DISEÑO DEL SISTEMA DE PROTECCIÓN CONTRA INCENDIOS CON BASE A EXTINGUIÓN AUTOMÁTICA PARA EL EDIFICIO AQUINATE DE LA UNIVERSIDAD SANTO TOMÁS.

NICOLÁS FELIPE TORRES CÓRDOBA

UNIVERSIDAD SANTO TOMÁS
FACULTAD DE INGENIERÍA MECÂNICA
DIVISIÓN DE INGENIERÍAS
BOGOTÁ D.C.
2016
DISEÑO DEL SISTEMA DE PROTECCIÓN CONTRA INCENDIOS CON BASE A EXTINCIÓN AUTOMÁTICA PARA EL EDIFICIO AQUINATE DE LA UNIVERSIDAD SANTO TOMÁS.

NICOLÁS FELIPE TORRES CÓRDOBA

Proyecto de trabajo de grado en la modalidad de solución de un problema de ingeniería.

Directora
ADRIANA FERNANDA SIERRA ALARCÓN
Ingeniera Mecánica

UNIVERSIDAD SANTO TOMÁS
FACULTAD DE INGENIERÍA MECÁNICA
DIVISIÓN DE INGENIERÍAS
BOGOTÁ D.C.
2016
CONTENIDO

INTRODUCCIÓN

1. MARCO REFERENCIAL
 1.1 COMPORTAMIENTO FISICOQUÍMICO DEL FUEGO
 1.2 CÓDIGOS Y NORMATIVAS DE PROTECCIÓN CONTRA INCENDIO
 1.3 TIPOS DE SISTEMAS PARA LA PROTECCIÓN CONTRA INCENDIOS
 1.4 COMPONENTES BÁSICOS DEL SISTEMA CONTRA INCENDIOS
 1.5 CLASIFICACIÓN DEL RIESGO PARA EL EDIFICIO AQUINATE

2. DISEÑO DEL SISTEMA DE PROTECCIÓN CONTRA INCENDIOS
 2.1 REQUERIMIENTOS Y ESPECIFICACIONES DE INGENIERÍA
 2.1.1 Especificaciones de ingeniería
 2.1.2 Estudio de mercados
 2.2 DISEÑO CONCEPTUAL
 2.2.1 Descomposición funcional
 2.2.2 Generación de alternativas
 2.3 DISEÑO BASICO CON DETALLES
 2.3.1 Cálculos del sistema hidráulico
 2.3.1.1 Cálculo de presión y caudal del sistema hidráulico
2.3.1.2 Gráfica Hidráulica __ 43
2.3.1.3 Selección de la bomba contra incendios _______________________________ 44
2.3.2 Cálculos de componentes mecánicos ____________________________________ 46
 2.3.2.1 Diseño de los soportes colgantes ____________________________________ 46
 2.3.2.2 Diseño de los soportes antisísmicos ________________________________ 52
 2.3.3 Tanque de almacenamiento __ 53

3. EVALUACIÓN ECONÓMICA ____________________________ 55

4. CONCLUSIONES Y RECOMENDACIONES _____________________________ 58
 IMPACTOS __ 59
 BIBLIOGRAFÍA __ 60
 ANEXOS __ 62
LISTA DE FIGURAS

<table>
<thead>
<tr>
<th>Figura</th>
<th>Descripción</th>
<th>Pág.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tetraedro del fuego</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>Sistemas tipo húmedo</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>Sistemas tipo seco</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>Componentes rociador estándar</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>Valores de ponderación</td>
<td>26</td>
</tr>
<tr>
<td>6</td>
<td>Configuración de rociadores # 1</td>
<td>29</td>
</tr>
<tr>
<td>7</td>
<td>Configuración de rociadores # 2</td>
<td>30</td>
</tr>
<tr>
<td>8</td>
<td>Configuración de rociadores # 3</td>
<td>30</td>
</tr>
<tr>
<td>9</td>
<td>Evaluación de configuraciones de rociadores</td>
<td>31</td>
</tr>
<tr>
<td>10</td>
<td>Densidad y área de operación</td>
<td>38</td>
</tr>
<tr>
<td>11</td>
<td>Grafica hidráulica</td>
<td>44</td>
</tr>
<tr>
<td>12</td>
<td>Soporte horizontal para tubería de 1 in.</td>
<td>49</td>
</tr>
<tr>
<td>13</td>
<td>Soporte horizontal para tubería de 2 in.</td>
<td>51</td>
</tr>
<tr>
<td>14</td>
<td>Soporte lateral para tubería de 3 in.</td>
<td>51</td>
</tr>
<tr>
<td>15</td>
<td>Accesorios para los soportes antisísmicos longitudinales</td>
<td>52</td>
</tr>
<tr>
<td>16</td>
<td>Accesorios para los soportes antisísmicos transversales</td>
<td>53</td>
</tr>
<tr>
<td>17</td>
<td>Instalación de los soportes antisísmicos</td>
<td>53</td>
</tr>
</tbody>
</table>
LISTA DE TABLAS

Tabla 1. Factor K nominal...17
Tabla 2. Clasificación de ocupaciones..21
Tabla 3. Requerimientos del cliente...24
Tabla 4. Especificaciones en ingeniera...26
Tabla 5. Correlaciones entre requerimientos y especificaciones......27
Tabla 6. Objetivos de diseño..27
Tabla 7. Peso relativo de las especificaciones de ingeniera.............28
Tabla 8. Descomposición funcional..33
Tabla 9. Alternativa de diseño # 1...34
Tabla 10. Alternativa de diseño # 2..35
Tabla 11. Alternativa de diseño # 3..35
Tabla 12. Evaluación de las alternativas..36
Tabla 13. Áreas de ubicación máxima entre rociadores .. 38
Tabla 14. Numero de rociadores por área de incendio .. 39
Tabla 15. Valores C de Hazen-Williams ... 41
Tabla 16. Longitudes equivalentes para tubería de Acero SCH 40. 41
Tabla 17. Resultados Diámetros óptimos en tubería. .. 43
Tabla 18. Resultados presiones y caudales por piso. .. 43
Tabla 19. Características bomba de suministró. .. 44
Tabla 20. Curva de comportamiento de la bomba contra incendios 45
Tabla 21. Espaciamiento para los soportes colgantes. .. 47
Tabla 22. Dimensiones tanque de almacenamiento. ... 54
Tabla 23. Listado de accesorios. ... 56
Tabla 24. Precio de instalación del proyecto. .. 57
<table>
<thead>
<tr>
<th>Anexo</th>
<th>Descripción</th>
<th>Pág.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anexo A</td>
<td>Resultados matriz QFD.</td>
<td>62</td>
</tr>
<tr>
<td>Anexo B</td>
<td>Características tubería de Acero ASTM A-53 SCH 40.</td>
<td>63</td>
</tr>
<tr>
<td>Anexo C</td>
<td>Plano red hidráulica piso 1.</td>
<td>64</td>
</tr>
<tr>
<td>Anexo D</td>
<td>Plano red hidráulica piso 2.</td>
<td>65</td>
</tr>
<tr>
<td>Anexo E</td>
<td>Plano red hidráulica piso 3.</td>
<td>66</td>
</tr>
<tr>
<td>Anexo F</td>
<td>Plano red hidráulica piso 4.</td>
<td>67</td>
</tr>
<tr>
<td>Anexo G</td>
<td>Isométrico red hidráulica edificio Aquinate</td>
<td>68</td>
</tr>
<tr>
<td>Anexo H</td>
<td>Cálculos hidrálicos piso 1.</td>
<td>69</td>
</tr>
<tr>
<td>Anexo I</td>
<td>Cálculos hidrálicos piso 2.</td>
<td>70</td>
</tr>
<tr>
<td>Anexo J</td>
<td>Cálculos hidrálicos piso 3.</td>
<td>71</td>
</tr>
<tr>
<td>Anexo K</td>
<td>Cálculos hidrálicos piso 4.</td>
<td>72</td>
</tr>
</tbody>
</table>
NOMENCLATURA

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Área</td>
</tr>
<tr>
<td>C</td>
<td>Coeficiente de fricción</td>
</tr>
<tr>
<td>d</td>
<td>Diámetro Tubería</td>
</tr>
<tr>
<td>D</td>
<td>Diámetro Tanque</td>
</tr>
<tr>
<td>F.S.</td>
<td>Factor de seguridad</td>
</tr>
<tr>
<td>H</td>
<td>Altura</td>
</tr>
<tr>
<td>Hₗ</td>
<td>Pérdidas por fricción</td>
</tr>
<tr>
<td>K</td>
<td>Coeficiente de descarga del rociador</td>
</tr>
<tr>
<td>I</td>
<td>longitud</td>
</tr>
<tr>
<td>P</td>
<td>Presión</td>
</tr>
<tr>
<td>Pe</td>
<td>Perdida por elevación</td>
</tr>
<tr>
<td>Pₐ</td>
<td>Presión Mayor</td>
</tr>
<tr>
<td>Pₗ</td>
<td>Presión Menor</td>
</tr>
<tr>
<td>Q</td>
<td>Caudal</td>
</tr>
<tr>
<td>Qₜ</td>
<td>Caudal Mayor</td>
</tr>
<tr>
<td>Qₗ</td>
<td>Caudal Menor</td>
</tr>
<tr>
<td>V</td>
<td>Volumen</td>
</tr>
<tr>
<td>W</td>
<td>Peso</td>
</tr>
<tr>
<td>P</td>
<td>Densidad</td>
</tr>
</tbody>
</table>
INTRODUCCIÓN

