IMPLEMENTACIÓN DE LA ELECTROREMEDIACIÓN-FENTON PARA LA REMEDIACIÓN DE FENANTRENO EN SUELOS CONTAMINADOS POR HIDROCARBUROS A ESCALA LABORATORIO

RAÚL ZAMIR BARBOSA BOJACÁ
SERGIO ANDRES MELO BOHORQUEZ

UNIVERSIDAD SANTO TOMÁS
INGERIRÍA AMBIENTAL
VILLAVICENCIO
2020
IMPLEMENTACIÓN DE LA ELECTROREMEDIACIÓN-FENTON PARA LA REMEDIACIÓN DE FENANTRENO EN SUELOS CONTAMINADOS POR HIDROCARBUROS A ESCALA LABORATORIO

RAÚL ZAMIR BARBOSA BOJACÁ
SERGIO ANDRES MELO BOHORQUEZ
Trabajo de grado presentado como requisito para optar al título de ingeniero ambiental

Asesor
JAIR ESTEBAN BURGOS CONTENTO
Ingeniero ambiental

UNIVERSIDAD SANTO TOMÁS
INGENIERÍA AMBIENTAL
VILLAVICENCIO
AÑO DE PRESENTACIÓN
2020
IMPLEMENTACIÓN DE LA ELECTROREMEDIALIZACIÓN-FENTON PARA LA REMEDIACIÓN DE FENTRENO EN SUELOS CONTAMINADOS POR HIDROCARBUROS A ESCALA LABORATORIO

Autoridades Académicas

FRAY JOSÉ GABRIEL MESA ANGULO, O.P.
Rector General

FRAY EDUARDO GONZÁLEZ GIL, O. P.
Vicerrector Académico General

PADRE JOSÉ ANTONIO BALAGUERA CEPEDEA, O.P.
Rector Sede Villavicencio

Fray RODRIGO GARCIA JARA O.P.
Vicerrector Académico Sede Villavicencio

JULIETH ANDREA SIERRA TOBÓN
Secretaria de División Sede Villavicencio

YÉSICA NATALIA MOSQUERA BELTRÁN
Decano Facultad de Ingeniería Ambiental
Dedicatoria

Dedico esta tesis a Dios, a mis padres quienes me dieron la vida y a mi hermano quienes me dieron apoyo y muchos consejos durante el tiempo que se materializaba esta tesis, a mi tutor por su paciencia y enseñanzas, también a las personas que no creyeron que terminaría mis estudios, a todos ellos les dedico mi tesis, en especial a mi madre que ya no está presente en este mundo terrenal.

A mis padres y hermana quienes guiaron mi camino y contribuyeron a forjar el ser que soy hoy en día, a mi hermana por acompañarme y brindar el apoyo moral durante el transcurso de mi carrera profesional; a todas las personas que han compartido un espacio en nuestra vida, y que de una u otra forma han apoyado a nuestra formación, en especial a nuestros compañeros que ya no nos acompañan en este plano terrenal.
Contenido

<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Pág.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resumen</td>
<td>9</td>
</tr>
<tr>
<td>Introducción</td>
<td>11</td>
</tr>
<tr>
<td>Planteamiento del problema</td>
<td>13</td>
</tr>
<tr>
<td>Justificación</td>
<td>14</td>
</tr>
<tr>
<td>Alcance</td>
<td>15</td>
</tr>
<tr>
<td>Marco de referencia</td>
<td>16</td>
</tr>
<tr>
<td>Marco Teórico</td>
<td>16</td>
</tr>
<tr>
<td>Marco Conceptual</td>
<td>19</td>
</tr>
<tr>
<td>Marco Legal</td>
<td>22</td>
</tr>
<tr>
<td>Objetivos</td>
<td>24</td>
</tr>
<tr>
<td>Objetivo general</td>
<td>24</td>
</tr>
<tr>
<td>Objetivos específicos</td>
<td>24</td>
</tr>
<tr>
<td>Metodología</td>
<td>25</td>
</tr>
<tr>
<td>Fase 1. Determinación de la concentración de Fenantreno en el suelo:</td>
<td>25</td>
</tr>
<tr>
<td>Actividad 1. Toma de muestras de suelo.</td>
<td>25</td>
</tr>
<tr>
<td>Actividad 2. Contaminación de la muestra.</td>
<td>25</td>
</tr>
<tr>
<td>Actividad 3. Realización de Soxhlet para análisis de cromatografía.</td>
<td>25</td>
</tr>
<tr>
<td>preparación de la muestra.</td>
<td>25</td>
</tr>
<tr>
<td>extracción del analito.</td>
<td>26</td>
</tr>
<tr>
<td>Fase 2. Establecer las condiciones de la celda electroquímica que permita disminuir las concentraciones de fenantreno presentes en el suelo.</td>
<td>26</td>
</tr>
<tr>
<td>Actividad 1. Montaje de la celda electroquímica.</td>
<td>26</td>
</tr>
<tr>
<td>Actividad 2. Tratamiento.</td>
<td>27</td>
</tr>
<tr>
<td>Actividad 3. Análisis por medio de cromatografía de gases y espectrometría de masas (GC-MS).</td>
<td>27</td>
</tr>
<tr>
<td>Fase 3 Análisis de resultados.</td>
<td>28</td>
</tr>
<tr>
<td>Actividad 1. Correlación entre remoción VS Voltaje.</td>
<td>28</td>
</tr>
<tr>
<td>Actividad 2. Análisis de la eficiencia.</td>
<td>28</td>
</tr>
<tr>
<td>Actividad 3. Análisis de correlación remoción vs tiempo con un voltaje constante.</td>
<td>28</td>
</tr>
<tr>
<td>Diagrama de flujo.</td>
<td>29</td>
</tr>
</tbody>
</table>
IMPLEMENTACIÓN DE LA ELECTROREMEDIACIÓN-FENTON PARA LA REMEDIACIÓN DE FENANTRENO EN SUELOS CONTAMINADOS POR HIDROCARBUROS A ESCALA LABORATORIO

1. Resultados

1.1 Determinación de la concentración de fenantreno en el suelo

1.1.1 Análisis granulometría

1.1.2 Contaminación del suelo

1.1.3 Realización de Soxhlet para análisis de cromatografía

1.2 Establecimiento de la celda electroquímica

1.2.1 Montaje de la celda electroquímica

1.2.2 Análisis por medio de cromatografía

1.2.3 Análisis de la Conductividad y pH

1.3 Análisis de resultados

1.3.1 Correlación entre remoción y voltaje

1.3.1.1 Comportamiento de pH y conductividad durante segunda fase de tratamiento

1.3.1.2 Concentración y pH durante la segunda fase de tratamiento

1.3.1.3 Calculo de límite de detección

1.3.2 Análisis de eficiencia

1.3.3 Correlación remoción vs tiempo a voltaje constante

Conclusiones

Recomendaciones

Referencias Bibliográficas

Apéndices
Lista de tablas

Tabla 1 marco legal, base de datos ambientalex ... 22
Tabla 2 Continuación de marco legal .. 23
Tabla 3 Valores de conductividad, pH y voltaje aplicado en las muestras de la fase uno; Por: Barbosa, R & Melo, S, 2020 .. 36
Tabla 4 Valores de pH y concentración en la fase uno de tratamiento, Por: Barbosa, R & Melo, S, 2020. 38
Tabla 5 Valores de concentración y voltaje; Por: Barbosa, R & Melo, S, 2020 39
Tabla 6 Valores de pH, conductividad, voltaje y días en la fase dos; Por: Barbosa, R & Melo, S, 2020 41
Tabla 7 Valores de concentración en blanco de la GC-MS, Por: Barbosa, R & Melo, S, 2020 44
IMPLEMENTACIÓN DE LA ELECTROREMAEDIACIÓN-FENTON PARA LA REMEDIACIÓN DE FENANTREN EN SUELOS CONTAMINADOS POR HIDROCABURUROS A ESCALA LABORATORIO

Lista de Figuras

Figura 1 Punto de muestreo de suelo, Por: Barbosa, R & Melo, S, 202015
Figura 2 Montaje de celda electroquímica. Adaptado de: Application of the electrokinetic-Fenton process for the remediation of Kaolinite contaminated with phenanthrene (Kim et al., 2005), 2020...27
Figura 3 Diagrama de flujo de la metodología propuesta, Por: Barbosa, R & Melo, S, 202029
Figura 4 Porcentaje por tamaño de gránulos del suelo muestreado, Por: Barbosa, R & Melo, S, 2020 ..30
Figura 5 Proporción de gránulos en el suelo muestreado, Por: Barbosa, R & Melo, S, 202031
Figura 6 Sueto contaminado artificialmente, Por: Barbosa, R & Melo, S, 2020.....................32
Figura 7 Montaje del Soxhlet, Por: Barbosa, R & Melo, S, 2020 ..33
Figura 8 Recuperación de solvente en la primer fase de tratamiento, Por: Barbosa, R & Melo, S, 2020 ..34
Figura 9 Montaje de la celda electroquímica, Por: Barbosa, R & Melo, S, 202035
Figura 10 Porcentaje de concentración de fenanthereno en diferentes voltajes aplicados; Por: Barbosa, R & Melo, S, 2020..36
Figura 11 Relación de la conductividad y el pH, Por: Barbosa, R & Melo, S, 2020.................37
Figura 12 Relación entre la concentración de fenanthereno y el pH, Por: Barbosa, R & Melo, S, 2020 ..39
Figura 13 Concentración de fenanthereno respecto al voltaje aplicado; Por: Barbosa, R &Melo, S, 2020..40
Figura 14 Conductividad y pH durante la segunda fase de tratamiento, Por: Barbosa, R & Melo, S, 2020..42
Figura 15 Concentración de fenanthereno y pH durante la segunda fase de tratamiento; Por: Barbosa, R & Melo, S, 2020..43
Figura 16 Concentración del contaminante en el transcurso del tratamiento en la segunda fase; Por: Barbosa, R & Melo, S, 2020 ..46
Glosario

Electroremediación: es una tecnología para restaurar suelos contaminados que se basa en la generación de un campo eléctrico a partir de imponer corriente directa.

Reacción Fenton: es un proceso de oxidación avanzada que consiste en la descomposición catalítica de agua oxigenada en presencia de sales de hierro en un medio ácido.

Hidrocarburo aromático policíclicos: Grupo compuesto por más de 100 compuestos orgánicos diferentes que contienen varios anillos bencénicos. Algunos de ellos son persistentes y cancerígenos.

