los actuadores del brazo del robot delta para alcanzar una tolerancia de 0.1 mm de radio del efector final en el espacio de trabajo. El rango de tolerancia de los actuadores de uno de los brazos del robot delta son de:
Actuador inicial: 0,025 mm
Actuador paral: 0.1 mm
Efector final: 0.05 mm

Ya definido los rangos de tolerancias dimensionales de cada actuador del robot delta inicialmente se realiza la correspondiente distribución de las tolerancias en el sistema cinemático de las partes mecánicas que conforman cada actuador para saber los puntos críticos de la estructura, a continuación se observa las tolerancias de centro a centro del actuador inicial.

Fuente: Autor

En la imagen 29 se observa la tolerancia dimensional de la articulación del brazo con la punta esférica según el rango de tolerancia definido.

Imagen 29. Dimensión punta esférica.

Fuente: Autor
En la imagen 30 se observa el ensamblaje del actuador paral con sus partes mecánicas y su correspondiente tolerancia dimensional entre centros.

Imagen 30. Dimensión actuador paral.

Fuente: Autor

Se observa en la imagen 31 uno de las partes del actuador paral, se colocó esta tolerancia dimensional porque es crítica en el ensamblaje.
En el efector final se determina la ubicación del margen de error de una tolerancia de 0.1 mm de radio en el espacio de trabajo, se observa en la imagen 32 las tolerancias dimensionales críticas del efector y la punta esférica.

Fuente: Autor

Imagen 31. Dimensión paral.

Imagen 32. Dimensiones efector final.

Fuente: Autor
2. Generación de planos con especificaciones de tolerancias geométricas y dimensionales de cada uno de los componentes de la cadena cinemática.

2.1. Generación de planos con especificaciones de tolerancias geométricas y dimensionales de cada uno de los componentes del robot delta implementando GD&T (Geometric Dimensioning and Tolerancing).

Se realiza planos mecánicos el robot delta FIM-USTA para generar tolerancias geométricas y dimensionales de la cadena cinemática para garantizar que la posición real del efector final se encuentre en una esfera de radio de 0.1 mm con respecto a la posición ideal del modelo CAD.

NX cuenta con una herramienta llamada PMI (PRODUCT AND MANUFACTURING INFORMATION), se utiliza para delimitar las tolerancias geométricas y dimensionales de los componentes de la cadena cinemática del robot delta. La información puede representarse en textos, dimensiones o símbolos. Se puede realizar diferentes acotaciones, definir el plano de acotación, observar estas dimensiones en diferentes vistas del modelo CAD [3].

Se realiza un ejemplo de PMI para explicar el funcionamiento de esta aplicación en la industria. A continuación en la imagen 33 se observa una figura explicando la importancia de la utilización de la herramienta de PMI en este trabajo de grado.

Imagen 33. Implementación de PMI.

Fuente: (7)
Se utiliza la herramienta de GD&T para dar criterios de tolerancias geométricas a los actuadores, a continuación se observa en la imagen 34 los símbolos con sus correspondientes características para dar criterios geométricos en las partes mecánicas analizadas.

La herramienta de PMI facilita ver las tolerancias geométricas y dimensionales en un modelo CAD utilizando GD&T (Geometric Dimensioning and Tolerancing) . En el sector de la manufactura las dimensiones geométricas y dimensionales son usadas para especificar tamaños, forma, orientación y ubicación de características de una pieza [4]. A continuacion se observa el modelo y la implementacion de GD&T en PMI.

Imagen 34. Modelo implementar GD&T y PMI.

GD&T es una herramienta importante para determinar la posición de un objeto, esta herramienta ayuda a determinar las condiciones de las superficies como planitud, paralelismo, cilindricidad entre otras como se observa en la imagen 35.

Fuente: (6)
En la imagen 36 se observa un ejemplo explicando la tolerancia geométrica de la circunferencia con su respectiva tolerancia de posición de 0.014 mm. Esta tolerancia indica la posición y el rango de tolerancia en la que se debe fabricar este elemento.
A continuación se observa en la imagen 37 el rango de tolerancias de tamaño y posición. El símbolo MMC (máximo condición material) significa el máximo material de un agujero en este caso es Ø 3.000, El símbolo LMC (mínima condición de material) significa el mínimo material de un agujero en este caso es Ø 3.030. La tolerancia geométrica especifica que el agujero se ubica en un rango de tolerancia cilíndrica de 0,014 en su condición máxima del material. Las superficies tienen una tolerancia y se caracteriza por letras.