La probabilidad de incendios en los edificios es un riesgo latente que se puede dar por diferentes fuentes de ignición, tales como sistemas eléctricos, fumadores, fallas mecánicas, ignición por condición natural, materiales combustibles, entre otros. Por tal motivo, desde el año 2010 mediante el decreto 926, el gobierno de la República de Colombia estableció como un deber el cumplimiento de la normativa NSR 10, la cual, da las pautas de la protección de incendios en construcciones nuevas como existentes. De acuerdo con este reglamento, el edificio Aquinate de la Universidad Santo Tomás está incumpliendo dicha norma al tener un área total construida de más de 2.000 m² (1) sin la implementación de un sistema automático de rociadores para la protección contra incendios.

Esta sede, ubicada en la Carrera 9 N° 63-28, de la ciudad de Bogotá, tiene un área total construida de 2.942,7 m² y una altura aproximada de 11,6 m. Cuenta con biblioteca, gimnasio, capilla, salón de eventos y salones de clase, distribuidos en cuatro pisos, los cuales están intercomunicados mediante un atrio central¹. A partir de una inspección se observó que actualmente, el edificio solo tiene implementados sistemas manuales para la protección contra incendios (extintores y mangueras) para ser operados por bomberos y/o brigadas muy bien entrenadas. Estos sistemas se caracterizan por depender de agentes externos, de esta forma tienen un factor de confiabilidad bajo en comparación con los sistemas de extinción automática (2). Es importante resaltar que el edificio Aquinate, al tener un atrio central que intercomunica todos los pisos, permite una rápida propagación del humo tóxico por lo que aumenta el riesgo de muerte por asfixia de los ocupantes de la sede institucional. De acuerdo con Fernando Portilla Ruiz (3), el 62% de las pérdidas humanas en incendios es causado por asfixia e inhalación de humos tóxicos, 26% por quemaduras y 12% por otros. Lo que lleva a tener el punto más crítico de este edificio: en caso de un incendio, al tener un atrio central, la pluma de humo viajará a través de éste hacia la parte superior de la cubierta y en pocos segundos inundará los cuatro pisos y las escaleras de evacuación. Este proceso no puede ser controlado rápidamente por el sistema manual y por lo tanto evita la evacuación oportuna de los ocupantes para salvaguardar su vida.

Para evitar que esto suceda, se requiere la instalación del sistema automático para la protección contra incendios, el cual controle de manera inmediata la propagación del fuego y humo denso y tóxico. No un sistema que dependa únicamente de los agentes externos para el control del incendio, que es el caso del departamento de bomberos, a pesar de la cercanía de la estación de

¹ Se define Atrio como un patio abierto que intercomunica desde el primer nivel hasta el último nivel del edificio por un espacio libre en común.
bomberos a la sede institucional, no se puede garantizar el control inmediato del crecimiento del fuego y propagación del humo tóxico a través de atrio, poniendo en riesgo la seguridad humana de los ocupantes de la institución educativa.

El impacto económico-financiero del proyecto, busca disminuir cerca del 78,3% (4) en costos de reconstrucción de la edificación, además los costos implícitos en los pagos de pólizas por pérdidas humanas y el largo tiempo de inhabilitación de la sede institucional con alto lucro cesante. Los costos para la implementación del sistema de rociadores automáticos normalmente corresponden a $60.000². Por lo tanto proteger los 2.942 m² del edificio Aquinate tendría un valor estimado de $176’520.000. Por otra parte, el valor promedio de construcción por metro cuadrado de edificios institucionales similares a la Sede Aquinate es de $5 millones, esto quiere decir que el valor del edificio es de $14.710’000.000. Es decir, el costo de implementación del sistema automático de protección contra incendios corresponde al 1,2% del valor del total estimativo del edificio Aquinate, por lo que se justifica los costos de inversión del sistema de rociadores automáticos.

² Valor promedio estimativo comercial, el cual cubre tramos de tubería y accesorios instalados por metro cuadrado.
OBJETIVOS

OBJETIVO GENERAL

Diseñar el sistema de protección contra incendio, con el criterio de rociadores automáticos bajo las normativas NFPA “National Fire Protection Association” y NSR-10 “Norma Sismo Resistente Colombiana”, para el edificio sede Aquinate de la Universidad Santo Tomás.

OBJETIVOS ESPECIFICOS

- Clasificar el nivel de riesgo de incendio para el edificio Aquinate de la Universidad Santo Tomás para determinar los parámetros de diseño hidráulico.

- Calcular el sistema hidráulico de protección contra incendios con el criterio de rociadores automáticos.

- Evaluar el costo del proyecto de acuerdo con las cantidades y presupuestos determinados de los componentes para la instalación del sistema de protección contra incendios.
1. MARCO REFERENCIAL

A continuación se presenta una breve descripción de aspectos claves para el diseño de los sistemas de protección contra incendios, como lo son el comportamiento teórico del fuego, los tipos de sistemas comúnmente usados en la protección contra incendios, las normativas que actualmente rigen éste campo y por último la clasificación del riesgo en la condición actual del edificio Aquinate.

1.1 COMPORTAMIENTO FISICOQUÍMICO DEL FUEGO

El fuego es un conjunto de moléculas incandescentes producto de un proceso de combustión, el cual es una reacción química denominada exotérmica (desprendimiento de calor entre un combustible líquido, sólido o gaseoso) (5). El proceso de combustión se presenta cuando hay reacciones de oxidación en el combustible (6). Para que exista presencia de fuego es indispensable completar el tetraedro del fuego, ver Figura 1, el cual está compuesto por calor, comburente (Oxígeno) y combustible (7). La propagación del fuego depende de procesos de transferencia de calor, ya sea convección, conducción o radiación. De acuerdo con la fuente de energía térmica: química, eléctrica, mecánica y nuclear (8) el fuego tendrá una característica en propagación y una relación con el crecimiento del fuego. El proceso de extinción consiste en eliminar algún componente del tetraedro del fuego, ya sea el comburente (O2), combustible o calor si llegase a faltar alguno de estos elementos no se cierra el ciclo y por consiguiente no hay presencia de fuego.

![Figura 1. Tetraedro del fuego.](image-url)
1.2 CÓDIGOS Y NORMATIVAS DE PROTECCIÓN CONTRA INCENDIO

En Colombia, para la protección contra incendios se han desarrollado la Norma Sismo Resistente NSR10, la norma para instalación de conexiones de manguera contra incendios NTC 1669 y Norma para instalación de sistemas de rociadores NTC 2301. Estas normas han sido desarrolladas a partir de los códigos internacionales de la NFPA “National Fire Protection Association”. La NFPA, es una organización mundial sin ánimo de lucro, interesada en reducir los riesgos de muerte, lesiones, pérdidas económicas y daños a las propiedades como consecuencia de riesgos eléctricos, incendios y otros tipos de riesgos relacionados (10) por medio del desarrollo de códigos y normas para el diseño y la instalación de sistemas para preservar la seguridad humana en caso de incendio. La NFPA ha desarrollado más de 300 códigos y normas con la participación activa de entidades de investigación, entidades educativas y personal con amplio conocimiento en el tema. Los códigos NFPA de protección contra incendio son los referentes internacionales más importantes en conjunto con los códigos UL (Underwriters Laboratories) y hojas de datos de FM (Factory Mutual), los cuales son laboratorios especializados en certificar el uso de los equipos y establecer pautas en protección contra incendios (1).

La normativa NFPA ha establecido que el principal objetivo de la implementación del sistema de protección contra incendios es salvar vidas humanas, además, trae consigo ventajas como la reducción de pérdidas económicas causadas por el incendio. De acuerdo con la NFPA existen dos medidas fundamentales para el diseño del sistema de protección contra incendios, las cuales se denominan Medidas Pasivas y Medidas Activas, donde las medidas pasivas previenen el crecimiento del fuego y las medidas activas extinguen el fuego.