Ánodo: Electrodo positivo de una cuba electrolítica al cual se dirigen los aniones de la disolución.

Cátodo: Electrodo negativo de una cuba electrolítica al cual se dirigen los cationes de la disolución.

Cromatografía de gases: Es una técnica cromatográfica en la que la muestra se volatiliza y se inyecta en la cabeza de un mechero de una columna cromatográfica. La elución se produce por el flujo de una fase móvil de gas inerte.
Resumen

El escenario por el cual se planteó la realización del proyecto, fue debido a que se han presentado contingencias en el transporte del petróleo que es la principal fuente de la economía en el departamento, contaminando tierras con potencial agrícola. Una solución para este problema es el tratamiento Electro-Fenton que permite remover el contaminante, en este caso Fenantreno.

Para el tratamiento se utilizó una celda electroquímica a la cual se aplicó una gama voltajes y una solución de lavado (H2O2) los cuales fueron determinantes, debido a que desencadenan en fenómenos que alteran la conductividad y el pH; este último es la variable clave para determinar el grado de descontaminación del suelo; Removiendo un 98,8% del contaminante en 10 días.

Palabras Clave: Fenantreno, Fenton, electroremediación, suelos.
Abstract

The scenario for which the project was proposed due to the occurrence of contingencies in the oil transportation, which is the main source of the economy in the department, contaminating land with agricultural potential. A solution to this problem is the Electro-Fenton treatment that allows the contaminant to be removed, in this case phenantrone.

For the treatment, an electrochemical cell was used to which a range of voltages and a washing solution (H2O2) were applied, which were decisive, since they trigger phenomena that alter conductivity and pH; the latter is the key variable to determine the degree of soil decontamination; removing 98.8% of the contaminant in 10 days

Key Word. Phenantrone, Fenton, electroremediation, soil.
Implementación de la Electroremediación-Fenton para la Remediación de Fenantreno en Suelos Contaminados por Hidrocarburos a Escala Laboratorio

Introducción

En la actualidad, una de las mayores problemáticas ambientales que inquietan al estado es la contaminación del suelo, a causa que el 95% de las provisiones a nivel mundial tiene su génesis allí; incidiendo principalmente en la seguridad alimentaria, entre los contaminantes del suelo más comunes se encuentran los metales pesados, los contaminantes orgánicos persistentes y los contaminantes emergentes; como los productos farmacéuticos y los destinados al cuidado personal (organización de las naciones unidas para la alimentación y la agricultura, 2018).

Los metales pesados entran en contacto con el suelo principalmente por las emisiones de los vehículos, junto con los efluentes de las aguas residuales domesticas e industriales, así como en procesos productivos de extracción minera (Möller et al., 2005) (Vega et al., 2006); los principales metales pesados que se encuentran en el suelo son cobre, zinc, níquel, cromo, plomo, cadmio, arsénico y mercurio (Cai et al., 2012). Estos elementos reaccionan con las moléculas presentes en el medio donde son vertidos produciendo generalmente especiación, en el que los iones metálicos interactúan con sustancias orgánicas modificando las propiedades fisicoquímicas del suelo (Grijalbo, 2016), este proceso se da naturalmente; sin embargo la actividad humana aumenta la concentración de los metales pesados en niveles tóxicos (Ortega & Mejía, 2014).

Los contaminantes orgánicos persistentes se originan por la aplicación de pesticidas en aspersión agrícola, emisiones de vehículos y vertimientos de hidrocarburos (Levillain et al., 2012); los compuestos más destacados y estudiados son los hidrocarburos aromáticos policíclicos (HAP) y compuestos organoclorado presente en pesticidas, debido a su persistencia los efectos de estos compuestos son de larga duración y de difícil tratamiento para su remoción en el medio contaminado (Chen et al., 2005).

Los contaminantes emergentes provienen del agua residual doméstica, estas llegan a las plantas de tratamiento pero la remoción de estos compuestos es mínima; a causa del consumo de distintos medicamentos y suplementos alimenticios (Berglund, 2015); los principales compuestos son acetaminofén, ibuprofeno, antibióticos (sulfametaxol/trimetoprim, tetracicлина, amoxicilina entre
otros) y hormonas (estrógenos, tirosina, testosterona entre otros) (Ferro et al., 2015)(Amador et al., 2018) en Colombia; la contaminación del suelo por hidrocarburos se presenta principalmente en el proceso de extracción y transporte, afectando el medio a través de vertimientos accidentales o deliberados; generalmente afectando la fertilidad del suelo, la capacidad de retención, salinidad y otras propiedades del suelo (Velásquez, 2017).

A causa que la economía del departamento del Meta se basa principalmente de la explotación de hidrocarburos, se deben tener mecanismos de respuestas ante emergencias relacionados a derrames; la electroremediación que consiste en la aplicación de un voltaje para la remoción del contaminante es un mecanismo alternativo para la remediation de contaminantes como metales pesados e hidrocarburos aromáticos policíclicos (HAP). La importancia de la implementación de la remediación en suelos se debe a que este hace parte del ciclo ambiental y por lo tanto repercutir en los demás componentes del ambiente.

El objetivo principal de este proyecto es implementar a escala laboratorio la electroremediación-Fenton en un suelo contaminado de manera artificial con hidrocarburos y evidenciar la remoción que presenta el tratamiento.
Planteamiento del problema

El desarrollo del ser humano ha contribuido en los últimos años, a que ciertos compuestos orgánicos tengan mayor presencia en el medio ambiente (Bamforth & Singleton, 2005), un grupo que ha llamado la atención por su persistencia, sus efectos en la salud humana y el ambiente son los hidrocarburos aromáticos policíclicos (HAP) (Atsdr, 2000); estos compuestos orgánicos son de gran importancia por los efectos que produce una exposición media a estos: en el caso más severo enfermedades como el cáncer, además de efectos irreparables en el medio ambiente (Mastandrea et al., 2005); por consiguiente siete HAP han sido clasificados de manera especial por la Agencia de Protección de Medio Ambiente de los Estados Unidos (EPA) como contaminantes “prioridad”, estos contaminantes son: acenafteno, acenaftileno, antraceno, benzo(g,h,i)perileno, fluoreno, Fenantreno y pireno (Lerda, 2010).
Los mecanismos de tratamiento convencionales para la contaminación de suelos con HAP se pueden catalogar como tratamientos físico-químicos, los cuales usan surfactantes, o mecanismos como la extracción y lixiviación para eliminar el contaminante, pero presentan un costo considerable para el tratamiento del suelo contaminado y requieren de equipo y personal especializado (Ortiz et al., 2007; USEPA, 2007). También hay tratamientos microbiológicos, los cuales se basan en la capacidad de varios microorganismos para degradar ciertos compuestos, sin embargo estos métodos solo han sido comprobados en medios controlados que favorecen el crecimiento microbiano (Ghazali et al., 2004).

Debido a los costos operacionales y el recurso humano que se necesita al utilizar los tratamientos físicoquímicos, y las deficientes evidencias para corroborar si el tratamiento microbiológico es eficiente en condiciones reales; debido a esto surgen otras técnicas de remediación para suelos contaminados diferentes a las convencionales, como por ejemplo la electroremediación, la cual es una técnica emergente de bajo costo y que genera un bajo impacto al medio ambiente, convirtiéndose en la actualidad en una de las técnicas más estudiadas debido a sus resultados favorables en la remoción de contaminantes (Caliman et al., 2011). Debido a que la economía del departamento es netamente extractiva, lo que indica que esta técnica sea apropiada para estudiarla y ser empleada.
Justificación

Dado que la economía del departamento del Meta se basa principalmente en la explotación de hidrocarburos (Apolinar, 2018), se presentan a menudo situaciones de emergencia a causa de derrames u otros incidentes propios de la industria. Cuando ocurren estos eventos se liberan distintos contaminantes al ambiente; uno de los contaminantes más persistentes y más perjudiciales es el Fenantreno (Páez et al., 2012), el cual aunque tiene diferentes usos para medicamentos, insecticidas y colorantes; a simple contacto causa irritación en piel, ojos y tracto digestivo (Sosa et al., 2017), por este motivo se deben buscar alternativas que sean efectivas, viables económicamente y de bajo impacto ambiental para mitigar las consecuencias producidas por dichos sucesos.

Una de las alternativas es la electroremediación, la cual es un método eficiente a la hora de hacer tratamiento de suelos contaminados. Consiste en la aplicación de un voltaje que permite la remoción del material contaminante sin afectar las condiciones propias del medio (Kuppusamy et al., 2017). La importancia de la implementación de la remediación en suelos como tratamiento de remoción, se debe a que este proceso hace parte del ciclo ambiental y por tanto puede repercutir en los demás componentes ambientales. Generalmente los estudios acerca de electroremediación se enfocan hacia los hidrocarburos aromáticos policíclicos (HAP) y metales pesados, debido a sus efectos en el suelo y en la salud humana (Streche et al., 2018)(Wong et al., 1997)(López-Vizcaíno et al., 2014).

A causa de las repercusiones al medio ambiente y la salud humana por parte de este compuesto, es pertinente realizar un estudio de esta índole, ya que en Colombia no se encuentran documentos relacionados con la electroremediación en suelos contaminados con hidrocarburos. Es oportuno tener un método diferente a los convencionales para la eliminación de este contaminante, que permita obtener una buena relación costo / beneficio; además se muestran evidencias de ocurrencia de siniestros con derrames de crudo en todo el territorio nacional (cormacarena, 2018).
Alcance

Debido a que el departamento del Meta presenta un clima tropical con una temperatura promedio anual de 25.5°C y según la clasificación Köppen-Geiger es AM (clima tropical); basa su economía en la extracción de hidrocarburos, en consecuencia, se presentan incidentes en el momento del transporte, lo cual conlleva a afectar suelos con potencial agrícola; y perjudicando a la comunidad que se beneficia de estos suelos. Los suelos impactados por los derrames de hidrocarburos en la región, generalmente son oxisoles; los cuales presentan un color rojizo o amarillo por sus altas concentraciones de hierro, óxidos e hidróxidos de aluminio.

Figura 1 Punto de muestreo de suelo, Por: Barbosa, R & Melo, S, 2020
Marco de referencia

Marco Teórico.