Fuente: (4)
El Sistemas de referencia son puntos como ejes, líneas y planos. Un marco de referencia entre planos son perpendiculares y se usa para delimitar la superficie según la tolerancia geométrica establecida como se observa en la imagen 38.

Hay seis grados de libertad, tres de traslación y tres de rotación, Los tres grados de libertad de traslación se denominan X, Y, y Z. Los tres grados de libertad de rotación son denominado u, v, y w ver la imagen 38. A continuación se observa una imagen con el sistema de referencia en una figura.
Se observa en la imagen 39 que el tamaño del agujero tiene una variación del material que va desde el MMC (condición máxima del material) hacia LMC (condición mínima de material) con una tolerancia de posición, la tolerancia de posición adicional llamado tolerancia bonus permite tener una cantidad exacta de la desviación, es decir maneja un rango más amplio al obtener la tolerancia total del agujero.

A continuación se observa en la imagen 40 la tolerancia total disponible con un diámetro de 3.020.

Imagen 40. Total tolerancia

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual feature size</td>
<td>3.020</td>
</tr>
<tr>
<td>Minus the maximum material condition</td>
<td>-3.000</td>
</tr>
<tr>
<td>Bonus tolerance</td>
<td>0.020</td>
</tr>
<tr>
<td>Plus the geometric tolerance</td>
<td>+0.014</td>
</tr>
<tr>
<td>Total tolerance</td>
<td>0.034</td>
</tr>
</tbody>
</table>

Fuente: (4)

Se observa a continuación un ejemplo ilustrando los temas explicados anteriormente con los símbolos de las tolerancias geométricas como la tolerancia de posición y sistema de referencias.
Se realizan algunos cálculos para determinar la tolerancia total entre la posición del agujero y su tamaño respectivamente. A continuación se explican conceptos y la representación de la tolerancia de tamaño y posición del agujero según ASME (THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS) Y 14.5-2009 (5).

Boundary (limites): Esta palabra significa los rangos de las tolerancias según su tamaño y geometría.

Inner boundary (IB): Es el diámetro mínimo o la característica más pequeña de tamaño según la tolerancia geométrica indicada.

Outer boundary (OB): ES el diámetro máximo o la característica más grande de tamaño según la tolerancia geométrica indicada.

Condición Virtual (VC) El límite mínimo según las características de tamaño especificado en MMC o en LMC y la tolerancia geométrica indicada.

Resultante condición (RC) El límite máximo según las características de tamaño especificado en MMC (condición máxima del material) o en LMC (condición mínima de material) y la tolerancia geométrica.

Una de las principales ventajas de la utilización GD&T es la especificación de las características de tamaño y geometría. El máximo material de condición modificador es un método para determinar la tolerancia adecuada para su diseño y saber si los límites de tamaño se ajustan a lo requerido.
El mínimo material de condición modificador es la cantidad menor de material que hay en un agujero. Este método es diferente al anterior ya que utiliza el LMC (condición mínima de material) como una prioridad en la tolerancia geométrica al determinar el Outer y Inner boundary.
Imagen 43. Ejemplo usando concepto de LMC.

This is on the drawing:

Means this:

- \(\phi 30.5 \) Hole shown at 4 extreme possible locations
- \(\phi 0.1 \) Positional zone at LMC
- \(\phi 30.6 \) Virtual condition (Outer boundary)

VIRTUAL CONDITION BOUNDARY

<table>
<thead>
<tr>
<th>Hole</th>
<th>TOL</th>
<th>VC</th>
<th>RC</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC</td>
<td>30.5</td>
<td>0.1</td>
<td>30.6</td>
</tr>
<tr>
<td></td>
<td>30.4</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30.3</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30.2</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>MMC</td>
<td>30.1</td>
<td>0.5</td>
<td>29.6</td>
</tr>
</tbody>
</table>

The virtual condition (VC) of the internal feature is a constant value equal to its least material condition PLUS its applicable geometric tolerance.

The resultant condition (RC) of the internal feature is a single value equal to its maximum material condition MINUS its applicable geometric tolerance.