Los criterios para el diseño e instalación según la normativa NFPA-13 (Standard for the Installation of Sprinkler Systems) son denominados riesgos de ocupación con parámetros de protección prescriptivos, esta norma estandariza los elementos combustibles y la relación de riesgo presente en el edificio, de igual forma determina las cargas combustibles y los sistemas de rociadores necesarios para controlar la tasa de liberación de calor según sea el caso (11). La normativa para la instalación de sistemas de rociadores NFPA-13 establece los criterios de extinción con base a la tasa de liberación de calor y cantidad de combustible presente en el área de diseño, la NFPA-13 ha establecido tres niveles de riesgos, estos están definidos como: Riesgo ligero, Riesgo Ordinario, y Riesgo Extra (12); que a su vez tienen subdivisiones denominadas Grupos 1 y Grupos 2. La normativa determina el subgrupo de divisiones dependiendo de la cantidad de
material combustible, el caso de Grupo 2 contiene gran cantidad de material combustible en comparación al Grupo 1, estos parámetros de clasificación son necesarios para el diseño del sistema de extinción automática.

1.3 TIPOS DE SISTEMAS PARA LA PROTECCIÓN CONTRA INCENDIOS

De acuerdo con la normativa NFPA-13 los principales sistemas de protección contra incendios con rociadores automáticos son: sistemas tipo húmedo y sistemas tipo seco.

El sistema tipo húmedo, ver Figura 2, mantiene la tubería presurizada en todo momento por el agente extintor, haciendo uso de rociadores automáticos, los cuales por medio de la detección de calor de cada rociador, dan la apertura del agente extintor para el control del incendio. Este sistema de protección es el más utilizado en la actualidad debido a su alta confiabilidad, cerca del 90% (13), y su fácil mantenimiento. La Figura 2 muestra un esquema básico del sistema de tubería tipo húmedo, donde la línea azul representa el agua presurizada presente en toda la línea de tubería.

![Figura 2. Sistemas tipo húmedo.](image)

Fuente: Sistema tipo húmedo (14).

En el sistema tipo seco, ver Figura 3, la tubería contiene una parte de aire presurizado y otra parte agente extintor, estas se encuentran separadas por medio de una válvula denominada válvula para tubería seca (15). El sistema actúa bajo el principio de diferencia de presión, generado por la activación de uno o varios rociadores dando la despresurización de la tubería que contiene el aire y la descarga del agente extintor por la apertura de la válvula seca. Según la NFPA-13 es una obligación el uso de sistemas tipos secos en temperaturas ambientes menores a 4°C (40°F), por la posibilidad de congelación del agua. La Figura 3 muestra un esquema básico del sistema de tubería tipo seco, donde la línea...
amarilla representa aire a presión y la línea azul el agente extintor separados entre sí por la válvula de tubería seca.

Figura 3. Sistemas tipo seco.

![Diagrama de sistemas tipo seco](image)

Fuente: Sistema tipo Seco (16).

1.4 COMPONENTES BÁSICOS DEL SISTEMA CONTRA INCENDIOS

De manera general, los componentes de un sistema de protección contra incendios son: bomba, sistema de trasporte del fluido (tuberías y accesorios), válvulas de control y rociadores. Cada uno de estos elementos son necesarios para controlar y mitigar el crecimiento del fuego. A continuación se describe las características de cada uno de ellos.

Bomba

Las bombas de incendios son usadas para aumentar la presión del fluido disponible de la fuente de suministro (17), este fluido puede ser suministrado por tanques atmosféricos o conexión a la red pública. Las bombas centrífugas son las más implementadas debido a su solidez, confiabilidad, y fácil mantenimiento (11).

Red de transporte del agente extintor

La tubería es el principal componente para transportar el agente extintor en la actualidad. Los materiales para las tuberías pueden ser aleaciones de elementos metálicos, como lo son el acero, latón o el cobre y deben cumplir con los estándares de ASTM A-795, A-135, A-53, B-75 o B-883 según corresponda el material. Los materiales no metálicos son el poli butileno (PB), o el cloruro de

3 ASTM (American Society for Testing Materials)
polivinilo clorado (CPVC) (18) según la normativa NFPA-13 pueden ser implementados en el diseño de la red contra incendio, siempre y cuando estén debidamente listadas por laboratorios certificados.

Válvulas
Las válvulas se encargan de controlar el paso del fluido en los sistemas de protección contra incendios, es posible implementar cualquier tipo de válvula que se encuentre comercialmente. Estas válvulas deben estar certificadas para su instalación.

Rociadores
Los rociadores son dispositivos de protección contra incendios denominados elementos termo sensibles, su función es la liberación de un patrón de descarga sobre áreas de diseño. La configuración básica de un rociador se muestra en la Figura 4 donde se muestran los principales elementos que componen un rociador: deflector, orificio de descarga, fusible, brazo y elemento térmico.

Figura 4. Componentes rociador estándar.

En los rociadores automáticos se encuentra un deflector unido a la estructura del rociador, este se encarga de pulverizar y dar el patrón de descarga del agente extintor, que a su vez, es diseñado de acuerdo con la presión de descarga necesaria en el rociador. La normativa NFPA-13 ha establecido que la presión mínima debe ser de 48 KPa (7psi) para obtener un patrón adecuado de descarga.

Los mecanismos de liberación en los rociadores automáticos más utilizados en la actualidad por su alta efectividad, son elementos termo sensibles de bulbos y fusibles metálicos. En los rociadores de fusibles metálico el elemento termo sensible está compuesto por dos placas de aleación de metal con unión soldada (20), la cual une el tapón con el orificio de descarga del rociador, estas placas de
aleación de metal tienen establecido un punto de fusión4 según la temperatura de activación del rociador. En los rociadores de ampollas de vidrio o bulbos el elemento termo sensible es un líquido confinado en la ampolla de vidrio, comúnmente alcohol de bajo punto de ebullición. Los bulbos termos sensibles se clasifican por el tamaño de la burbuja interna de aire, la cual va disminuyendo su tamaño a medida que se expande por el aumento de temperatura. En el momento que desaparece la burbuja interna de aire, la presión del líquido es suficientemente alta para romper el bulbo y dar la apertura del agente extintor.

Un concepto relevante en la selección de rociadores es el factor de descarga “K”, el cual está relacionado con el tamaño del orificio del rociador. El factor “K” determina la cantidad de caudal y la presión de trabajo del rociador. En la Tabla 1 se presentan los factores nominales de descarga más comunes.

Tabla 1. Factor K nominal.

<table>
<thead>
<tr>
<th>Nominal K Factor $(t_{	ext{min}}, \text{kPa}^{2/3})$</th>
<th>Nominal Orifice Diameter (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>6.4</td>
</tr>
<tr>
<td>2.7</td>
<td>8.0</td>
</tr>
<tr>
<td>4.0</td>
<td>9.5</td>
</tr>
<tr>
<td>6.0</td>
<td>11.0</td>
</tr>
<tr>
<td>8.0</td>
<td>12.7</td>
</tr>
<tr>
<td>11.5</td>
<td>13.5</td>
</tr>
<tr>
<td>16.1</td>
<td>15.9</td>
</tr>
<tr>
<td>20.1</td>
<td>19.0</td>
</tr>
</tbody>
</table>

Fuente: Factor K (21).

1.5 CLASIFICACIÓN DEL RIESGO PARA EL EDIFICIO AQUINATE

Para la solución del primer objetivo “Clasificar el nivel de riesgo de incendio para el edificio Aquinate de la Universidad Santo Tomás para determinar los parámetros de diseño hidráulico.”, se va a clasificar el riesgo de ocupación mediante la metodología MESERI (Método Simplificado de Evaluación de Riesgo de Incendios) y metodología internacional de la NFPA-13 “Criterios para rociadores”. Donde la metodología MESERI se encarga de recolectar información e identificar la vulnerabilidad del riesgo de incendio en el edificio Aquinate, mientras que la

4 El punto de fusión es la temperatura en la cual se presenta un cambio de fases de sólido a líquido, en el caso del fusible, se funde la unión soldada y da apertura al agente extintor.
NFPA-13 con base a la información recolectada, clasifica y da las pautas de protección según el riesgo de ocupación.

Metodología MESERI

La metodología MESERI propone seguir una serie de pasos. Para empezar, se debe hacer una inspección y recolección de información del edificio y posteriormente hacer uso del Formulario de Toma de Datos en el cual se realiza la evaluación de la magnitud de riesgo del edificio Aquinate de la Universidad Santo Tomás.

Factores a evaluar. En el edificio se van a evaluar dos factores relacionados con el riesgo, el primero es el factor generador y agravantes del riesgo de incendio y por otro lado los factores reductores de riesgo de incendio. Cada uno de estos factores aportará información para poder clasificar el riesgo de ocupación en el edificio Aquinate.

Factor Generador y Agravante del Riesgo.

Lo constituyen los factores de construcción, ubicación y operación del edificio.