Los hidrocarburos son compuestos orgánicos que en su composición contienen anillos de carbono e hidrógeno, esto los hace una fuente de energía para el desarrollo del hombre, también son utilizados los procesos de petroquímica para tener un mejor aprovechamiento de estos (De la cruz, 2006); De igual manera los hidrocarburos se clasifican por la naturaleza de sus enlaces, los más sencillos son las parafinas en el cual sus enlaces son sencillos, seguidos de los hidrocarburos no saturados estos cuentan con enlaces dobles y guardan una gran capacidad de reacción y por último los hidrocarburos aromáticos con 3 dobles enlaces por lo cual se les considera una clase especial (McMurry, 2012). Dentro de estos podemos encontrar los hidrocarburos aromáticos policíclicos (HAP) los cuales se encuentran en el medio ambiente y son el producto final de los procesos industriales, los cuales los hacen potencialmente peligrosos al hombre y el medio debido a que son carcinogénicos, mutágenos y en otros casos teratógenicos además de que se bioacumulan por cual es imperativo su estudio (Mastandrea et al., 2005) (Botello et al., 1995).

La industria del petróleo ha sido un medio importante para el departamento del Meta, beneficiando económica y socialmente a la comunidad. Sin embargo, esta industria presenta dificultades en relación a accidentes en el transporte de distintos productos que afectan negativamente el suelo y el agua.

Para ello existen mecanismos que permiten ayudar a remediar la contaminación, y mejorar las condiciones en las que se encuentran. Para el suelo se dividen en tres grandes ramas tratamientos físico-químicos, tratamientos biológicos y tratamientos de electroremediación; los tratamientos físico-químicos son aquellos que aprovechan las propiedades físicas o químicas del medio contaminado para destruir, separar o contener el contaminante; sin embargo depende tanto de las condiciones del medio como del contaminante para lograr un correcto tratamiento por ello muchas veces se requieren de tratamientos adicionales o disposición final de acuerdo a la complejidad que se presente (Fundación chile, 2013), algunos mecanismos de tratamiento son las enmiendas químicas. Que es la adición de nutrientes para disminuir la movilidad del contaminante, barreras
físicas, lavado de suelo, aireación entre otras; aunque a corto plazo presente bajos costos, conforme aumente el tiempo y la complejidad del tratamiento el costo puede aumentar exponencialmente, debido a esto se buscan otras opciones que permitan disminuir costos (Ortiz et al., 2007).

El tratamiento biológico es una tecnología de remediación en la cual se usan organismos vivos (plantas, hongos, bacterias entre otros) para degradar o remover compuestos generalmente orgánicos que por su estado se consideran tóxicos para las condiciones el medio, para la remediación los organismos usan su capacidad natural para utilizar los contaminantes como fuente de alimento y energía. No obstante, las rutas de biodegradación varían mucho en función de la estructura química del contaminante y las especies de organismos a utilizar dentro del tratamiento (Lim et al., 2016), algunos ejemplos de tratamiento biológico son la fitorremediación, el compostaje, el landfarming entre muchos otro; a pesar de que los costos de estos tratamientos son relativamente bajos en su aplicación, la incertidumbre sobre el comportamiento de los organismos y el tiempo de tratamiento generan poca certeza acerca de la eficiencia del tratamiento (Vo et al., 2019).

La Electroremediación es otro mecanismo de remediación que es relativamente reciente en el cual se aplica un campo de corriente continua por medio de unos electrodos implantados en el suelo, en el cual los contaminantes son desplazados en su fase líquida en el campo eléctrico por electromigración y/o electroósmosis (Martínez, 2018); la electromigración es el transporte de material causado por el movimiento gradual de iones en un conductor debido a la transferencia de cantidad de movimiento entre los electrones de conducción y los átomos del medio contaminado a tratar (Risco et al., 2016) y la electroósmosis es un fenómeno de transporte en el que la solución saturante (generalmente agua) junto con las sustancias que se suspenden en él, fluyen hacia uno de los electrodos dependiendo principalmente de la fuerza del campo eléctrico aplicado y el potencial Z de la interfase sólido-líquido (Yao et al., 2012); la elección de la técnica varía de acuerdo a las características del medio (naturaleza del suelo), contenido de agua, conductividad eléctrica, pH y potencial Z; así como el material de los electrodos de trabajo; estos generalmente usan elementos inertes como el titanio o elementos más reactivos como el hierro o el grafito (Rodrigo et al., 2018)(Paixão et al., 2020), lo que permite una variabilidad en la aplicación tecnológica en el tratamiento de una amplia gama de contaminantes y los costos de tratamiento; también este tipo de tratamiento se pueden acoplar con los tratamientos anteriormente...
IMPLEMENTACIÓN DE LA ELECTROREMEDIAción-FENToN PARA LA REMEDIACIÓN DE FENANTRENOS EN SUELOS CONTAMINADOS POR HIDROCARBUROS A ESCALA LABORATORIO

mencionados como tratamientos biológicos en el que se mejora la bioremediación realizando aplicación de voltaje para mejorar la tasa de biodegradación (bioatenuación electrocinética), aumentar la distribución de nutrientes a los organismos usados (bioestimulación electrocinética) o aumentando la trayectoria y alcance de los microorganismos (bioaumentación electrocinética)(Saini et al., 2020); así mismo el acoplamiento con tratamientos físico-químicos como la adición de compuestos quelantes como el EDTA para la remediación de metales pesados en suelos, el uso de coadyuvantes que permitan una mejor remoción como el ácido cítrico, ácido acético u otro ácido orgánico o aplicando otros tratamientos como el proceso Fenton(Yao et al., 2012).

El proceso Fenton se ha utilizado hace tiempo para el tratamiento de aguas residuales con presencia de contaminantes orgánicos e inorgánicos, en el que se promueve la generación de radicales hidroxilo (OH) e hidrogeno (H), los cuales juegan un papel importante dentro del tratamiento para la degradación de los contaminantes en CO₂, H₂O e iones inorgánicos por medio de reacciones de deshidrogenación e hidroxilación(Usman et al., 2016); inicialmente el tratamiento Fenton se usó en tratamiento de agua residual mejorando la capacidad de remoción, así como remover DBO(Rodríguez et al., 2020) y metales como cobre, níquel y cromo(Zhu et al., 2020)(Shen et al., 2020)(Jiang et al., 2020); luego de verificada la efectividad de este en aguas residuales, se realizaron investigaciones en suelos contaminados con hidrocarburos para tratar especialmente HAP (Paixão et al., 2020).

La electroremediación-Fenton es un tratamiento híbrido en el cual se facilita la activación y distribución de los radicales oxidantes por medio de la catálisis de peróxido de hidrogeno con el ion ferroso (Fe²⁺) y el hierro cero valente (Fe⁰) causando la descomposición de peróxido de hidrogeno (H₂O₂) para formar radicales perhidroxil (OOH) hidroxil (OH), e hidroxilo (H⁺)(Cheng et al., 2016), que pueden oxidar los compuestos orgánicos persistentes como los hidrocarburos aromáticos policíclicos (HAP) y los compuestos organoclorados.

Lo que nos ratifica que esta nueva tecnología es eficaz a la hora de hacer una remediación en suelo teniendo en cuenta la proporción costo beneficio; partiendo de que el departamento del Meta tienen una fuerte tendencia petrolera y una gran cantidad de incidentes que se ven envueltos los hidrocarburos, esto hace pertinente tener una nueva tecnología aparte de las convencionales que sea mucho más económica y efectiva a la hora de realizar remociones de hidrocarburos y sus
componentes de los suelos contaminados, ya que esto podría poner en riesgo el otro pilar de la economía del departamento como lo es la agricultura (Alba et al., 2013) (Martinez & Soto, 2017)

Marco Conceptual.

Un grupo de compuestos contaminantes que en la actualidad se han estudiado son los hidrocarburos aromáticos policíclicos (HAP) estos son una familia de compuestos ampliamente distribuida en el medio ambiente, caracterizada por tener dos o más anillos de benceno unidos entre sí, estos generalmente compuestos por hidrógeno y carbono; los HAP son sustancias lipófilas, lo cual permite la acumulación en organismos en los tejidos grasos, además que tienden a incrementar la tendencia de acumulación conforme aumenta su masa molecular (Atsdr, 2000)(Mastandrea et al., 2005); un compuesto perteneciente a esta familia es el Fenantreno el cual tiene como fórmula química \(\text{C}_{14}\text{H}_{10} \), siendo este un hidrocarburo aromático con tres anillos fusionados, este se encuentra ampliamente distribuido en el ambiente; se encuentra como contaminante en aguas residuales, gasificación del carbón, procesos de licuefacción, en el alquitrán de hulla y el petróleo (Gomes et al., 2012); algunos efectos que tiene este compuesto es que a simple contacto causa irritación en piel, ojos y tracto digestivo, además de los efectos carcinogénicos y mutagénicos (Sosa et al., 2017).

Para determinar la concentración de este contaminante se usa la cromatografía de gases con espectrometría de masas, este es un método de análisis cuantitativo para mezclas multicomponentes de orgánicos volátiles en el cual la muestra se volatiliza y se inyecta en una columna cromatográfica; la elución se produce por el flujo de una fase móvil de un gas inerte la cual no interacciona con las moléculas del analito, lo cual permite el transporte del analito a través de la columna y por medio de esta se detectan los componentes de la muestra, igualmente un detector provee una señal legible en magnitud a la cantidad de cada componente (universidad de alicante, 2008).

Para remediar y corregir los suelos contaminantes por este tipo de compuestos generalmente se usan métodos físicos como lavado o extracción por medio de lavado con solventes y agua para remover los contaminantes y captar el efluente y tratarlo (Ortiz et al., 2007); también existen métodos biológicos en el que se usan cepas de microorganismos para reducir la concentración del contaminante (Bamforth & Singleton, 2005).
Además, existe un método alternativo que es la electroremediación que consiste en la aplicación de un campo eléctrico continuo entre dos electrodos enterrados, para el caso del suelo, durante un cierto tiempo. Con la aplicación de este campo eléctrico se consigue, dependiendo de diversos factores como el grado de humedad del terreno, acidez, etc., movilizar las especies cargadas hacia los electrodos correspondientes, ánodo o cátodo (Sanjay et al., 2003); para tratar contaminantes persistentes se deben añadir soluciones de lavado que permitan la remoción del contaminante y disminuir la pasivación de los electrodos (López-Vizcaíno et al., 2014), una de las soluciones más usadas es el peróxido de hidrógeno que favorece la reacción Fenton que consiste en la adición de sales de hierro en presencia de peróxido de hidrógeno (H2O2), en un medio ácido para la formación de radicales OH como se observa en las ecuaciones 1 y 2.

\[
\begin{align*}
Fe^{2+} + H_2O_2 & \rightarrow Fe^{3+} + OH^- + OH^0 & (Ecuación 1) \\
Fe^{3+} + H_2O_2 & \rightarrow Fe^{2+} + H^+ + H_2O_0 & (Ecuación 2)
\end{align*}
\]

Además de formarse radicales \(OH^0\), se generan radicales perhidroxilo \((H_2O^0)\) los cuales permiten una reacción en cadena para eliminar materia oxidable, sin embargo los radicales perhidroxilo presentan menor poder de oxidación que los \(OH^0\) (Rubio-Clemente et al., 2014).