Fuente: (5)
RFS (Independientemente de tamaño de la característica) este método es diferente al anterior porque solo especifica la tolerancia geométrica y no se utiliza la tolerancia bonus, una tolerancia geométrica se aplica cuando está en el rango de tamaño es una regla importante para aplicar este método.

Imagen 44. Ejemplo usando concepto de RFS.

Fuente: (5)
A continuación se explica en una tabla la aplicación de estos tres casos para el diseño de un mecanismo.

Tabla 32. Aplicaciones de condición de material.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RFS</td>
<td>Su aplicación es para altas velocidades como piezas giratorias o cuando se requiera la simetría.</td>
</tr>
<tr>
<td>MMC</td>
<td>Su aplicación es para ensambles estáticos como acoples.</td>
</tr>
<tr>
<td>LMC</td>
<td>Su aplicación es raramente usada.</td>
</tr>
</tbody>
</table>

Fuente: Autor.

En la imagen 46 se referencia algunos conceptos mencionados anteriormente ubicando la posición ideal con sus diferentes condiciones de tamaño y la posición del agujero, también se referencia el estado de la superficie del agujero. Se observa el diámetro con una tolerancia de tamaño y con la condición virtual (VC) (5).

Imagen 45. Interpretación de posición de la tolerancia.

Fuente: (5)
Se utilizan varios conceptos para comprender la imagen 47 que se explicaron anteriormente, con esta imagen se interpreta mejor la ubicación del agujero con una característica MMC (condición máxima del material) y observar la posición con esta condición (5).

“La tolerancia de posición y la condición de material tiene una relación para determinar la tolerancia total del agujero” (5).

Imagen 46. incremento de la tolerancia de posición MMC.

Se utilizan conceptos para interpretar la imagen 48 explicados anteriormente, con esta imagen se interpreta mejor la ubicación del agujero con una característica LMC (condición mínima del material) y observar la posición con esta condición.
En la imagen 49 se observa un ejemplo a escala para explicar detalladamente los conceptos VC (Virtual condition boundary) y RC (Resultant condition boundary) para determinar el diámetro total según la posición del agujero. Se realiza el ejemplo para explicar los conceptos mencionados anteriormente. Para comenzar se hace una representación gráfica de la tolerancia de posición con su respectiva MMC Y LMC diametral. A continuación se dan unos parámetros para realizar el ejemplo.

Parámetros

\[
\begin{align*}
\varnothing 200 \pm 10 \text{ mm} \\
\varnothing 20 \text{ mm}
\end{align*}
\]
Se determina los límite del tamaño de la tolerancia que están relacionados con VC (Virtual condition boundary) y RC (Resultant condition boundary) según una operación matemática que se observa a continuación con su respectiva imagen.

V.C = MMC - GEO TOL.
V.C = 190 - 20
V.C = 170 mm

RC = LMC + GEO TOL
RC = 210 + 10
RC = 230 mm
Al finalizar el ejercicio se determina que la tolerancia de tamaño es de 200 ± 20 mm pero al hallar VC y RC se sabe que los límites son de diámetro 170 y 230 mm para estas condiciones de diseño del agujero. En la fabricación de este agujero se debe tener un criterio de aceptación o rechazo, a continuación se observa algunos parámetros de medición que se deben tener en cuenta al analizar la pieza ya fabricada.

Tabla 33. Inspección de calidad de agujeros

<table>
<thead>
<tr>
<th>POSITION (DIAMETRAL)</th>
<th>20</th>
<th>17,5</th>
<th>15</th>
<th>12,5</th>
<th>10</th>
<th>7,5</th>
<th>5</th>
<th>2,5</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Agujero</td>
<td>Agujero</td>
<td>Agujero</td>
<td>Agujero</td>
<td>Agujero</td>
<td>Agujero</td>
<td>Agujero</td>
<td>Agujero</td>
<td>Agujero</td>
</tr>
<tr>
<td>RC</td>
<td>170</td>
<td>172,5</td>
<td>175</td>
<td>177,5</td>
<td>180</td>
<td>182,5</td>
<td>185</td>
<td>187,5</td>
<td>190</td>
</tr>
<tr>
<td>VC</td>
<td>230</td>
<td>227,5</td>
<td>225</td>
<td>222,5</td>
<td>220</td>
<td>217,5</td>
<td>215</td>
<td>212,5</td>
<td>210</td>
</tr>
</tbody>
</table>

NOTA= TODAS LAS MEDIDAS ESTAN EN mm

Fuente: Autor
Se analiza la tolerancia calculada en el primer capítulo, la cual corresponde a 0.025 mm para el actuador inicial, para determinar esta tolerancia se realiza operaciones matemáticas en los agujeros con sus respectivas tolerancias, se utiliza el método RFS (Independientemente de tamaño de la característica) como observa en las siguientes tablas.