- **Factor de construcción.**

El edificio cuenta con cuatro niveles de altura de 2.8 m por piso, adicional tiene un atrio que intercomunica desde el primer hasta el último piso del edificio, por consiguiente aumenta el riesgo de propagación de incendio de manera vertical entre pisos. El área de mayor riesgo de incendio es de 232 m², ubicada en los salones de reunión de profesores en el segundo piso del edificio, asimismo las otras áreas de mayor riesgo corresponden a los pisos superiores debido a la dificultad de evacuación en caso de acumulación de humo por causa de incendio. La construcción tiene un nivel medio de resistencia al fuego, debido, a que contiene elementos estructurales con alta resistencia al fuego, como lo es el hormigón y techos incombustibles, pero se observan divisiones en vidrio sin resistencia al fuego siendo puntos débiles para la compartimentación del fuego y humo.

- **Factor Ubicación.**

El edificio se encuentra rodeado de casas y no hay ninguna distancia adecuada para impedir la extensión de fuego de las casas aledañas. La central de bomberos se encuentra cerca del edificio Aquinate, la accesibilidad al edificio es moderada.
debido a que las calles son angostas y en ocasiones solo hay un sentido en la vía además el tráfico es masivo en horas específicas.

- **Factor operación.**

El edificio Aquinate tiene en sus instalaciones muebles combustibles, papelerías, almacenamiento de libros en el área de biblioteca, vallas publicitarias y conexiones eléctricas en la totalidad del edificio, la zona de parqueaderos tiene riesgos moderados de ignición de incendios de manera que existe un riesgo de leve a moderado con la posibilidad de ignición de fuego en el edificio.

Por otro lado, la subestación eléctrica del edificio se encuentra al lado de la zona de parqueaderos aumentando aún más el riesgo de propagación de un incendio en el edificio.

Factores Reductores Del Riesgo.

El edificio Aquinate tiene implementado sistemas manuales de protección contra incendios, particularmente, mangueras de incendios y extintores portátiles, los cuales deben ser operados por brigadas capacitadas y entrenadas en caso de emergencia, sin embargo, el edificio no tiene implementados sistemas de protección contra incendios automáticos como los son los sistemas de rociadores automáticos, a pesar de que ya existe una normativa nacional la cual exige la instalación de los sistemas automáticos de protección contra incendios, el edificio no cumple todos los requisitos estipulados por la norma. Por otro lado la universidad Santo Tomás realiza simulacros de evacuación y cuenta con rutas de evacuación claramente identificadas, alarmas y elementos de evacuación claves para salvaguardar la vida de las personas que ejercen labores en el edificio Aquinate de la universidad Santo Tomás.

De acuerdo con los datos recolectados en los numerales anteriores, se clasifica el riesgo del edificio mediante el Formulario de Toma de Datos del método MESERI (Ver Anexo adjunto al documento, Formulario de Toma de Datos), el cual es un método cualitativo recomendado por Seguros MAPFRE (22), es usado como referencia para estimar en nivel de riesgo y tomar acciones preventivas.

El resultado del método MESERI clasifica al edificio Aquinate como un riesgo de protección *Mala*, debido a que el valor del riesgo es de 4.47 (Ver Anexo adjunto al documento, Formulario de Toma de Datos). La baja calificación del riesgo para el edificio radica en la falta del sistema automático de protección contra incendios y
todos los efectos de protección que brindaría el sistema automático, por otro lado, si se implementa el sistema de protección contra incendios en el edificio, el resultado del método MESERI es de 7,20 (Ver Anexo adjunto al documento, Formulario de Toma de Datos) y se califica el edificio en un riesgo de protección Bueno. A pesar de que el método MESERI no está avalado por las normas americanas de rociadores, NFPA-13, sirve para evidenciar la vulnerabilidad de riesgo y la necesidad de realizar acciones preventivas en el edificio con la instalación del sistema de protección contra incendios.

Clasificación de riesgo según la Norma NFPA-13

La norma NFPA-13 en su código 5.1.2 clasifica el riesgo de ocupación de acuerdo con las propiedades químicas de combustibilidad de los materiales almacenados en los espacios a proteger. A continuación se describen las características de las ocupaciones y en la Tabla 2 se muestran los resultados de la clasificación para el edificio Aquinate.

Definición de las ocupaciones:

Ocupación de Riesgo Leve: “La ocupación de riesgo leve debe definirse como las ocupaciones o partes de otras ocupaciones donde la combustibilidad de los contenidos es baja, y se esperan incendios con bajos índices de liberación de calor.”

Ocupación de Riesgo Ordinario (Grupo 1): “Las ocupaciones de (riesgo ordinario del grupo 1) deben definirse como las ocupaciones donde la combustibilidad es baja, la cantidad de combustibles es moderada, las pilas de almacenamiento de combustibles no superan los 8 pies (2.4 m), y se esperan incendios con un índice de liberación de calor moderado.”

5 La combustibilidad es la propiedad química de las sustancias que las hace capaces de permanecer encendidas o quemándose.

6 El índice de liberación de calor expresa la cantidad de energía que se produce en el proceso de combustión.

7 NATIONAL FIRE PROTECTION ASSOCIATION. Standard for the installation of sprinkler systems 2010.

8 NATIONAL FIRE PROTECTION ASSOCIATION. Standard for the installation of sprinkler system 2010.
La biblioteca se clasifica como ocupación de riesgo leve, debido a que la altura de las estanterías de libros es inferior a 2.4 m, los pasillos tienen una separación superior a 30 in (762 mm) y no hay grandes volúmenes de libros. **Fuente:** Autor.

Donde los riesgos denominados leves tienen bajos indicies de liberación de calor y baja combustibilidad, mientras que, el riesgo ordinario del grupo 1 contiene tasas moderadas de combustibilidad e indicies moderados de liberación de calor. De esta forma fueron clasificadas las áreas del edificio Aquinate en riesgos de ocupación bajo los criterios de la normativa NFPA-13 y la información obtenida por la metodología MESERI.

Con la clasificación de las ocupaciones para el edificio Aquinate se da por terminado el capítulo de marco referencial relacionado con la protección contra incendios.
2. DISEÑO DEL SISTEMA DE PROTECCIÓN CONTRA INCENDIOS

Para la solución del segundo objetivo “Calcular el sistema hidráulico de protección contra incendios con el criterio de rociadores automáticos.” Se hizo uso la metodología de diseño en ingeniería (23), la cual establece una serie de pasos necesarios para desarrollar el diseño del sistema hidráulico, donde, en primer lugar se identifican los requerimientos del cliente y las especificaciones en ingeniería, seguido, se realiza la etapa de diseño conceptual, la cual define la alternativa de diseño, y por último la etapa de diseño básico con detalle, la cual desarrolla todo el sistema en general. A lo largo de este capítulo se van a desarrollar cada una de estas etapas de diseño con la intención de cumplir el segundo objetivo planteado en el presente documento.

2.1 REQUERIMIENTOS Y ESPECIFICACIONES DE INGENIERÍA

Los clientes que están interesados en el diseño del sistema de protección contra incendios son el administrador del edificio de la universidad Santo Tomás, quien es el cliente principal, y el jefe de planta de las instalaciones del edificio Aquinate, quien es el cliente secundario. La identificación de los clientes del proyecto establecerá los parámetros y restricciones a implementar en el diseño básico con detalle.

A partir de una entrevista realizada al jefe de planta de las instalaciones del edificio Aquinate, se determinaron los requerimientos y las necesidades del cliente, con la finalidad de identificar los aspectos que deben de ser considerados en el diseño básico con detalle. Los requerimientos del cliente se describen a continuación:

- **Alta confiabilidad:** El cliente quiere un sistema que sea capaz de controlar el fuego, dentro de las instalaciones del edificio Aquinate.
- **Cumplimiento con la norma internacional:** El cliente aspira que el diseño del sistema de protección contra incendios, se desarrolle conjuntamente con las especificaciones dadas en las normativas internacionales.
- **No dañe la fachada:** El cliente quiere evitar que los rociadores puedan ser una obstrucción para el personal de edificio, por otro lado, desea evitar que la tubería este expuesta a lo largo del edificio.
• **Bajo costo**: El cliente desea que en el diseño hidráulico se implemente un proceso de optimización, tanto de diámetros como la selección efectiva de los componentes del sistema.

• **Resistente a los ambientes**: El cliente solicita que el sistema debe implementar algún tipo de protección contra los ambientes.

• **Seguridad antisísmica**: El cliente requiere un sistema que sea diseñado bajo los efectos de los fenómenos naturales, como lo son terremotos, para el diseño de sujección de la tubería.

• **Fácil montaje**: Debido a que el edificio Aquinate está en operación continua, el cliente requiere que la instalación sea rápida y eficaz del sistema hidráulico en el edificio.

• **Fácil de operar**: El cliente requiere un sistema en su totalidad automático, y desea evitar involucrar la operación del sistema por el personal del edificio.