De este modo los HAP se ven degradados debido a la acción oxidante de los radicales \(OH\) y \(H^+\), rompiendo los compuestos a formas más básicas como el benceno; generalmente los materiales usados dentro de estos tratamientos, son electrodos de bajo costo como el grafito y el hierro, el primero por su alta conductividad y el segundo por su contribución al proceso Fenton.

En el departamento del Meta se presentan las siguientes clases taxonómicas referidas a los suelos (FAO, 1965), las cuales son; Entisoles los cuales son suelo poco desarrollados o proveniente de sedimento arenosos, asociados principalmente a orillares y lechos de los ríos con textura franco-arenosa, la siguiente clasificación son Vertisoles que son suelos con horizontes invertidos compuesto de arcilla expandible, este tipo de suelo es bastante escaso en la región solo pudiéndose encontrar en los bajos de la llanura aluvial.

También se presenta Inceptisoles que son suelos incipientes que a diferencia de los Entisoles presentan un poco más de desarrollo, generalmente se encuentran en algunos suelos de vega y bajos de ríos donde pueden recibir aportes de estos; otro tipo de suelo es el Ultisol el cual carece de un horizonte oxico pero presenta un horizonte argílico, este se encuentra en depresiones en la
zona del piedemonte y vegas altas de los ríos; también se presentan suelo oxisoles, los cuales se encuentran completamente meteorizados y que presenta una falta de nutrientes intercambiables junto con pobreza general en minerales meteorizables; además de presencia de arcillas caoliniticas y óxidos de hierro y aluminio; este tipo de suelo se encuentra en altillanuras planas, rebordes de caños y barrancos presentes en la llanura eólica.
Marco Legal.
La normativa colombiana cuenta con legislación limitada acerca de la contaminación del suelo y los manejos que deben tener, como se puede apreciar en la Tabla 1.

Tabla 1 marco legal, base de datos ambientalex

<table>
<thead>
<tr>
<th>Norma</th>
<th>Descripción</th>
<th>Artículos que competen al proyecto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constitución política de Colombia</td>
<td>Es un conjunto de reglas que establece la forma en que debemos comportarnos todos los que vivimos en Colombia para que exista bienestar y podamos vivir en paz.</td>
<td>ARTÍCULO 8. Es obligación del Estado y de las personas proteger las riquezas culturales y naturales de la Nación.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ARTÍCULO 79. Todas las personas tienen derecho a gozar de un ambiente.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ARTÍCULO 80. El Estado planificará el manejo y aprovechamiento de los recursos naturales, para garantizar su desarrollo sostenible, su conservación, Restauración o sustitución.</td>
</tr>
<tr>
<td>Ley 99 de 1993</td>
<td>Por la cual se crea el ministerio del medio ambiente, se reordena el Sector Público encargado de la gestión y conservación del medio ambiente y los recursos naturales renovables, se organiza el Sistema Nacional Ambiental -SINA y se dictan otras disposiciones.</td>
<td>ARTÍCULO 48. Ante la crisis generada a la diversidad biológica en nuestro planeta, se considera responsabilidad inaplazable e inherente al ejercicio de, propender, impulsar y apoyar, todos los programas encaminados a la protección del patrimonio pecuario nacional, de los recursos naturales, de la biodiversidad, de la fauna silvestre y del medio ambiente dentro de un manejo técnico y racional.</td>
</tr>
<tr>
<td>Decreto 2811 de 1974</td>
<td>Código nacional de los recursos naturales renovables y de protección al medio ambiente</td>
<td>ARTÍCULO 1. El ambiente es patrimonio común. El Estado y los particulares deben participar en su preservación y manejo, que son de utilidad pública e interés social.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ARTÍCULO 7. Toda persona tiene derecho a disfrutar de ambiente sano.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ARTÍCULO 8. Se consideran factores que deterioran el ambiente la contaminación del aire, de las aguas, del suelo y de los demás recursos naturales renovables.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ARTÍCULO 179. El aprovechamiento de los suelos deberá efectuarse en forma de mantener su integridad física y su capacidad productora.</td>
</tr>
</tbody>
</table>
Tabla 2 Continuación de marco legal

<table>
<thead>
<tr>
<th>Decreto 2811 de 1974</th>
<th>Código nacional de los recursos naturales renovables y de protección al medio ambiente</th>
<th>ARTÍCULO 180. Es deber de todos los habitantes de la República colaborar con las autoridades en la conservación y en el manejo adecuado de los suelos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolución 170 de 2009</td>
<td>Declaración de Día Nacional de los Suelos y se adoptan medidas para la conservación y protección de los suelos en el territorio nacional</td>
<td></td>
</tr>
<tr>
<td>Ley 23 de 1997</td>
<td>Se relacionan aspectos como la prevención y control de la contaminación del medio ambiente, mejoramiento, conservación y restauración de los recursos naturales renovables, determinando como bienes contaminables el aire, el agua y el suelo.</td>
<td></td>
</tr>
</tbody>
</table>

Marco legal en relación al matriz suelo, tomado de la base de datos ambientalex
Objetivos

Objetivo general

Implementar la electroremediación-Fenton para remediar el Fenantreno presente en suelos contaminados por hidrocarburos.

Objetivos específicos

- Determinar la concentración inicial de Fenantreno en el suelo por medio de cromatografía de gases y espectrometría de masas (GC-MS)
- Establecer las condiciones de la celda electroquímica que permita disminuir las concentraciones de Fenantreno presentes en el suelo.
- Evaluar la eficiencia de remoción para cada una de las muestras tratadas mediante electroremediación-Fenton.
IMPLEMENTACIÓN DE LA ELECTROREMIEDIACIÓN-FENTON PARA LA REMEDIACIÓN DE FENANTRENO EN SUELOS CONTAMINADOS POR HIDROCARBUROS A ESCALA LABORATORIO

Metodología

Fase 1. Determinación de la concentración de Fenantreno en el suelo:

Actividad 1. Toma de muestras de suelo.

Se realizó un muestreo simple de suelo en el municipio de Puerto Gaitán en la época de sequía para evitar sesgos por saturación de agua en el suelo, la extracción de las muestras se realizó con un barreno a una profundidad de 30 cm en el cual se tomaron 2 kg los cuales se preservaron en bolsas plásticas; luego las muestras fueron rotuladas con fecha y coordenadas para su traslado.

Actividad 2. Contaminación de la muestra.

Inicialmente se realizó el análisis de hierro total presente en el suelo por el método de colorimetria siguiendo la guía del kit de suelos lamotte, así como la medición de pH y conductividad por medio del multiparametro Multiline 3630IDS de acuerdo al manual de uso de la marca WTW; también se realizó la clasificación granulométrica del suelo por medio de tamices siguiendo el sistema unificado de clasificación de suelos, además se realizó la identificación de la textura del suelo de acuerdo a la metodología de la USDA(Hernández et al., 2006); la contaminación de la muestra se realizó en el laboratorio de suelos de la Universidad, se agregó 9.78 ml HC/Kg de suelo, se procedió a realizar una mezcla homogénea por agitación mecánica entre el HC y el suelo.

Actividad 3. Realización de Soxhlet para análisis de cromatografía.

Para determinar las concentraciones del Fenantreno presentes en las muestras de suelo, se realizó la separación por el método de Soxhlet, que se describe a continuación.

preparación de la muestra.

Para la extracción del analito se retiró cualquier impureza presente como material vegetal, rocas entre otros, luego se tomó una muestra de 5 g de suelo y se añadió 5 g de sulfato de sodio (Na2SO4)
con el fin de eliminar la humedad, para posteriormente, ser puesto en un dedal de extracción; el uso de sulfato de sodio se debe a que si se usa calor como medio para secar el analito afectaría la concentración del contaminante y tendría repercusiones en los resultados de la extracción extracción del analito.

Se agregó 300 ml de una solución en proporción 1:1 de hexano y acetona en un matraz de fondo redondo de 250 ml con treinta perlas de ebullición limpias, se montó en el equipo y se realizó la extracción durante 24 horas; luego de terminada la extracción se añadió sulfato de sodio para disminuir la humedad presente en el analito, sin afectar la concentración del contaminante; después se realizó el montaje en el roto evaporador heidolph Hei-Vap core en el cual se agregó dos perlas de ebullición al matraz; donde se sumerge parcialmente el matraz en un baño maría entre 10 y 20 grados centígrados por encima del punto de ebullición del solvente (80 °C), luego se ajustó la posición y la temperatura para lograr la destilación en un máximo de 20 minutos, cuando el volumen del líquido alcanzó 1mL se retiró el concentrador del agua y se dejó enfriar por 10 minutos aproximadamente.

La extracción del analito se realizó de acuerdo al método 3540C de la USEPA para extracción de compuestos semivolátiles y adaptado a los equipos del laboratorio; asimismo el analito obtenido fue rotulado y embalado; debido a que la institución no cuenta con el equipo de GC-MS(Dalgleish et al., 2007). Se optó por contratar este servicio a la Universidad Javeriana de Colombia sede Bogotá, donde el valor por muestra a analizar fue de $ 110.000 pesos, estos costos fueron asumidos por los investigadores.

Fase 2. Establecer las condiciones de la celda electroquímica que permita disminuir las concentraciones de fenantreno presentes en el suelo.

Actividad 1. Montaje de la celda electroquímica.

La estructura de la celda electroquímica se puede observar en la Figura 2. Cada montaje contó con un contenedor de 3,2 cm de diámetro y 10 cm de longitud, compuesto de PVC. En su interior se encontraban dos electrodos de grafito ubicados a los extremos del contenedor y separados de la matriz suelo por un medio poroso (gravilla); se realizó el bombeo de peróxido de hidrogeno (H₂O₂)
al 10% como solución de lavado de los electrodos; para la circulación de la solución de lavado se usó una bomba de desplazamiento positivo.