Tabla 34. Tolerancia actuador inicial

<table>
<thead>
<tr>
<th>DIAMETRO</th>
<th>12</th>
<th></th>
<th>DIAMETRO</th>
<th>34</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. TAMAÑO</td>
<td>0,01</td>
<td></td>
<td>T. TAMAÑO</td>
<td>0,01</td>
</tr>
<tr>
<td>POSITION</td>
<td>0,001</td>
<td></td>
<td>POSITION</td>
<td>0,001</td>
</tr>
<tr>
<td>MMC (DIAMETRAL)</td>
<td>11,990</td>
<td></td>
<td>MMC (DIAMETRAL)</td>
<td>33,990</td>
</tr>
<tr>
<td>LMC (DIAMETRAL)</td>
<td>12,010</td>
<td></td>
<td>LMC (DIAMETRAL)</td>
<td>34,010</td>
</tr>
<tr>
<td>VC (BOUNDARY)</td>
<td>11,989</td>
<td></td>
<td>VC (BOUNDARY)</td>
<td>33,989</td>
</tr>
<tr>
<td>RC (BOUNDARY)</td>
<td>12,011</td>
<td></td>
<td>RC (BOUNDARY)</td>
<td>34,011</td>
</tr>
<tr>
<td>POSITION DIAMETRAL</td>
<td>0,001</td>
<td></td>
<td>POSITION DIAMETRAL</td>
<td>0,001</td>
</tr>
<tr>
<td>TOLERANCIA DE TAMAÑO</td>
<td>0,011</td>
<td></td>
<td>TOLERANCIA DE TAMAÑO</td>
<td>0,011</td>
</tr>
<tr>
<td>TOTAL</td>
<td>0,0120</td>
<td></td>
<td>TOTAL</td>
<td>0,0120</td>
</tr>
</tbody>
</table>

Tabla 35. Posición total de la tolerancia.

<table>
<thead>
<tr>
<th>FEATURE SIZE</th>
<th>MMC</th>
<th>BONUS</th>
<th>GEOMETRIC TOLERANCE</th>
<th>TOTAL POSITION TOLERANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMC</td>
<td>33,99</td>
<td>33,99</td>
<td>0</td>
<td>0,001</td>
</tr>
<tr>
<td>LMC</td>
<td>34</td>
<td>33,99</td>
<td>0,01</td>
<td>0,001</td>
</tr>
<tr>
<td>LMC</td>
<td>34,01</td>
<td>33,99</td>
<td>0,02</td>
<td>0,001</td>
</tr>
</tbody>
</table>

Fuente: Autor.

En las siguientes tablas se realiza unas operaciones matemáticas utilizando la condición de material MMC (máxima condición de material), a continuación se observa en la tabla 35 los parámetros de la posición total de la tolerancia del diámetro de 34 mm con una tolerancia de 0.01 mm.

A continuación se observa en la tabla 36 los parámetros de la posición total de la tolerancia de los diámetro de 12 con una tolerancia de tamaño de 0.01 mm.
Tabla 36. Posición total de la tolerancia.

<table>
<thead>
<tr>
<th>FEATURE SIZE</th>
<th>MMC</th>
<th>BONUS</th>
<th>GEOMETRIC TOLERANCE</th>
<th>TOTAL POSITION TOLERANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMC</td>
<td>11,99</td>
<td>11,99</td>
<td>0</td>
<td>0,001</td>
</tr>
<tr>
<td>LMC</td>
<td>12,01</td>
<td>11,99</td>
<td>0,02</td>
<td>0,001</td>
</tr>
</tbody>
</table>

Fuente: autor

Se realiza una comparación de uno de los agujeros con diferentes condiciones de material correspondiendo a los resultados de las tablas anteriores, el resultado de 12.011 se refiere al método RFS y 12.03 al método MMC, se analiza la diferencia de tolerancias de un método a otro según la aplicación que se requiera en este caso, para el sistema cinemático de robot delta se utiliza el método RFS.