• **Fácil de reparar**: El cliente quiere tener a disposición componentes de repuesto del sistema hidráulico, para en caso de daño de sistema, la reparación sea lo más rápida posible.

• **Silencioso**: El cliente desea que el sistema no genere ruido que pueda alterar a los ocupantes del edificio.

• **Sistema de aviso de incidencias**: El cliente desea tener algún indicador de funcionamiento del sistema, el cual, alerte al personal para que se efectué el plan de evacuación en el edificio.

• **Bajo tiempo de respuesta**: El cliente desea implementar en su sistema, rociadores confiables de respuesta rápida, para el control oportuno del riesgo de incendio.

Para determinar la importancia de los requerimientos anteriormente descritos, se realizó una encuesta entre los docentes de ingeniería, los cuales dieron el criterio de calificación, en un rango de 0 al 10, según el nivel de experiencia previa con el desarrollo los requerimientos establecidos. Los resultados de la determinación de la importancia de los requerimientos se muestran en la Tabla 3.
Tabla 3. Requerimientos del cliente.

<table>
<thead>
<tr>
<th>Weight Importance</th>
<th>Demanded Quality (a.k.a. “Customer Requirements” or “Whats”)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6</td>
<td>Alta confiabilidad</td>
</tr>
<tr>
<td>10.0</td>
<td>Cumplimiento con las normas internacionales</td>
</tr>
<tr>
<td>6.0</td>
<td>No dañe la fachada</td>
</tr>
<tr>
<td>8.7</td>
<td>Bajo costo</td>
</tr>
<tr>
<td>7.0</td>
<td>Resistente a los ambientes</td>
</tr>
<tr>
<td>9.5</td>
<td>Seguridad antisísmica</td>
</tr>
<tr>
<td>5.0</td>
<td>Fácil montaje</td>
</tr>
<tr>
<td>9.4</td>
<td>Fácil de operar</td>
</tr>
<tr>
<td>8.0</td>
<td>Fácil de reparar</td>
</tr>
<tr>
<td>4.0</td>
<td>Silencioso</td>
</tr>
<tr>
<td>5.0</td>
<td>Sistema de aviso de incidencias</td>
</tr>
<tr>
<td>9.6</td>
<td>Bajo tiempo de respuesta</td>
</tr>
</tbody>
</table>

Fuente: Autor.

2.1.1 Especificaciones de ingeniería
Estas especificaciones son aspectos medibles que deben ser implementados en el sistema hidráulico para dar solución a los requerimientos establecidos por el cliente. De acuerdo con lo anterior, se determinan los objetivos cuantificables en ingeniería con respecto al nivel de aceptación de las normas y códigos apropiados para cada objetivo en específico. A continuación se realiza la descripción de las especificaciones de ingeniería.

- **Diámetro de tubería**: La norma ASME B31.9 y NFPA-13 recomienda el uso de tubería entre un rango de (1 - 3) pulgadas para los riesgos presentes en el edificio. Adicionalmente, restringe el uso de tubería de acero al carbón menores de 1 pulgada.
\begin{itemize}
 \item \textbf{Componentes certificados por laboratorios}: La norma NFPA 13 establece que todos los materiales y dispositivos esenciales para la operación del sistema de protección contra incendios deben ser listados.
 \item \textbf{Recubrimiento de la tubería}: Para evitar desgastes superficiales exteriores en la tubería, la norma ASME B31.9, recomienda el uso de pinturas anticorrosivas para el sistema.
 \item \textbf{Años de uso}: El sistema debe cumplir entre 20 a 50 años de uso a disposición del edificio Aquinate. Esto debe ser logrado con las inspecciones y mantenimientos recomendados para el sistema.
 \item \textbf{Soportes antisísmicos}: La norma NFPA-13 obliga la implementación de soportes antisísmicos en las instalaciones de tuberías.
 \item \textbf{Rociadores de repuesto}: En caso de emergencia el sistema debe ser reparado rápida y efectivamente, la norma NFPA-13 determina un mínimo de 6 rociadores de repuesto en caso de emergencia.
 \item \textbf{Año de aprobación de accesorios}: La norma ASME B 31.9 recomienda el uso de materiales listados a partir del año 2011 en adelante. Lo anterior hace referencia a la implementación de materiales nuevos para el sistema.
 \item \textbf{Presión en tubería}: La norma NFPA 13 establece que la tubería debe soportar un máximo de 175 psi, para el transporte de agua en el sistema hidráulico.
 \item \textbf{Cantidad de bombas}: La norma ASME B31.9 deja a disposición el número necesario de bombas para el sistema, la restricción es dada por el cliente, el cual tiene limitaciones de espacio en el edificio, por este motivo se especifica máximo 1 bomba para el sistema hidráulico.
 \item \textbf{Alarmas indicadoras}: La norma NFPA-13 establece un mínimo de 1 alarma por piso en el sistema hidráulico.
 \item \textbf{Inspección periódica}: La norma ASME B31.9 establece un rango de 6 a 12 meses para realizar el mantenimiento de todos los componentes del sistema.
 \item \textbf{Tiempo de respuesta}: La norma NFPA-13 establece un tiempo de respuesta entre 30 a 60 segundos para la activación de la bomba contra incendios, este tiempo de respuesta es medido en el momento en el que el rociador permite la salida de agua en el sistema hidráulico.
\end{itemize}
- **Almacenamiento del tanque**: La norma NFPA 13, establece que se debe considerar un tanque de almacenamiento en un rango de 0 a 100 galones, para el sistema de rociadores en riesgo leve.

- **Temperatura de operación**: La norma NFPA-13 da un rango de operación de 57 a 77 °C para los rociadores cuando la temperatura ambiente a nivel de techo tiene un máximo de 38°C.

A continuación en la Tabla 4 se muestran los parámetros de ingeniería y la dirección de mejora de cada uno de los objetivos.

<table>
<thead>
<tr>
<th>Tabla 4. Especificaciones en ingeniería.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>Direction of Improvement</td>
</tr>
</tbody>
</table>

Fuente: Autor.

Posteriormente de haber definido los requerimientos del cliente y las especificaciones en ingeniería, se procedió a completar la matriz de correlación sugerida por la herramienta QFD “Desarrollo de la Función de Calidad”, la cual, determino los valores límites para el objetivo del diseño hidráulico. Los valores de ponderación se muestran en la Figura 5, y las correlaciones entre requerimientos y especificaciones en la Tabla 5.

Figura 5. Valores de ponderación.

<table>
<thead>
<tr>
<th></th>
<th>Strong Relationship</th>
<th></th>
<th>Moderate Relationship</th>
<th></th>
<th>Weak Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9</td>
<td></td>
<td>3</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Fuente: Autor.
Tabla 5. Correlaciones entre requerimientos y especificaciones

<table>
<thead>
<tr>
<th>Column #</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demanded Quality</td>
<td>▼</td>
<td>X</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▼</td>
<td>▼</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td></td>
</tr>
<tr>
<td>Delivered by Analysts</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>▲</td>
<td>▲</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Achieved</td>
<td>▲</td>
<td></td>
</tr>
<tr>
<td>Compliance with Customer Requirements</td>
<td>▲</td>
<td></td>
</tr>
<tr>
<td>Quality Characteristics (aka “Functional Requirements” or “Wish”)</td>
<td>▲</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Autor.

Posteriormente se definieron las metas u objetivos de cada una de las especificaciones de ingeniería descritas por la función de Calidad QFD, al mismo tiempo, se determinó el grado de dificultad de las especificaciones, las cuales se muestran en la Tabla 6.

Tabla 6. Objetivos de diseño.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Difficulty</td>
<td>8</td>
<td>10</td>
<td>5</td>
<td>8</td>
<td>10</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>3</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Max Relationship Value in Column</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Weight Importance</td>
<td>387.3</td>
<td>471.2</td>
<td>238.3</td>
<td>167.3</td>
<td>285.3</td>
<td>205.4</td>
<td>253.6</td>
<td>387.5</td>
<td>310.0</td>
<td>185.4</td>
<td>185.4</td>
<td>387.3</td>
<td>403.4</td>
</tr>
<tr>
<td>Relative Weight</td>
<td>3.9</td>
<td>11.0</td>
<td>6.3</td>
<td>4.2</td>
<td>7.9</td>
<td>5.5</td>
<td>6.8</td>
<td>10.3</td>
<td>6.3</td>
<td>4.4</td>
<td>5.1</td>
<td>10.7</td>
<td>5.8</td>
</tr>
</tbody>
</table>

Fuente: Autor.
Estas especificaciones de ingeniería serán utilizadas más adelante como criterio de selección de las alternativas de diseño, la Tabla 7 muestra las especificaciones de ingeniería en orden de importancia según su peso relativo.