Figura 2 Montaje de celda electroquímica. Adaptado de: Application of the electrokinetic-Fenton process for the remediation of Kaolinite contaminated with phenanthrene (Kim et al., 2005), 2020

Actividad 2. Tratamiento

A partir de este montaje se realizaron aplicaciones de voltaje en 5 muestras diferentes desde 10 a 30V en intervalos de 5V durante 3 días por 24 horas continuas para verificar el voltaje adecuado que permitió remover el contaminante en el tiempo establecido; luego de realizado cada tratamiento se tomó conductividad y pH con un multiparametro Multiline 3630 IDS de acuerdo al manual de uso.

Actividad 3. Análisis por medio de cromatografía de gases y espectrometría de masas (GC-MS)

Para llevar a cabo el análisis de fenantreno en el suelo luego de aplicado el tratamiento, se realizó la extracción por el método de Soxhlet, descrito en la Fase 1. Así mismo, el analito obtenido fue rotulado y embalado para su posterior análisis por medio de la técnica de cromatografía de gases
con espectrometría de masas (GC-MS) en la Universidad Javeriana de Colombia; luego de esto se analizaron las concentraciones de fenantreno y se optó por el montaje con el mejor porcentaje de remoción del contaminante.

Fase 3 Análisis de resultados.

Actividad 1. Correlación entre remoción VS Voltaje

Se analizó los resultados obtenidos de la cromatografía a través de gráficos para determinar el voltaje adecuado por medio de la correlación entre el voltaje aplicado y la remoción obtenida; además de otras variables como pH y conductividad; de igual manera se realizó la correlación de Pearson para determinar la semejanza entre los datos obtenidos al relacionar las variables; para la determinación de la correlación entre la remoción y el tiempo de tratamiento se realizó el coeficiente de correlación Pearson con la siguiente fórmula

$$\rho_{x,y} = \frac{\sigma_{xy}}{\sigma_x \sigma_y}$$

Donde σ_{xy} es la covarianza entre los conjuntos de datos a analizar, σ_x es la desviación estándar del tiempo de tratamiento y σ_y es la desviación estándar de la concentración; para calcular la covarianza se usó la función de Excel COVARIANZA.M y para la desviación estándar se usó la función Desvest.M.

Actividad 2. Análisis de la eficiencia

Al determinar el voltaje adecuado para la remediación, se realizaron cinco montajes con diferente duración 3, 5, 10, 15 y 20 días para comprobar el tiempo oportuno para el tratamiento, luego se verificó la concentración por medio del GC-MS, los datos obtenidos se analizaron por medio de una curva de agotamiento; a través de la cual se compara la concentración del contaminante respecto al transcurso del tiempo de tratamiento mediante una gráfica; además se realizó la correlación de Pearson para los datos obtenidos.

Actividad 3. Análisis de correlación remoción vs tiempo con un voltaje constante.
Después de obtener los datos del análisis se realizó la correlación de la remoción respecto al tiempo para verificar el periodo adecuado para la remediación y el tiempo de estancamiento del tratamiento.

Diagrama de flujo.

En la Figura 3 se puede apreciar el diagrama de flujo de la metodología propuesta anteriormente.

Figura 3 Diagrama de flujo de la metodología propuesta, Por: Barbosa, R & Melo, S, 2020
1. Resultados

1.1 Determinación de la concentración de fenantreno en el suelo

Las muestras de suelo se tomaron en el municipio de puerto Gaitán en las coordenadas 04°18’57.5”N, 72°05’10”W como se observa en la Figura 1.

1.1.1 Análisis granulometría

En el laboratorio se procedió a realizar granulometría por medio de tamices, el hierro presente con kit de suelos lamotte, la conductividad eléctrica y el pH por medio del multíparámetro.

Para la granulometría se usaron tamices graduados de malla de hierro de 19 mm, 9.5mm, 850 µm, 250µm, 106µm y 2µm como se observa en la Figura 4.

![Porcentaje por tamaño granulométrico](image)

Figura 4 Porcentaje por tamaño de gránulos del suelo muestreado, Por: Barbosa, R & Melo, S, 2020

De acuerdo al sistema unificado de clasificación de suelos (S.U.C.S), el suelo presenta mayor proporción de arena con un 81%, seguido por grava con un 8% y por último arcilla y limos con 6 y 5% respectivamente como se observa en la Figura 5. Debido a esto se puede identificar que la muestra es un suelo franco arenoso de acuerdo a la metodología de la USDA para la identificación
de textura del suelo y así se puede atribuir que los oxisoles presentes en las regiones tropicales y subtropicales son suelos de baja productividad, pero con técnicas modernas, enmiendas, fertilizantes, pesticidas son altamente productivos, en gran parte debido a las condiciones climáticas las cuales hacen de estos suelos con un alto contenido de humedad (Fadda, 2010).

![Proporción de gránulos en el suelo muestreado](image)

Figura 5 Proporción de gránulos en el suelo muestreado, Por: Barbosa, R & Melo, S, 2020

El suelo de la región se encuentra clasificado como oxisol debido a que se encuentra en superficies antiguas con pendientes suaves en el que no se encuentran diferencias entre los horizontes y con composición de cuarzo, caolín, óxidos libres (generalmente de hierro y aluminio) y materia orgánica (Da Silva & Pellegrini, 2013); el pH obtenido fue de 7.15, a pesar que se encuentra en un valor neutro y los suelos oxisoles presentan pH con tendencias ácidas, también se pueden encontrar pH con tendencia neutra en zonas de altillanura disectada no afectada por hidromorfismo (Malagón, 2003). En relación a la conductividad se obtuvo un valor de 28.8 µS/cm, debido a que la conductividad tiene una relación directamente proporcional con la salinidad se puede determinar que el suelo es no salino haciéndolo apto para cultivos (Gallart, 2017). Los valores mencionados anteriormente se obtuvieron junto con el valor de hierro 5.8g de Fe/kg de suelo, el medio muestran condiciones acordes a lo encontrado en la bibliografía para un suelo oxisol (Camacho et al., 2010), además la presencia de hierro en el suelo nos indica que hay condiciones favorables para que se dé el proceso de tratamiento por electroremediación-Fenton.
Debido a que, como se había mencionado antes, se necesitan de ciertas condiciones o factores que influyan en este proceso como lo son el pH, sus cambios los cuales van a regular la movilidad de los contaminantes (Acar & Alshawabkeh, 1993)(Hicks & Tondorf, 1994)(Virkutyte et al., 2002), el contenido de humedad y saturación del suelo es un factor necesario para la electroremediación lo cual se ve reflejado en tasas de flujo electro ósmotico, la conductividad eléctrica dado que esta tiene una relación directamente proporcional con el pH y el potencial zeta por lo que se dan perfiles de voltaje además de afectar la alcalinidad del suelo. (De la rosa et al., 2007)

1.1.2 Contaminación del suelo.

Para la contaminación del suelo se tomaron 2 kg de suelo, el cual anteriormente se había removido cualquier material vegetal y mineral de gran tamaño a la hora de la recolección y rotulación de la muestra y ya en el laboratorio se removió por medio de tamices; luego se tomó el hidrocarburo tipo rubiales debido a que este es de la región de donde se tomó la muestra y se agregó 9.6 kg de hidrocarburo crudo/kg de suelo este se pesó debidamente en una balanza y seguido se mezcló hasta obtener una apariencia uniforme como se observa en la Figura 6.

Figura 6 Suelo contaminado artificialmente, Por: Barbosa, R & Melo, S, 2020
1.1.3 Realización de Soxhlet para análisis de cromatografía.

Se procedió al montaje de extracción Soxhlet para la muestra 0 o blanco del montaje experimental, debido a limitaciones en materiales y equipos de laboratorio se modificó la aplicación del método USEPA anteriormente mencionado en la metodología; inicialmente se agregó 300 ml de solvente hexano-acetona en una proporción 1:1, luego se armó el cartucho con papel filtro y 6 g de suelo contaminado, luego se puso en marcha el montaje por 24 horas a una temperatura de 80 °C como se observa en la Figura 7.

![Figura 7 Montaje del Soxhlet, Por: Barbosa, R & Melo, S, 2020](image)

Después de cumplidas las 24 horas, se pasó el analito obtenido al roto evaporador a una temperatura de baño de maría de 70°C y 60 rpm durante 20 minutos, donde inicialmente se recupera 26 ml de solvente debido a fugas durante el proceso de recuperación.

A lo largo del tratamiento se logró recuperar hasta 120 ml de solvente en las muestras 3,4 y 5; mediante del uso de roto evaporador como se observa en la Figura 8. Así mismo, el porcentaje de recuperación máximo es del 40%.
Durante la realización del proyecto se llevó a cabo la extracción de las muestras en las cuales se utilizaron (hexano – acetona), debido a que la cantidad que se necesitaba para la extracción de cada analito era alta y la universidad facilitó una cantidad limitada, se optó por hacer recuperación debido a que los no perdían sus propiedades a través del tiempo, por consiguiente, se implementó este plan de recuperación de solventes para ahorrar costos durante la realización del proyecto. La Figura 8 indica la cantidad del solvente recuperado por cada corrida, en donde los valores iniciales fueron bajos porque se presentaron pérdidas a la hora del embotellado y por escapes en el sistema del roteovaporador de estos solventes.

1.2 Establecimiento de la celda electroquímica

1.2.1 Montaje de la celda electroquímica.

Inicialmente se estableció el montaje de tratamiento en PVC para el compartimiento de tratamiento y la distribución de la solución de lavado por medio de mangueras, sin embargo se presentaron diversas fugas en las corridas de prueba, por lo tanto se replanteó realizar el montaje completo en PVC (diámetro de tubería) para disminuir en mayor medida las pérdidas con una bomba de desplazamiento positivo de 1/2 HP, pero la potencia ejercida por la bomba excedía la resistencia de los materiales del sistema; por consiguiente se optó por usar una bomba sumergible venusaqua.
IMPLEMENTACIÓN DE LA ELECTROREMIEDIACIÓN-FENTON PARA LA REMEDIACIÓN DE FENANTRENO EN SUELOS CONTAMINADOS POR HIDROCARBUROS A ESCALA LABORATORIO

U6601 acoplada a un reservorio para la distribución de la solución de lavado y una fuente regulada Baku 305d de 0-32 Voltios y 5 Amperios como se observa en la Figura 9. Mediante el uso de esta bomba no se presentaron fugas importantes y la potencia generada por la bomba era suficiente para surtir el sistema de la solución de lavado y evitar la pasivación de los electrodos.