Ya realizado este análisis se debe determinar los resultados que cumplan los parámetros establecidos del primer capítulo.

TOLERANCIA AGUJERO 1 + TOLERANCIA AGUJERO 2 = 0.025 (T. 1 CAPITULO)

0.012 + 0.012 = 0.024

A continuación se realizan una tabla para verificar las dimensiones de los agujeros cuando estén fabricados. Las recomendaciones para realizar un control de calidad del brazo de la cadena cinemática es realizar una medición del agujero y mirar el tamaño de agujero este en los rangos de la tabla 37 con su respectiva tolerancia de posición.

Tabla 34. Inspección de calidad de agujeros

T. TAMAÑO	0,01
T. POSICION	0,001
VC(VIRTUAL CONDICION)	11,989
RC(RESULTADO CONDICION)	12,011

T. TAMAÑO	0,01
T. POSICION	0,001
VC(VIRTUAL CONDICION)	33,989
RC(RESULTADO CONDICION)	34,011

Fuente: Autor.
En la imagen a continuación se observa el GD&T de la primera parte del actuador inicial de las dimensiones críticas del sistema cinemático.

Imagen 50. Plano de GD&T brazo inicial

Se realiza el análisis correspondiente al actuador paral pero se requiere el analizar todo el conjunto de partes que conforma este actuador como se puede observar en la imagen 53 y sus dimensiones críticas que afectan la tolerancia de la cadena cinemática.

Fuente: Autor
Se analiza las dimensiones más críticas de la punta esférica que puede afectar la tolerancia total de la cadena cinemática.

Fuente: Autor
Se realiza el respectivo análisis del elemento de la punta esférica para determinar la ensamblabilidad de este componente con el brazo inicial y el efector final, en la siguiente tabla se observa la tolerancia menor de diámetro de 12mm para tener una tolerancia de deslizamiento al unir estas partes, la dimensión es de 11,97 ±0,01.

Tabla 35. Tolerancia punta esférica.

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIAMETRO</td>
<td>11,97</td>
</tr>
<tr>
<td>T. TAMAÑO</td>
<td>0,01</td>
</tr>
<tr>
<td>T. POSITION</td>
<td>0,001</td>
</tr>
<tr>
<td>MMC (DIAMETRAL)</td>
<td>11,960</td>
</tr>
<tr>
<td>LMC (DIAMETRAL)</td>
<td>11,980</td>
</tr>
<tr>
<td>VC (BOUNDARY)</td>
<td>11,959</td>
</tr>
<tr>
<td>RC (BOUNDARY)</td>
<td>11,981</td>
</tr>
<tr>
<td>POSITION DIAMETRAL</td>
<td>0,001</td>
</tr>
<tr>
<td>TOLERANCIA DE TAMAÑO</td>
<td>0,0110</td>
</tr>
<tr>
<td>TOTAL</td>
<td>0,0120</td>
</tr>
</tbody>
</table>

Fuente: Autor

En la imagen a continuación se observa el GD&T de la punta esférica de las dimensiones críticas del sistema cinemático.
En la imagen 56 se observa la tolerancia de la posición de un agujero con sus respectivas características dimensionales para analizar la pieza paral unión.
La pieza paral unión tiene una dimensión de diámetro 6 mm en donde se ensambla a la punta esférica, este punto es crítico y afecta la tolerancia total del robot delta.
Se analiza la tolerancia calculada en el primer capítulo la cual corresponde a 0.1 mm, para determinar esta tolerancia en el actuador paral se realiza operaciones matemáticas en el agujero como se observa en la imagen 57.

Tabla 36. Tolerancia para agujero.

<table>
<thead>
<tr>
<th>Diametro</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. TAMANO</td>
<td>0,013</td>
</tr>
<tr>
<td>T.POSITION</td>
<td>0,001</td>
</tr>
<tr>
<td>MMC (DIAMETRAL)</td>
<td>5,987</td>
</tr>
<tr>
<td>LMC (DIAMETRAL)</td>
<td>6,013</td>
</tr>
<tr>
<td>VC(BOUNDARY)</td>
<td>5,986</td>
</tr>
<tr>
<td>RC(BOUNDARY)</td>
<td>6,014</td>
</tr>
<tr>
<td>POSITION DIAMETRAL</td>
<td>0,001</td>
</tr>
<tr>
<td>TOLERANCIA DE TAMANO</td>
<td>0,014</td>
</tr>
<tr>
<td>TOTAL</td>
<td>0,0150</td>
</tr>
</tbody>
</table>

Fuente: Autor

Ya realizado este análisis se debe determinar los resultados que cumplan los parámetros establecidos del primer capítulo. La tolerancia lineal es de ± 0.0005 correspondiente a las dimensiones de 72.5 de la imagen 57.