<table>
<thead>
<tr>
<th>Parámetros de ingeniería</th>
<th>Peso relativo (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Componentes aprobados por laboratorios</td>
<td>11</td>
</tr>
<tr>
<td>Tiempo de respuesta</td>
<td>10.7</td>
</tr>
<tr>
<td>Presión en tubería</td>
<td>10.3</td>
</tr>
<tr>
<td>Diámetro de tubería</td>
<td>9.6</td>
</tr>
<tr>
<td>Cantidad de bombas</td>
<td>8.3</td>
</tr>
<tr>
<td>Soportes antisísmicos</td>
<td>7.9</td>
</tr>
<tr>
<td>Año de aprobación de accesorios</td>
<td>6.8</td>
</tr>
<tr>
<td>Recubrimiento de la tubería</td>
<td>6.3</td>
</tr>
<tr>
<td>Almacenamiento del tanque</td>
<td>5.9</td>
</tr>
<tr>
<td>Rociadores de repuesto</td>
<td>5.5</td>
</tr>
<tr>
<td>Tiempo de mantenimiento</td>
<td>5.1</td>
</tr>
<tr>
<td>Alarmas indicadoras</td>
<td>4.4</td>
</tr>
<tr>
<td>Inspección periódica</td>
<td>4.2</td>
</tr>
<tr>
<td>Años de uso</td>
<td>4.1</td>
</tr>
</tbody>
</table>

Fuente: Autor.

Finalmente que se han determinado los requerimientos, las especificaciones y los objetivos cuantificables del proyecto, se completa la matriz de la función de la calidad QFD, con la finalidad de establecer las prioridades a implementar en el sistema hidráulico, ver Anexo A. Resultados matriz QFD.

2.1.2 Estudio de mercados
El siguiente paso de la matriz de la calidad, QFD, consiste en realizar una investigación de los productos, servicios y procesos existentes en el mercado para los sistemas de protección contra incendios. Esto permite conocer los productos ya existentes en el mercado, como dan solución al problema planteado y por último, identificar cuáles son las posibles mejoras y aspectos diferenciadores del diseño final del sistema de protección contra incendios.

Debido a que los sistemas de protección contra incendios son diseñados de manera particular para cada tipo de edificio, no se puede pretender comprar un sistema existente y ajustarlo al edificio Aquinate. Lo que sí es posible hacer, es observar cuáles son las configuraciones más usadas en la actualidad para
determinar cómo el mercado satisface las necesidades del cliente. Las Figuras 6 a la 8 muestran el resultado de la investigación de las alternativas de rociadores más comunes de los sistemas de protección contra incendios.

- Configuración en el mercado Número 1.

La configuración de rociadores número 1 tiene una distribución de rociadores tipo malla, ver Figura 6, este tipo de distribución requiere gran cantidad de accesorios para su funcionamiento, por lo que requiere más material y su diseño hidráulico es más crítico al tener más incógnitas respecto al flujo de agua variable por cada tramo que componen las mallas. En esta configuración se realiza un plan de mantenimiento más exhaustivo por la posibilidad de tener aire atrapado en la tubería, por otro lado, se requieren mayores accesorios de repuesto para el sistema en general.

Figura 6. Configuración de rociadores # 1.

Fuente: Autor.

- Configuración en el mercado Número 2.

La configuración de rociadores número 2 tiene una distribución de rociadores tipo árbol con ramales centrados, ver Figura 7, este tipo de distribución es compacto y requiere una cantidad baja de accesorios para llegar a los rociadores extremos. En esta configuración se minimiza la cantidad de aire atrapado en el sistema, esto implica que el oxígeno atrapado no corroee internamente la tubería. Por otro lado, la cantidad de accesorios del sistema son menores comparados con la alternativa número 1.
• Configuración en el mercado Número 3.

La configuración de rociadores número 3 tiene una distribución de rociadores tipo árbol con ramales laterales, ver Figura 8, este tipo de distribución requiere caudales mayores en los primeros tramos de rociadores, lo que origina mayor desbalance hidráulico por ramal. La mayor longitud del ramal debe ser soportada al techo con sujetadores antisísmicos lo que implica mayores accesorios. En esta configuración también se minimiza la cantidad de aire atrapado en el sistema.
A continuación se van a evaluar las alternativas más comunes en el mercado, las cuales den la mejor solución a los requerimientos del cliente, mediante el uso de la matriz de evaluación de la función de la calidad, ver Figura 9, esta matriz de evaluación compra las alternativas del mercado y como estas plantean las soluciones para cumplir los requerimientos del cliente.

Figura 9. Evaluación de configuraciones de rociadores

<table>
<thead>
<tr>
<th>Demanded Quality</th>
<th>Alternativa #1</th>
<th>Alternativa #2</th>
<th>Alternativa #3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alta confiabilidad</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Cumplimiento con las normas internacionales</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>No daña la fachada</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Bajo costo</td>
<td>3</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Resistente a los ambientes</td>
<td>5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Seguridad antísmica</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Fácil montaje</td>
<td>3</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Fácil de reparar</td>
<td>2</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Fácil de reparar</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Silencioso</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Sistema de aviso de incidentes</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Bajo tiempo de respuesta</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Fuente: Autor.

Como conclusión del estudio de mercados se logró identificar como actualmente el mercado responde a las necesidades del cliente, de esta forma, se establecieron las bases de diseño que deben conformar la alternativa final del sistema hidráulico, estas especificaciones se describen a continuación: El sistema debe
tener una distribución de rociadores tipo árbol con ramales centrados, ver Figura 7, debido a que esta distribución disminuye los costos, facilita la instalación, facilita la reparación, tiene menos componentes y disminuye el ruido del sistema. Asimismo, el sistema debe ser en su totalidad de activación automática, con el cumplimiento de las normas internacionales. Por otro lado, el sistema debe contar con un plan de mantenimiento y componentes de repuesto para los subsistemas, por último, la tubería en su exterior debe tener algún tipo de recubrimiento anticorrosivo y al mismo tiempo debe estar sujeta al techo con sujección antisísmica solo en las tuberías principales y no en los ramales.

Una vez desarrollado el despliegue de la función de la calidad, QFD, y el estudio de mercados, se da por terminada la sección de Requerimientos del cliente.

2.2 DISEÑO CONCEPTUAL

En esta sección se va a seleccionar la alternativa de diseño para el sistema hidráulico, partiendo de la descomposición funcional del sistema y su nivel de correlación con las especificaciones de ingeniería, determinadas en la matriz de la calidad, QFD, posteriormente se van a evaluar alternativas mediante una matriz de ponderación, con la finalidad de seleccionar la alternativa final de diseño.

2.2.1 Descomposición funcional

A continuación se va a descomponer el sistema general en sub-funciones, estas, determinan la función específica de cada subsistema. Se realizan las sub-funciones con la intención de definir posibles alternativas de diseño, los resultados se muestran en la Tabla 8.
Tabla 8. Descomposición funcional.

<table>
<thead>
<tr>
<th>Sub funciones</th>
<th>Concepto 1</th>
<th>Concepto 2</th>
<th>Concepto 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Dirigir y transportar el fluido</td>
<td>Tubería CPVC</td>
<td>Tubería</td>
<td>Manguera</td>
</tr>
<tr>
<td>2. Dar un patrón de descarga para controlar el crecimiento del fuego</td>
<td>Rociador colgante respuesta rápida</td>
<td>Rociador montante respuesta rápida</td>
<td>Rociador lateral respuesta rápida</td>
</tr>
<tr>
<td>3. Generar energía hidráulica en el sistema</td>
<td>Bomba diésel</td>
<td>Bomba eléctrica</td>
<td></td>
</tr>
<tr>
<td>4. Unión de la tubería</td>
<td>Unión ranurada y roscada</td>
<td>Unión de rosca</td>
<td>Unión soldada</td>
</tr>
<tr>
<td>5. Soportes de la tubería</td>
<td>Soporte rígido al techo</td>
<td>Cables fijos al techo</td>
<td>Soporte estructural de acero</td>
</tr>
<tr>
<td>6. Almacenamiento de agua</td>
<td>Tanque cilíndrico presurizado</td>
<td>Tanque cilíndrico atmosférico</td>
<td>Tanque cubico presurizado</td>
</tr>
<tr>
<td>7. Distribución de la red hidráulica</td>
<td>Arbol - Ramales centrados</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Autor.
2.2.2 Generación de alternativas

Partiendo de la Tabla 8, descomposición funcional del sistema hidráulico, fueron desarrolladas 3 alternativas de diseño, compuestas por posibles componentes que dan solución al diseño hidráulico. Cada una de estas alternativas se describe a continuación.

Alternativa de diseño número 1.

En la Tabla 9 se realiza la descripción de las características que conforman la alternativa de diseño número 1.