![Figura 9 Montaje de la celda electroquímica, Por: Barbosa, R & Melo, S, 2020](image)

1.2.2 Análisis por medio de cromatografía.

Luego de realizados los análisis por medio de cromatografía de gases se obtuvieron los valores de concentración de fenantreno presente en el suelo luego de realizado el respectivo tratamiento, para M1 el valor en porcentaje es de 90.5% de remoción, M2 presenta un valor de 91.08%, M3 muestra el valor de 90.4%, M4 tiene un valor de 91.7% y M5 presenta 90.46%; como se puede observar en la Figura 10. Demostrando que M4 presenta la mayor remoción de fenantreno bajo un tratamiento de 3 días y 25 voltios. Esto se puede explicar debido a que la variable influyente que es el pH presenta el menor valor dentro de esta primera fase como se observa en la Figura 11; también cabe resaltar que a pesar que la muestra M3 presenta la menor remoción, esta se encuentra por encima del 90% lo cual nos permite evidenciar que es un método efectivo para remediar el fenantreno.
Implementación de la Electroremediación-Fenton para la Remediación de Fenantreno en Suelos Contaminados por Hidrocarburos a Escala Laboratorio

Figura 10 Porcentaje de concentración de fenantreno en diferentes voltajes aplicados; Por: Barbosa, R & Melo, S, 2020

1.2.3 Análisis de la Conductividad y pH.

Los resultados tomados en el laboratorio y su posterior tratamiento en las muestras M0, M1, M2, M3, M4 y M5, se pueden observar en la Tabla 3.

Tabla 3 Valores de conductividad, pH y voltaje aplicado en las muestras de la fase uno; Por: Barbosa, R & Melo, S, 2020

<table>
<thead>
<tr>
<th>Muestras</th>
<th>pH</th>
<th>Conductividad (μS/cm)</th>
<th>Voltaje (V)</th>
<th>Tratamiento en días</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0</td>
<td>7,15</td>
<td>28,8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>M1</td>
<td>6,51</td>
<td>94,5</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>M2</td>
<td>6,1</td>
<td>107,2</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>M3</td>
<td>6,29</td>
<td>107,6</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>M4</td>
<td>5,13</td>
<td>86,8</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>M5</td>
<td>5,98</td>
<td>58,6</td>
<td>30</td>
<td>3</td>
</tr>
</tbody>
</table>

Valores obtenidos de las variables conductividad, pH y voltaje aplicado en la fase uno de tratamiento de electroremediación-Fenton.

El pH en la M0 es casi neutro, pero a medida que aumenta el voltaje estos valores tienden a disminuir a valores ácidos hasta la M4 y en la M5 este empieza a aumentar; al igual que la conductividad, a medida que aumenta los valores del voltaje en la celda electroquímica estos van aumentando tal es el caso de M1 a M3, pero en M4 y M5 estos valores empiezan a decaer.
Antes de la aplicación de un campo eléctrico a la celda el valor de pH es el mismo a lo largo del montaje como se puede apreciar en la Figura 11, la conductividad y el pH tienen distintos valores, estos valores van cambiando por el voltaje aplicado en el tratamiento debido a la hidrolisis del agua la cual genera iones hidrógeno (H+) en el ánodo e hidroxilo (-OH) en el cátodo, lo que produce una liberación de oxígeno (O2) e hidrógeno (H), que generan frentes ácidos y básicos, por ello en cercanía al cátodo el valor de pH se incrementa y cerca al ánodo disminuye; cuando estos frentes se encuentran se genera una zona de transición en donde el pH cambia drásticamente y asimismo se ve afectada la conductividad(Rodriguez & Vásquez, 2003)(Mishchuk et al., 2007). De M1 a M3 presentan una mayor conductividad debido a la mayor generación de iones en el ánodo contribuyendo al aumento de esta propiedad del suelo; conforme aumenta el voltaje, la conductividad en el suelo en M4 y M5 empieza a disminuir a causa de la normalización de los frentes ácidos y básicos generados en el ánodo y cátodo respectivamente, de igual manera por la disociación del peróxido de hidrogeno en el transcurso del tratamiento(De la rosa et al., 2007); la remoción del contaminante será exitosa si los cambios de pH no se ven alterados, ya que este logra desequilibrar la sustancia a una forma en la cual se puede disociar(Kalamaras & Efthathiou, 2013)

Al realizar la correlación de Pearson de las variables conductividad y pH se obtuvo el valor de -0.975 lo cual indica que estas variables tienen una relación inversa
Se puede observar en la Figura 12 y en la Tabla 4, los valores de pH y concentración de fenantreno después del tratamiento presente en las muestras M1, M2, M3, M4 y M5.

Tabla 4 Valores de pH y concentración en la fase uno de tratamiento, Por: Barbosa, R & Melo, S, 2020

<table>
<thead>
<tr>
<th>Muestra</th>
<th>pH</th>
<th>Concentración del contaminante (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>6,51</td>
<td>14,534</td>
</tr>
<tr>
<td>M2</td>
<td>6,1</td>
<td>13,687</td>
</tr>
<tr>
<td>M3</td>
<td>6,29</td>
<td>14,597</td>
</tr>
<tr>
<td>M4</td>
<td>5,13</td>
<td>12,721</td>
</tr>
<tr>
<td>M5</td>
<td>5,98</td>
<td>14,651</td>
</tr>
</tbody>
</table>

De acuerdo a lo que se puede evidenciar en la Figura 11, la disminución del pH en la M4 contribuye a una mayor remoción del contaminante, en este caso para contaminantes orgánicos las mejores condiciones para la remoción será en las que el pH desplace el equilibrio de disociación a su forma disociada (De la rosa et al., 2007), dicho esto como se evidencia en la Figura 12 al disminuir el pH se rompe el equilibrio de disociación aumentando la remoción del contaminante. también se puede notar que en M5 se presenta el fenómeno del avance del frente básico el cual se ve representado en el pH debido a la descomposición electroquímica del agua en el cátodo (T. Alcántara et al., 2008). Asimismo en M5 este valor de pH es un limitante ya que no se puede mantener la forma soluble del hierro, provocando que este se precipite, obstruyendo los procesos de activación de la reacción Fenton junto con la disociación del peróxido de hidrógeno en oxígeno, debido a esto el pH aumenta y la conductividad se reduce significativamente (Usman et al., 2016); además se realizó la correlación de Pearson relacionando la conductividad y la concentración, se obtuvo un valor de 0.429 lo que indica una relación directa moderada
1.3 Análisis de resultados

1.3.1 Correlación entre remoción y voltaje.

En la Tabla 5, se muestra las concentraciones obtenidas luego de tratamiento por medio de GC-MS y comparando con el voltaje aplicado para cada muestra.

<table>
<thead>
<tr>
<th>Muestras</th>
<th>M0</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
<th>M5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentración de fenantreno (ppm)</td>
<td>153.6</td>
<td>14534</td>
<td>1368</td>
<td>1495</td>
<td>1272</td>
<td>1465</td>
</tr>
<tr>
<td>voltaje</td>
<td>0</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
</tr>
</tbody>
</table>

El tratamiento que presenta mejor remoción fue el montaje de 25V; sin embargo no muestra una relación lineal entre la remoción y el voltaje como se observa en la Figura 13, contrastando con el cálculo de correlación de Pearson con un valor de -0.138 se puede evidenciar que tiene una relación
IMPLEMENTACIÓN DE LA ELECTROREMEDIACIÓN-FENTON PARA LA REMEDIACIÓN DE FENANTRENO EN SUELOS CONTAMINADOS POR HIDROCARBUROS A ESCALA LABORATORIO

inversa leve; esto se debe a la influencia de otras variables como el pH y la conductividad (T. Alcántara et al., 2008)

Figura 13 Concentración de fenantreno respecto al voltaje aplicado; Por: Barbosa, R & Melo, S, 2020

1.3.1.1 Comportamiento de pH y conductividad durante segunda fase de tratamiento.

En la siguiente fase del estudio se analizó el pH y la Conductividad a lo largo del tratamiento, después del análisis de cromatografía de gases y espectrometría de masas realizado en la Universidad Javeriana de Colombia sede Bogotá para determinar las variaciones que estas presentaron durante el estudio; se puede apreciar en los resultados del análisis que el voltaje adecuado para una mejor remoción del contaminante es de 25 V, ya teniendo esta información se toma como punto de partida para la realización de la siguiente etapa del estudio.

Como se observa en la Tabla 6 se muestra los valores obtenidos en las variables de pH y conductividad, así como el voltaje constante aplicado y los días de tratamiento para las muestras en la segunda fase y en la Figura 14 se aprecia gráficamente los valores de las muestras, incluida la muestra 0 que permite visualizar el desarrollo de las variables pH y conductividad respecto a los días de tratamiento.
En la muestra de 3 días, el pico de conductividad se debe a que la disociación del agua se encuentra en su máximo desempeño debido al exceso de la solución de lavado, en M7 se presenta un valor anómalo de conductividad debido a la presencia de los iones intermedios hidroperoxilo (HO$_2^-$) y superoxido (O$_2^-$) que interfieren en esta variable; conforme transcurre el tratamiento la conductividad tiende a normalizarse a causa del agotamiento de peróxido por la disociación y equilibrando los frentes ácidos y básicos en la cámara de tratamiento a causa de la presencia de iones H+ e –OH , los cuales están presentes en el ánodo y cátodo respectivamente (Luong & Lin, 2008);

Sin embargo a medida que el voltaje de la celda electroquímica va creciendo se va produciendo una disociación de la solución de lavado la cual genera grandes cantidades de estos iones los cuales afectan directamente el pH y la conductividad(Laurent et al., 2012); además se realizó la correlación de Pearson relacionando el pH y la conductividad durante la segunda fase, se obtuvo un valor de -0.379 lo que indica una relación inversa moderada.
Figura 14 Conductividad y pH durante la segunda fase de tratamiento, Por: Barbosa, R & Melo, S, 2020

1.3.1.2 Concentración y pH durante la segunda fase de tratamiento.

Los valores de pH en las muestras tienden a normalizarse debido a que la solución de lavado se empieza a disociar haciendo que se produzca una gran cantidad de liberación de iones. Por este motivo se puede apreciar los valores de concentración de Fenantreno en las muestras (M6 – M9) respectivamente en donde el valor de M6 es de 12.7 y M7 es de 5.128 ppm siendo los únicos valores que están dentro del límite de detección de la GC-MS como se observa en la Figura 15; estos valores se pueden ver afectados debido al tiempo de exposición de voltaje durante su tratamiento y los diferentes compuestos presentes en el suelo (López-Vizcaíno et al., 2014), la descomposición del peróxido en agua provoca un cambio en el pH en las muestras y esto se ve reflejado en el aumento o disminución del potencial eléctrico en el suelo y en los demás componentes de este, de igual manera el ajuste del pH depende directamente de la composición del suelo para así garantizar un grado de descontaminación de este la cual conlleva a cambios bruscos en el pH (Mishchuk et al., 2007)(Lysenko & Mishchuk, 2009), de modo que lo anterior se puede manifestar a que la disminución del pH contribuye a una mejoría en la remoción de los contaminantes presentes en el suelo debido a que se rompe el equilibrio de disociación del contaminante, facilitando el tratamiento(De la rosa et al., 2007); además se realizó la correlación
de Pearson relacionando la concentración y el pH, se obtuvo un valor de -0.378 lo que indica una relación inversa moderada.