TOLERANCIA PUNTAESFERICA(x4) + TOLERANCIA AGUJERO (x4) = 0.1 (T. 1 CAPITULO)

0.0120 (x4) + 0.015 (x4) = 0.1

A continuación se realizan una tabla para verificar las dimensiones del agujero ya fabricado. Las recomendaciones para realizar un control de calidad de la punta esférica y el paral unión es realizar una medición y mirar el tamaño con los rangos de la tabla 37 con su respectiva tolerancia de posición.

Tabla 37 tolerancias establecidas para agujero.

T. TAMANO	0,013
T. POSICION	0,001
VC(VIRTUAL CONDICION)	5,986
RC(RESULTADO CONDICION)	6,014
PUNTA ESFERICA	11,97 ±0.01

T. TAMANO	0,01
T. POSICION	0,001
VC(VIRTUAL CONDICION)	11,959
En la imagen a continuación se observa el GD&T de la punta esférica de las dimensiones críticas del sistema cinemático.

Imagen 56. Plano de GD&T paral unión.

Fuente: Autor
Se realiza el GD&T del ensamblado del efector final con la punta esférica

Imagen 57. Efector final.

Fuente: Autor

Se realiza un plano como se puede observar en la imagen a continuación explicando el ángulo que debe formar el ensamblado y la distancia entre una sección de la punta esférica.

Imagen 58. Ensamble actuador final

Fuente: Autor
El ensamblaje del actuador final como se observa en la imagen 59, se requiere comprobar si la tolerancia analizada en el primer capítulo está en el rango establecido. A continuación se explica los pasos para determinar la medida del centro del efector final con el eje de la punta esférica.

1) Se toca con un sensor la superficie del agujero del efector final para ubicar el centro del agujero.

Imagen 59. Efector final sensores

Fuente: Autor
2) Se sabe la ubicación del centro del agujero del efector final con el sensor, después se toca exteriormente la punta esférica.

Imagen 60. Efector final posición del sensor.

Fuente: Autor
3) Cuando el sensor toca el borde del diámetro de la punta esférica se resta el radio del sensor y el del diámetro de la punta esférica para tener la ubicación del sensor en el eje de la punta esférica.

Imagen 61. posición del ensamble del efecto para verificación.

Se realiza un dibujo en un software CAD de los puntos obtenidos por el sensor para realizar la medición del centro del efecto final y el eje de la punta esférica para determinar cuál es la tolerancia y si está en un rango de ± 0.05 mm.
Imagen 62. Medición real ensamble del efector final.

Fuente: Autor
Se realiza el montaje de uno de los actuadores del robot delta colocando un pin en cada extremo de la platina y se soldará el paral que se observa en la imagen 66, la medida entre cada pin es de 840 mm para tener uniformidad en el ensamblle con este conjunto de piezas.

Imagen 63. Ensamble actuador paral

Se utiliza GD&T con la herramienta de PMI en NX para describir las características dimensionales y geométricas de la cadena cinemática del robot delta y los sistemas de referencia. A continuación se observa en las siguientes imágenes la utilización de GD&T en un modelado de 3D.

Fuente: Autor

84
Imagen 64. PMI actuador inicial.

Fuente: Autor
Imagen 65. PMI punta esférica.

Fuente: Autor
2.2 Generar hoja de procesos de cada uno de los componentes de la cadena cinemática.

Con la implementación de GD&T en los planos de diseño, a continuación se realiza una hoja de procesos con sus correspondientes partes de la cadena cinemática del robot delta.