<table>
<thead>
<tr>
<th>Función</th>
<th>Componente</th>
<th>Característica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dirigir y transportar el fluido</td>
<td>Tubería CPVC</td>
<td>Plástico</td>
</tr>
<tr>
<td>Dar un patrón de descarga para controlar el crecimiento del fuego</td>
<td>Rociador montante</td>
<td>La tubería protege el rociador</td>
</tr>
<tr>
<td>Generar energía hidráulica en el sistema</td>
<td>Bomba diesel</td>
<td>Bomba diésel</td>
</tr>
<tr>
<td>Unión de partes</td>
<td>Solo unión roscada</td>
<td>Plástico</td>
</tr>
<tr>
<td>Soportes de los componentes</td>
<td>Soportes estructural</td>
<td>Acero</td>
</tr>
<tr>
<td>Almacenamiento de agua</td>
<td>Tanque cubico presurizado</td>
<td>Acero inoxidable</td>
</tr>
<tr>
<td>Distribución de la red hidráulica</td>
<td>Arbol con ramales centrados</td>
<td>Geometría</td>
</tr>
</tbody>
</table>

Fuente: Autor.

Alternativa de diseño número 2.

En la Tabla 10 se realiza la descripción de las características que conforman la alternativa de diseño número 2.
Tabla 10. Alternativa de diseño # 2.

<table>
<thead>
<tr>
<th>Función</th>
<th>Componente</th>
<th>Característica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dirigir y transportar el fluído</td>
<td>Tubería</td>
<td>Acero al carbón (A-53)</td>
</tr>
<tr>
<td>Dar un patrón de descarga para</td>
<td>Rociador colgante</td>
<td>Tubería oculta en techo</td>
</tr>
<tr>
<td>controlar el crecimiento del fuego</td>
<td>Respuesta Rápida</td>
<td></td>
</tr>
<tr>
<td>Generar energía hidráulica en el</td>
<td>Bomba eléctrica</td>
<td>Energía eléctrica</td>
</tr>
<tr>
<td>sistema</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unión de partes</td>
<td>Unión ranurada y roscada</td>
<td>Acero al carbón</td>
</tr>
<tr>
<td>Soportes de los componentes</td>
<td>Soporte rígido al techo</td>
<td>Acero al carbón</td>
</tr>
<tr>
<td>Almacenamiento de agua</td>
<td>Tanque cilíndrico</td>
<td>Metalico A-284°C</td>
</tr>
<tr>
<td></td>
<td>atmosférico</td>
<td></td>
</tr>
<tr>
<td>Distribución de la red hidráulica</td>
<td>Arbol con ramales</td>
<td>Geometría</td>
</tr>
<tr>
<td></td>
<td>centrados</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Autor.

Alternativa de diseño número 3.

En la Tabla 11 se realiza una descripción de las características que conforman la alternativa de diseño número 3.

Tabla 11. Alternativa de diseño # 3.

<table>
<thead>
<tr>
<th>Función</th>
<th>Componente</th>
<th>Característica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dirigir y transportar el fluído</td>
<td>Canaletas de guía</td>
<td>Acero al carbón (A-53)</td>
</tr>
<tr>
<td>Dar un patrón de descarga para</td>
<td>Rociador lateral</td>
<td>Ubicación contra la pared</td>
</tr>
<tr>
<td>controlar el crecimiento del fuego</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generar energía hidráulica en el</td>
<td>Bomba eléctrica</td>
<td>Energía eléctrica</td>
</tr>
<tr>
<td>sistema</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unión de partes</td>
<td>Unión soldada</td>
<td>Hierro fundido</td>
</tr>
<tr>
<td>Soportes de los componentes</td>
<td>Cables fijos al techo</td>
<td>Acero</td>
</tr>
<tr>
<td>Almacenamiento de agua</td>
<td>Tanque cilíndrico presurizado</td>
<td>Acero ASME Sección VIII</td>
</tr>
<tr>
<td>Distribución de la red hidráulica</td>
<td>Arbol con ramales</td>
<td>Geometría</td>
</tr>
<tr>
<td></td>
<td>centrados</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Autor.
Selección de alternativa de diseño

Para seleccionar la alternativa final de diseño se realizó una evaluación de las alternativas propuestas mediante una matriz de ponderación, la cual, califica las alternativas de acuerdo con las especificaciones en ingeniería descritas en la Tabla 7, los resultados de la evaluación se muestra en la Tabla 12.

<table>
<thead>
<tr>
<th>Parámetros de ingeniería</th>
<th>Alternativa 1</th>
<th>Alternativa 2</th>
<th>Alternativa 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Componentes aprobados</td>
<td>0.11</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>Tiempo de respuesta</td>
<td>0.107</td>
<td>0.963</td>
<td>0.963</td>
</tr>
<tr>
<td>Presión en tubería</td>
<td>0.103</td>
<td>0.927</td>
<td>0.927</td>
</tr>
<tr>
<td>Diámetro de tubería</td>
<td>0.096</td>
<td>0.768</td>
<td>0.768</td>
</tr>
<tr>
<td>Cantidad de bombas</td>
<td>0.083</td>
<td>0.747</td>
<td>0.747</td>
</tr>
<tr>
<td>Soportes antisísmicos</td>
<td>0.079</td>
<td>0.474</td>
<td>0.474</td>
</tr>
</tbody>
</table>

Fuente: Autor.

Como resultado de la matriz de evaluación, fue seleccionada la alternativa de diseño número 2, debido a que su alto puntaje refleja el cumplimiento de la mayoría de las especificaciones de ingeniería, por otro lado, con las restricciones establecidas en el estudio de mercados, se llega a la alternativa final de diseño: El sistema debe tener una distribución tipo Árbol con Ramales Centráidos, ver Figura 7. Asimismo el sistema debe ser en su totalidad de activación automática, y debe ser diseñado bajo las normas internacionales. La tubería que será implementada en el sistema es de acero al carbón ASTM A-53 (SCH 40), con diámetros máximos de 3 pulgadas y mínimos de 1 pulgada, además la tubería debe contar con sujección antisísmica en las tuberías principales y recubrimiento anticorrosivo. Por otro lado, los rociadores deben ser de tipo Respuesta Rápida, con un factor geométrico de descarga \(K = 5.6 \text{ gpm/psi}^{0.5} \), una presión mínima de trabajo de 7 psi y su temperatura de activación de 57°C (color rojo de la ampolla de vidrio). Por último, el sistema debe contar con un plan de mantenimiento semestral, adicional, debe mantener un mínimo de seis rociadores de repuesto dentro de gabinetes en un lugar seguro.

Una vez determinada la alternativa final de diseño se concluye la sección de diseño conceptual.
2.3 DISEÑO BASICO CON DETALLES

En esta sección se van a realizar los cálculos de los componentes del sistema de protección contra incendios, empezando con el cálculo del sistema hidráulico, el cual va a definir las presiones y caudales del sistema de tuberías, a su vez, servirá para seleccionar la bomba de suministro de agua contra incendio. Posteriormente, se realizará el cálculo de componentes mecánicos, en el cual se seleccionan los soportes de la tubería, finalmente se realiza la selección de los componentes adicionales necesarios para el funcionamiento del sistema hidráulico.

2.3.1 Cálculos del sistema hidráulico

En esta sección se va a determinar la presión y caudal del sistema hidráulico. Posteriormente, se hace la selección de la bomba contra incendios para el suministro de agua.

Con respecto a las unidades empleadas en el desarrollo de los cálculos hidráulicos, se hizo uso del sistema USCS (United States Customary System Units), debido a que la normativa NFPA-13 lo establece como unidades prioritarias, artículo (1.7.1.4.).

Datos de entrada del sistema hidráulico

Según la clasificación de riesgo de la NFPA-13, descritos en la Tabla 2, (Clasificación de las ocupaciones, ver Capítulo 1), el edificio Aquinate se clasifica como riesgo Mixto, en un 97% riesgo de tipo Leve y sólo un 3%, corresponde a parqueaderos, riesgo de tipo Ordinario del Grupo 1. Por otro lado, la mayoría de áreas comunes a proteger en el edificio no superan los 139 m², debido a que son áreas sectorizadas con espacios reducidos. Por su clasificación de riesgo y áreas reducidas, la normativa NFPA-13 sugiere hacer uso del Método de Diseño por Sala, para el diseño del sistema hidráulico del edificio Aquinate.

Distribución de rociadores

El siguiente paso para el diseño del sistema hidráulico es realizar la distribución de rociadores con respecto a un área de cobertura máxima. Dependiendo la clasificación del riesgo del salón a proteger, los valores de las áreas de ubicación máximas entre rociadores se muestran en la Tabla 14, y la distribución de rociadores en cada uno de los pisos del edificio se muestran en los Planos red hidráulica del edificio Aquinate, Anexos C al F.
Tabla 13. Áreas de ubicación máxima entre rociadores

<table>
<thead>
<tr>
<th>Piso</th>
<th>Clasificación de Riesgo</th>
<th>Área máxima de ubicación entre rociadores</th>
<th>Ejemplo:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ordinario grupo 1</td>
<td>12,1 m²</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Leve</td>
<td>20,9 m²</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Leve</td>
<td>20,9 m²</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Leve</td>
<td>20,9 m²</td>
<td></td>
</tr>
</tbody>
</table>

Densidad y área de operación

Una vez realizada la distribución de rociadores es necesario seleccionar el área de incendio, en la cual, se determinan el número de rociadores a ser activados en caso de incendio, para definir estos parámetros se hace uso de la Figura 10. La cual relaciona el tipo de riesgo, el área de protección y la densidad de operación del rociador necesaria para la protección contra incendios.