![Gráfico de concentración de fenantreno y pH durante la segunda fase de tratamiento](image)

Figura 15 Concentración de fenantreno y pH durante la segunda fase de tratamiento; Por: Barbosa, R & Melo, S, 2020

1.3.1.3 Cálculo de límite de detección.

Debido a las limitaciones propias del método analítico, se presentan datos nulos en las muestras M7, M8 y M9; debido a esto se debe corroborar el límite de detección del método por medio de la siguiente fórmula.

\[
LD = \frac{3DS}{X}
\]

Donde LD es el límite de detección en el método de análisis aplicado, DS es la desviación estándar de los datos de concentración del blanco y X es el promedio de las concentraciones analizadas(Quino et al., 2007). Para calcular la desviación estándar se tomaron los datos de la concentración del blanco como se muestra en la ¡Error! No se encuentra el origen de la referencia.; y se usa la función de Excel DESVEST.M y el promedio se calculó usando PROMEDIO.
Tabla 7 Valores de concentración en blanco de la GC-MS, Por: Barbosa, R & Melo, S, 2020

<table>
<thead>
<tr>
<th>concentraciones del blanco (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11,2</td>
</tr>
<tr>
<td>22,4</td>
</tr>
<tr>
<td>33,6</td>
</tr>
<tr>
<td>44,8</td>
</tr>
<tr>
<td>56</td>
</tr>
<tr>
<td>78,4</td>
</tr>
<tr>
<td>89,6</td>
</tr>
<tr>
<td>100,8</td>
</tr>
<tr>
<td>120</td>
</tr>
</tbody>
</table>

Valores de concentración de Fenantreno en blanco de la GC-MS

Obteniendo un valor de 37,395186 para la desviación estándar y un promedio de 61,87 con estos datos, se reemplaza en la fórmula; así pues aplicada la fórmula el límite de detección es 1.81 ppm

\[LD = \frac{3(37,395186)}{61,87} = 1,81 \]

Este es el valor mínimo de concentración del contaminante que se puede detectar por medio de GC-MS.

1.3.2 Análisis de eficiencia.

De acuerdo a los valores obtenidos durante la primera fase de tratamiento en la cual se aplicaron distintos voltajes para verificar el adecuado al tratamiento, se pudo obtener que el voltaje con mejor remoción del contaminante es 25V como se observa en la Figura 10, con una remoción del contaminante de 91.71%. Del mismo modo la segunda fase de tratamiento permitió demostrar que el tratamiento conforme aumenta la temporalidad mejora la remoción del mismo como se observa en la Figura 16 obteniendo una remoción de 98.82 % con estos valores en la eficiencia de remoción, las concentraciones de Fenantreno pasaron de 153.6 a 12.72 ppm en la primera fase y de 153.6 a 1.81 ppm en la segunda fase; estos valores son favorables principalmente por las características del suelo de muestras ya que en su constitución inicial presentaba hierro, un componente
importante para el tratamiento Electro-Fenton; así mismo la concentración de la solución de lavado que contribuyó a prevenir la pasivación de los electrodos y a la degradación del contaminante.

También hay que resaltar que estudios (Hyman & Dupont, 2013) (Gavaskar & Tatar, 2005) permiten constatar que nuevas tecnologías para la remediación como la electroremediación presentan mejores beneficios ambientales y económicos comparados con métodos convencionales de remediación; debido a ello los gobiernos han destinado recursos financieros, científicos y tecnológicos para mejorar la calidad ambiental (Caliman et al., 2011).

A pesar de encontrar una buena eficiencia de remoción se puede mejorar aún más añadiendo compuestos que permitan la disminución del pH como ácido sulfúrico (H$_2$SO$_4$)(Hansen et al., 2013) o algún ácido orgánico que genere menor impacto en las propiedades del suelo como el ácido cítrico(Paixão et al., 2020) y el ácido acético(Saini et al., 2020); también se puede mejorar adicionando hierro en forma de ion ferroso (Fe$^{2+}$), hierro cero Valente (Fe0) u otras formas más avanzadas como el hierro nano cero Valente (Gharae et al., 2019).

1.3.3 Correlación remoción vs tiempo a voltaje constante.

Reemplazando estos datos en la fórmula de correlación de Pearson:

\[\rho_{x,y} = \frac{16.514334}{7.02139587 + 3.07970394} = 0.7637 \]

El valor obtenido es 0.7637 lo que indica una correlación positiva significativa entre las dos variables, lo que permite comprobar la relación directa entre el tiempo de aplicación y la remoción; asimismo bajo la aplicación del tratamiento, la remoción de Fenantreno en 3 días tuvo un valor de 91.7%, a los 5 días presenta 96.66% de eliminación; en los días 10,15 y 20 los valores de remoción se mantienen constantes en 98.82%, debido principalmente a limitaciones propias del método de análisis, como se puede observar en la ¡Error! No se encuentra el origen de la referencia.; por lo tanto después del día 10 no es recomendable continuar el tratamiento ya que no se presentan remociones significativas, pero sí generan consumo energético en el bombeo y la aplicación del voltaje.
Implementación de la electroremediación-Fenton para la remediación de fenantreno en suelos contaminados por hidrocarburos a escala laboratorio

Figura 16 Concentración del contaminante en el transcurso del tratamiento en la segunda fase; Por: Barbosa, R & Melo, S, 2020
Conclusiones

El método electro-fenton es una alternativa cuando se presentan contingencias causadas por la industria petrolera, para ello es pertinente tener un sistema de tratamiento rápido y efectivo para evitar su esparcimiento a otros elementos del medio, los cuales pueden causar graves consecuencias tanto al hombre como al medio ambiente con una exposición media, por este motivo se llevó a cabo esta investigación, debido a que esta técnica cuenta con una relación costo beneficio mucho mejor que las técnicas convencionales, de esta manera se utilizó este método para evaluar el porcentaje de remoción del contaminante en este estudio.

De esta manera se procedió a tamizar el suelo con la finalidad de remover material vegetal y así mismo contaminarlo artificialmente, luego se realizó una extracción por el método Soxhlet, se adoptó el método 3540C de la USEPA y se reemplazó la columna Sneider con el roto evaporador heidolph Hei-Vap, posterior a la extracción del analito se embotelló, rotulo y se guardó para su posterior análisis por medio de la cromatografía de gases con espectrometría de masas (GC-MS) Para obtener la concentración inicial de Fenantreno se vio limitado el estudio debido a que la institución no contaba con el equipo (GC-MS), por consiguiente se optó por contratar este servicio con la universidad Javeriana de Colombia, el resultado fue que el valor inicial del contaminante en el suelo sin tratamiento previo fue de 153.6 ppm

Luego de guardar la muestra blanco se establecieron las condiciones de la celda electroquímica y la solución de lavado a utilizar la cual ayuda a que los electrodos no se saturen, se aplicó una gama de voltajes durante 3 días para comprobar cuál era el más efectivo removiendo el contaminante, siendo 25V, el valor que presento mayor rendimiento con un porcentaje de remoción del 91.8% en la primera fase del proyecto, estos valores fueron determinados por medio de la (GC-MS) en la Universidad Javeriana, de igual manera se determinó el valor inicial de Fenantreno presente en el suelo sin tratamiento previo o muestra 0. Los resultados de la GC-MS para esta fue de 153.6 ppm y se procedió con la correlación entre el % de remoción VS el voltaje, dado que no hay una relación directa entre estas, esto se da debido a la influencia del pH y la conductividad la cual cambia debido a la hidrolisis del peróxido la cual genera frentes tanto ácidos como básicos afectando estos
parámetros, ya que el voltaje es el detonante para que se dé la remediación así como la composición y los elementos propios del suelo a tratar para que la reacción Electro-Fenton sea óptima. De igual manera los resultados de esta investigación se pueden contrastar con el documento de Alcántara, M, Gomes, J … (M. Alcántara et al., 2012), en este estudio los autores utilizaron una solución de Tween 80 y EDTA como fluido de procesamiento, así como una solución tampón para prevenir los frentes ácidos, con esto ellos consiguieron un porcentaje de remoción total del contaminante cercano al 94% en un periodo de 30 días.

Por esta razón se puede ratificar que esta investigación presenta mejores resultados ya que la remoción total del contaminante fue cercano al 97% en solo 5 días, en el día 15 el valor ascendió cerca al 99% de remediación del contaminante sin hacer uso de algún tipo de soluciones tensoactivas las cuales son costosas. Y no se usó ninguna solución tampón debido a que se evidenció que a menor valor pH, la remoción es más efectiva debido a la naturaleza de la muestra. Por otro lado se cotejaron los resultados obtenidos con Perez, M, Beltran, D … (Pérez et al., 2013) con esta investigación, donde los autores utilizaron electrodos de IrO2-Ta2O5 y Ti, buscando obtener mejor eficiencia a la hora de realizar la remoción del contaminante con valores entre 45 y 58% en un lapso de 24h. En comparación con este estudio se presentó un buen rendimiento debido a la no utilización de electrodos de metales de transición que implican costos elevados en la aplicación del tratamiento y se obtuvieron mejores resultados de eliminación del contaminante con un voltaje inferior al que ellos utilizaron.