Fuente: Autor
Denominación: Pieza 1
Material: Latón
N° de Pieza: 1 - 4

Material: 53 mm
Aplicación: Articulación

<table>
<thead>
<tr>
<th>Subfase</th>
<th>N° de Operación</th>
<th>Operación</th>
<th>Herramienta</th>
<th>Sujeción de Pieza</th>
<th>Datos de Corte</th>
<th>Tiempo (segundos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.1</td>
<td>Material en bruto</td>
<td>-</td>
<td>Material en bruto a 3 mm de voladizo (Cero de pieza)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2.1</td>
<td>Realizan agujeros para el dispositivo guía del montaje</td>
<td>T3</td>
<td>60</td>
<td>2000,00</td>
<td>0,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Realizan dos pines para fijar el dispositivo</td>
<td>T3</td>
<td>60</td>
<td>1</td>
<td>1193,66</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>2.2</td>
<td></td>
<td>Realizan agujero de Ø12 y Ø34 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td></td>
<td>Se realiza la mitad de la pieza, se sostiene de dos prensas a cada lado.</td>
<td>T3</td>
<td>60</td>
<td>1</td>
<td>2000</td>
</tr>
<tr>
<td>3</td>
<td>3.1</td>
<td>Para garantizar las dimensiones se realiza el montaje del dispositivo y se termina la otra mitad de la pieza</td>
<td>T4</td>
<td>60</td>
<td>0,3</td>
<td>2000</td>
</tr>
</tbody>
</table>
Fecha: 2014

Universidad Santo Tomas
Facultad de Ingeniería mecánica

HOJA DE PROCESO
Maquina: Polygim 20CSB
Denominación: Pieza 2
Material: Latón
N° de Pieza: 1-4

Detalles:
- **Material:** 53 mm
- **Aplicación:** Articulación

<table>
<thead>
<tr>
<th>Subfase</th>
<th>N° de Operación</th>
<th>Operación</th>
<th>Herramienta</th>
<th>Sujeción de Pieza</th>
<th>Datos de Corte</th>
<th>Tiempo (segundos)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Vc [m/min]</td>
<td>ap [mm]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>s [rpm]</td>
<td>F [mm/min]</td>
</tr>
</tbody>
</table>

Scale 5:1
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Material en bruto</th>
<th></th>
<th>Material en bruto a 3 mm de voladizo (Cero de pieza)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.1</td>
<td>Desbaste punta esférica hasta 8 mm en Z</td>
<td>T3</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>2.1</td>
<td>Torneado de Ø8 mm</td>
<td>T3</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>2.2</td>
<td>Desbaste hasta Ø12 mm y terminado Ø11.97 mm con una concentridad de 0.001 mm en Z.</td>
<td>T3</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>3.1</td>
<td>Desbaste de cono 30 grados</td>
<td>T4</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>4.1</td>
<td>Fresado para caras planas</td>
<td>T1</td>
<td>60</td>
</tr>
<tr>
<td>5</td>
<td>5.1</td>
<td>Torneado de Ø 6.7 mm y Ø8 mm</td>
<td>T4</td>
<td>60</td>
</tr>
</tbody>
</table>

Para garantizar la ubicación del diámetro de 6 mm respecto a los planes establecidos anteriormente es necesario rectificar la cara, al momento de realizar el agujero se utilizan tres herramientas de desprendimiento de material para garantizar la profundidad correcta.
Fecha: 2014

Universidad Santo Tomas
Facultad de Ingeniería mecánica

HOJA DE PROCESO

Maquina: Polygim 20CSB

Denominación: Pieza 3
Material: Latón
N° de Pieza: 1 - 4

Material: 53 mm

Aplicación: Articulación
<table>
<thead>
<tr>
<th>Subfase</th>
<th>N° de Operación</th>
<th>Operación</th>
<th>Herramienta</th>
<th>Sujeción de Pieza</th>
<th>Datos de Corte</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Vc [m/min]</td>
<td>ap[mm]</td>
</tr>
<tr>
<td>1</td>
<td>1.1</td>
<td>Material en bruto</td>
<td>-</td>
<td></td>
<td>60</td>
<td>2000,00</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>Se rectifica la superficie para agujerar</td>
<td></td>
<td></td>
<td>60</td>
<td>1993,00</td>
</tr>
<tr>
<td></td>
<td>1.3</td>
<td>Se realizan las siguientes operaciones</td>
<td></td>
<td></td>
<td>60</td>
<td>1193,66</td>
</tr>
<tr>
<td>2</td>
<td>2.1</td>
<td>Desbaste de Ø22 y Ø27 mm</td>
<td>T3</td>
<td></td>
<td>60</td>
<td>2000,00</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>Fresado en las dos caras planas en la superficie C</td>
<td>T3</td>
<td></td>
<td>60</td>
<td>1193,66</td>
</tr>
<tr>
<td></td>
<td>2.3</td>
<td>Agujeró de 6 mm de diámetro</td>
<td>T3</td>
<td></td>
<td>60</td>
<td>2000,00</td>
</tr>
<tr>
<td>4</td>
<td>4.1</td>
<td>Fresado de 20 mm de radio en la superficie B.</td>
<td>T1</td>
<td></td>
<td>60</td>
<td>2000,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Material en bruto a 3 mm de voladizo (Cero de pieza)</td>
<td></td>
</tr>
<tr>
<td>N°</td>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sección</td>
<td>5.1</td>
<td>6.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superficie B plana de tolerancia de 0.01 mm para agujero de Ø6 mm con una cilindricidad de 0.01 mm.</td>
<td>T4</td>
<td>60</td>
<td>2</td>
<td>2000</td>
<td>0,05</td>
<td>7,368</td>
</tr>
<tr>
<td>Agujero de Ø18 mm con una cilindricidad de 0.01 mm respecto a la superficie F</td>
<td>T3</td>
<td>60</td>
<td>1</td>
<td>1592</td>
<td>0,1</td>
<td>21,92674593</td>
</tr>
</tbody>
</table>

Fecha: 2014

University Santo Tomas
Facultad de Ingeniería mecánica

HOJA DE PROCESO
Maquina: Polygim 20CSB

Denominación: Pieza 4
Material: Latón
N° de Pieza: 1-4

Material: 53 mm
Aplicación: Articulación

<table>
<thead>
<tr>
<th>N° de Operación</th>
<th>Sujeción de Pieza</th>
<th>Datos de Corte</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>1.1</td>
<td>Material en bruto</td>
</tr>
<tr>
<td>2</td>
<td>2.1</td>
<td>Desbaste de 62.5 mm de diámetro hasta 10 mm de profundidad</td>
</tr>
<tr>
<td>2</td>
<td>2.2</td>
<td>Fresado de radio de 93.8 mm</td>
</tr>
<tr>
<td>2</td>
<td>2.3</td>
<td>Fresado de profundidad de 10 mm</td>
</tr>
<tr>
<td>3</td>
<td>3.1</td>
<td>Desbaste de escoria</td>
</tr>
<tr>
<td>4</td>
<td>4.1</td>
<td>Agujero de 20 mm de diámetro</td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 5 | 5.1 | Agujero de 5 mm de diámetro giro de la torreta 120 grados | T4 |
| | | | 60 | 2 | 2000 | 0,05 | 7,368 |

| 6 | 6.1 | Agujero de 7 mm de diámetro | T3 |
| | | | 60 | 1 | 1592 | 0,1 | 21,92674593 |

7	7.1	Agujero de 12 mm de diámetro	T8						
				3	150	65	13,73538462		
	6	6.1	Agujeró se repite con un giro de la torreta de 120 grados	T3	60	1	1592	0,1	21,92674593
Conclusiones

- Al comparar las matrices de transformación homogénea en Matlab con la cadena simplificada en NX siemens, se verifica la similitud de los resultados de estos dos métodos.

- La tolerancia de 0.1 mm (lineal), utilizada en la hipótesis inicial, permite analizar el margen de error de las tolerancias del efector final en el espacio de trabajo.

- El análisis de las tolerancias dimensionales de cada actuador permite interpretar el comportamiento del robot delta en diferentes posiciones, al cambiar el signo de las tolerancias.

- La aplicación de la norma de ASME Y14.5, permite tomar decisiones acertadas en la implementación de los tres casos de tolerancias geométricas y dimensionales (MMC, LMC, RFS).

- La implementación de GD&T en la industria metalmecánica permite garantizar la correcta ensamblabilidad de los componentes mecánicas.
RECOMENDACIONES

- En futuros trabajos de investigación, aplicar otras tolerancias geométricas relacionadas con forma, perfil y orientación, para analizar el margen de error del sistema cinemático.

- Analizar el comportamiento de las tolerancias geométricas y dimensionales en las articulaciones de la cadena cinemática de robot delta, específicamente.
Bibliografía

7. MODELADO FIGURA EN 3D: IMPLEMENTACION DE PMI EN NX-SIEMENS. <http://www.youtube.com/watch?v=QSdVOr9Mbj0#(7)>.