En relación a la eficiencia del método Electro-Fenton fue buena ya que en la primera fase se obtuvo 91,71% de remoción mientras que en la segunda fase este valor ascendió a las 98,82% de eliminación del contaminante, mientras que en el análisis del tiempo del voltaje Vs el % de remoción, la remoción del contaminante en el día 3 de la fase 1 con el voltaje óptimo de 25 V por 3 días tuvo una eliminación del 91,71%, Reduciendo así sustancialmente la concentración de Fenantreno inicial de 153.6 a un valor de 12.76 ppm tan solo en la primera fase del estudio, al 5 día esta fue de 96,6% y en los siguientes días 10, 15 y 20 estuvo en 98,82% de extracción del Fenantreno del suelo. De igual manera se procedió inmediatamente a la segunda fase de tratamiento, el analito se expuso al voltaje mencionado anteriormente durante 15 días y se obtuvieron valores de remoción cercanos a un 99% los cuales fueron nuevamente determinados por la (GC-MS) indicándonos que la electroremediación Fenton es una herramienta muy útil a la
hora de remediar suelos contaminados con HAP, Indicando que la concentración de Fenantreno volvió a reducirse en la segunda fase a un valor de 1.81 ppm, abriendo un portafolio de oportunidades a los profesionales con la finalidad de incorporarlo como un procedimiento diferente a los convencionales para aunar esfuerzos para remediar los suelos con potenciales agrícolas tanto a nivel regional, nacional e internacional.
Recomendaciones

En el desarrollo surgieron diversas ideas que contribuirían a la mejora de la metodología aplicada a un proyecto de esta índole, inicialmente se logró constatar por medio de la extracción Soxhlet, que el método propuesto por la USEPA y que fue adaptado a las condiciones propias para obtener el analito, se puede lograr una extracción más efectiva de Fenantreno en el suelo realizando un cambio en el solvente, en el caso del método 3450C se usa hexano y acetona en una proporción 1:1, pero en fichas técnicas se muestra que el Fenantreno presenta mejor solubilidad en tolueno, por lo tanto el uso de este solvente beneficiaría a la correcta extracción del analito.

Además surgió un abanico de opciones para abarcar otros tipos de contaminantes ya sea otros HAP, metales pesados o contaminantes emergentes, dando vistas a un amplio campo de estudio de este tipo de tratamiento para el mejoramiento de la calidad del suelo; también hay que resaltar que debido a las limitaciones técnicas y tecnológicas no se pudo realizar estudios detallados que permiten un mayor seguimiento del comportamiento de la degradación del contaminante estos son el potencial Z y la porosidad del suelo; esto debido a que el potencial permite visualizar la influencia de los coloides generados por el tratamiento al suelo a la remoción del contaminante y la porosidad permite identificar qué tamaño de poro del suelo predomina para una buena remoción; así mismo se puede estudiar la cantidad residual de la solución de lavado para evaluar su permanencia y el impacto que podría tener en una aplicación insitu.

Igualmente, para la mejora de este tipo de tratamientos se propone realizar estudios a escala piloto que permitan verificar si el funcionamiento del mismo se presenta en igualdad de condiciones que a escala laboratorio, así como estudios de modelamiento que permitan ejercer un mayor control para las diferentes variables que se encuentran en este procedimiento.

Finalmente, también se recomienda hacer estudios en el que se realice acoplamiento de otro tipo de tecnologías de tratamiento y que permitan la optimización del mismo la cuales pueden ser biológicas, fotocatálisis, sonocatálisis entre otras. También la inclusión de nuevos materiales aplicados en los electrodos y así obtener mejores resultados.
IMPLEMENTACIÓN DE LA ELECTROREMEEDIACIÓN-FENTON PARA LA REMEDIACIÓN DE FENANTRENO EN SUELOS CONTAMINADOS POR HIDROCARBUROS A ESCALA LABORATORIO

Referencias Bibliográficas

Berglund, B. (2015). Environmental dissemination of antibiotic resistance genes and correlation to anthropogenic contamination with antibiotics. *Infection Ecology & Epidemiology, 5*(1),

IMPLEMENTACIÓN DE LA ELECTROREMIEDIACIÓN-FENTON PARA LA REMEDIACIÓN DE
FENANTRENO EN SUELOS CONTAMINADOS POR HIDROCARBUROS A ESCALA LABORATORIO

https://www.academia.edu/33319835/Quimica_Organica_Vivencial_booksmedicos

FAO. (1965). Reconocimiento edafologico de los llanos orientales.

https://doi.org/10.1021/acs.est.5b02613

https://doi.org/10.1017/CBO9781107415324.004

https://riunet.upv.es/bitstream/handle/10251/94368/GALLART - La conductividad eléctrica del suelo como indicador de la capacidad de uso de los suelo....pdf?sequence=1

https://doi.org/10.1016/j.jiec.2019.06.033

https://doi.org/10.1016/j.chemosphere.2012.02.037

https://books.google.es/books?id=pJ8mDAAQBAJ&pg=PA273&dq=biometilización&hl=en&sa=X&ved=0ahUKEwi-l6WPtP7RAhVLXhoKHUypCL0Q6AEIHDAAv=onepage&q=biometilización&f=false

https://books.google.com.co/books?id=LdIARhjVZN4C&pg=PA107&dq=textura de suelo&hl=es-419&sa=X&ved=2ahUKEwiNlt7o-7HqAhXEmOAKHWzdC6YQ6AEwAXoECAEQAgv=onepage&q=textura de suelo&f=false

Environmental Science and Technology, 28(12), 2203–2210.
https://doi.org/10.1021/es00061a032

https://pdfs.semanticscholar.org/2891/c82fde3ca539b12106ac339ec8737191c90.pdf

https://doi.org/10.1016/j.apcatb.2020.119002

https://doi.org/10.1155/2013/690627

IMPLEMENTACIÓN DE LA ELECTROREMEDIACIÓN-FENTON PARA LA REMEDIACIÓN DE FENANTRENO EN SUELOS CONTAMINADOS POR HIDROCARBUROS A ESCALA LABORATORIO

https://books.google.com.co/books?id=okQZdnD_MvQC&printsec=frontcover&dq=quimica+organica+google+scholar&hl=es-419&sa=X&ved=2ahUKEwjJoYvI38vqAhWEneAKHe1ED_0Q6AEwAHoECAQQAg#v=onepage&q&f=false

https://doi.org/10.1016/j.colsurfa.2007.03.014

https://doi.org/10.1016/J.GEODERMA.2004.04.003

Ortega, J., & Mejía, M. (2014). *causas y consecuencias de la contaminación del suelo* [universidad nacional autonoma de nicaragua].

IMPLEMENTACIÓN DE LA ELECTROREMEDIACIÓN-FENTON PARA LA REMEDIACIÓN DE FENANTRENO EN SUELOS CONTAMINADOS POR HIDROCARBUROS A ESCALA LABORATORIO

https://revistas.javeriana.edu.co/index.php/scientarium/article/view/4848

IMPLEMENTACIÓN DE LA ELECTROREMITACIÓN-FENTON PARA LA REMEDIACIÓN DE FENANTRENO EN SUELOS CONTAMINADOS POR HIDROCARBUROS A ESCALA LABORATORIO 58

IMPLEMENTACIÓN DE LA ELECTROREMEDIAción-FENTON PARA LA REMEDIACIoN DE
FENANTRENO EN SUELOS CONTAMINADOS POR HIDROCARBUROS A ESCALa LABORATORIO

Apéndices

Apéndice A. Características del petróleo castilla Blend
Apéndice B. Cromatografías de gases

Muestra 0

Muestra 1
Muestra 2

![Graph for Muestra 2](image1)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Valor</th>
<th>Error</th>
<th>Concentración</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,005 mg/g</td>
</tr>
</tbody>
</table>

Muestra 3

![Graph for Muestra 3](image2)

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Valor</th>
<th>Error</th>
<th>Concentración</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,593 mg/g</td>
</tr>
</tbody>
</table>
IMPLEMENTACIÓN DE LA ELECTROREMEDIACIÓN-FENTON PARA LA REMEDIACIÓN DE FENANTRENO EN SUELOS CONTAMINADOS POR HIDROCARBUROS A ESCALA LABORATORIO

Muestra 4

Muestra 5
IMPLEMENTACIÓN DE LA ELECTROREMEDIACIÓN-FENTON PARA LA REMEDIACIÓN DE FENANTRENO EN SUELOS CONTAMINADOS POR HIDROCARBUROS A ESCALA LABORATORIO

Muestra 6

Muestra 7
Muestra 8

<table>
<thead>
<tr>
<th>Nivel</th>
<th>Sample Name</th>
<th>Sample ID</th>
<th>Fenantreno</th>
</tr>
</thead>
<tbody>
<tr>
<td>ml/gd</td>
<td>11.5417</td>
<td>114</td>
<td>11.54</td>
</tr>
<tr>
<td>Precip.</td>
<td>5.125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCBPD</td>
<td>6.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. imp.</td>
<td>5.125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Med. Dev.</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Muestra 9

<table>
<thead>
<tr>
<th>Nivel</th>
<th>Sample Name</th>
<th>Sample ID</th>
<th>Fenantreno</th>
</tr>
</thead>
<tbody>
<tr>
<td>ml/gd</td>
<td>239.165</td>
<td>114</td>
<td>239.16</td>
</tr>
<tr>
<td>Precip.</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCBPD</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. imp.</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Med. Dev.</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Muestra 10

Blanco de cromatografía
IMPLEMENTACIÓN DE LA ELECTROREMEDIACIÓN-FENTON PARA LA REMEDIACIÓN DE FENANTRENO EN SUELOS CONTAMINADOS POR HIDROCARBUROS A ESCALA LABORATORIO

<table>
<thead>
<tr>
<th>Fecha</th>
<th>Lote</th>
<th>Resultado</th>
<th>Peso (mg)</th>
<th>Efecto</th>
<th>% de Eliminación</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/12</td>
<td>1</td>
<td>12.35</td>
<td>25.67</td>
<td>86.5%</td>
<td>67.34</td>
</tr>
<tr>
<td>12/12</td>
<td>2</td>
<td>12.12</td>
<td>25.43</td>
<td>85.9%</td>
<td>66.23</td>
</tr>
<tr>
<td>12/12</td>
<td>3</td>
<td>12.21</td>
<td>25.34</td>
<td>85.8%</td>
<td>66.12</td>
</tr>
</tbody>
</table>

Calibración

![Calibration Graph]

2/3
Apéndice C. Evidencia fotográfica de la toma de muestras.