Figura 10. Densidad y área de operación

Fuente: NFPA-13 (11).

En el edificio Aquinate existen dos tipos de riesgos, Leve y Ordinario del Grupo 1. Según la Figura 10. Se determina que el Área de Incendio es de 139 m², y la densidad de operación del rociador es de (4.1 y 6.1 mm/min) para riesgos Leve y Ordinario del Grupo 1 respectivamente. Por otro lado, debido a que se implementaron rociadores de tipo Respuesta Rápida, la norma NFPA-13 sección: 11.2.3.2.3.1 establece una reducción del 40% en el área de incendio cuando se tienen techos inferiores a 3 metros de altura(11). De acuerdo con lo anterior, el área de incendio es de 83.4 m² para cada uno de los cuatro pisos del edificio. Los resultados del área de incendio se muestran en la Tabla 15 y la implementación del área de diseño por piso del edificio se presenta en los Anexos C al F, Planos red hidráulica del edificio Aquinate.
Se asume que todos los rociadores dentro del área de incendio van a activarse en caso de emergencia, con base a esto, se procede realizar los cálculos de presiones y caudales para los rociadores que están en dentro del área de incendio, seleccionando los más alejados hidráulicamente.

2.3.1.1 Cálculo de presión y caudal del sistema hidráulico
Con base al procedimiento de diseño en hidráulica aplicada (17) y las restricciones de la norma NFPA-13, se presenta el procedimiento para el desarrollo de los cálculos hidráulicos, con la finalidad de definir presiones y caudales necesarios para correcto funcionamiento del sistema de protección contra incendios.

Procedimiento de diseño
1. Recopilar los datos de entrada para el diseño hidráulico, como lo son: configuración, materiales, distribución y características. Los datos de entrada para el diseño hidráulico se especifican en el Capítulo 2 del presente documento.
2. Determinar el caudal del rociador hidráulicamente más remoto, a partir de la densidad del rociador y el área de cobertura mediante la Ecuación 1.

\[Q = \rho \times A \] (1)

Dónde:

\[Q = \text{Caudal (gpm)} \]
\[\rho = \text{Densidad del rociador (gpm/ft}^2 \text{)} \]
\[A = \text{Área de cobertura del rociador (ft}^2 \text{)} \]

3. Determinar la presión del rociador, mediante la Ecuación 2, la cual es una ecuación propia de los rociadores de aspersión (17), la cual relaciona la geometría de descarga y el caudal del rociador.

<table>
<thead>
<tr>
<th>Piso</th>
<th>Clasificación de Riesgo</th>
<th>Tipo de Rociador</th>
<th>Área de incendio</th>
<th>Numero de rociadores</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ordinario Grupo 1</td>
<td>Rociador de respuesta rápida</td>
<td>83.4 m²</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>Leve</td>
<td>Rociador de respuesta rápida</td>
<td>83.4 m²</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Leve</td>
<td>Rociador de respuesta rápida</td>
<td>83.4 m²</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>Leve</td>
<td>Rociador de respuesta rápida</td>
<td>83.4 m²</td>
<td>5</td>
</tr>
</tbody>
</table>

Fuente: Autor.
\[k = \frac{Q}{\sqrt{P}} \quad (2) \]

Dónde:

- \(Q \) = Caudal (gpm)
- \(k \) = Factor de descarga del rociador (gpm/psi^{0.5})
- \(P \) = Presión del rociador (psi)

4. Una vez identificados la presión y caudal del rociador hidráulicamente más remoto, se traslada al siguiente rociador "punto hidráulico" hasta completar la totalidad de rociadores por ramal, en cada punto hidráulico deben ser consideradas las Pérdidas por Fricción. Las pérdidas por fricción se dividen en tres categorías: perdías por longitud de tubería, pérdidas por accesorios y pérdidas por diferencia de altura (17).

4.1. Las Pérdidas por Longitud en tuberías se calculan de acuerdo con la Ecuación 3 de Hazen-Williams, la cual relaciona el tipo de tubería (Factor-C), el flujo de la tubería y el diámetro del tubo.

\[
H_L = \frac{4.52 \times Q^{1.85}}{C^{1.85} d^{4.87}} \quad (3)
\]

Dónde:

- \(H_L \) = Perdidas de fricción por longitud de tubería (psi / ft de tubería)
- \(Q \) = Flujo en (gpm)
- \(C \) = Coeficiente de fricción de Hazen-William ("factor-c" adimensional)
- \(d \) = Diámetro interno actual de tubería en (in)

Para hacer uso de la Ecuación 3, el sistema debe cumplir con los siguientes requisitos: Solo es factible cuando se usa agua, el sistema no debe trabajar a presiones mayores de 175 psi, y la temperatura no debe superar los 30°C (17). Por otro lado, el valor del “factor-c” es de 120 para tuberías de acero, ver Tabla 16, debido a que el sistema es de tubería húmeda y de acero al carbón ASTM A-53, ver Anexo A, tal como se describió en la sección del diseño conceptual del presente documento.

40
4.2. Para el cálculo de pérdidas por accesorios en el sistema, se hace uso de la Tabla 17, la cual expresa las pérdidas de los accesorios en longitud equivalente de tubería de acero SCH 40. Los valores de la Tabla 16 son derivados experimentalmente y son aceptados por las normas internacionales para el diseño hidráulico.

4.3. Pérdidas de carga por diferencia de altura, por último se hace uso de la Ecuación 4, la cual determina las pérdidas debido a un diferencial de alturas.
\[P_e = \Delta h \times 0.433 \]

Dónde:
- \(P_e \) = Perdidas de fricción por elevación (psi)
- \(\Delta h \) = Diferencia de alturas (ft)

5. Para terminar, se deben de tener en cuenta los puntos en los cuales se unen dos tramos hídricos, es decir, cuando presiones y caudales de diferentes ramales se encuentren en un punto en común, en estos puntos es necesario hacer un Balance Hidráulico, el cual consiste en ajustar el caudal de dos ramales y encontrar el caudal Total, haciendo uso de la Ecuación 5 y 6.

\[Q_{\text{Ajustado}} = Q_L \left(\frac{P_H}{P_L} \right) \]
\[Q_{\text{Total}} = Q_{\text{Ajustado}} + Q_H \]

Dónde:
- \(Q_L \) = Caudal Menor (gpm)
- \(P_H \) = Presión Mayor (psi)
- \(P_L \) = Presión Menor (psi)
- \(Q_H \) = Caudal Mayor (gpm)

Este procedimiento, denominado calculo a demanda, debe ser efectuado en cada piso del edificio Aquinate, tal como lo exige la normativa NFPA-13, con la finalidad de definir la presión y caudal necesarios para el suministro de agua. El desarrollo paso a paso de los cálculos hidráulicos se presenta en los Anexos C al F, Tabla de Cálculos y resultados hidráulicos.

Resultados presiones y caudales

Por la relación proporcional entre caudal y diámetro en la tubería, se realiza un proceso de reasignación de diámetros en el sistema hidráulico, con la finalidad de definir diámetros óptimos para el sistema. De acuerdo con lo anterior se tiene en cuenta que la tubería de conexión entre pisos “tubería vertical”, en la cual fluyen todos los caudales de los rociadores activados del área de incendio, tiene una alta cantidad de caudal, la tubería “principal horizontal”, la cual interconecta los ramales, requiere una cantidad moderada de caudal y los “ramales” que interconecta los rociadores requieren una cantidad baja de caudal. Con base a esta distribución de los diferentes caudales en el edificio, se establecieron
diámetros de 1 in (25 mm) para los ramales, 2 in (50 mm) en tubería principal horizontal y 3 in (80 mm) para la tubería vertical de conexión entre pisos, tal como se muestra en la Tabla 18. Estos diámetros son los requeridos para el sistema hidráulico del edificio Aquinate, como resultado las presiones y caudales por piso se muestran el Tabla 19, y el punto de suministro de agua de la bomba contra incendio debe garantizar un caudal de 170.99 gpm (647.12 l/min) y una presión de 69.39 psi (4.78 bar), ver Anexo H al K, *Tabla de cálculos y resultados hidráulicos*.

Tabla 17. Resultados Diámetros óptimos en tubería.

<table>
<thead>
<tr>
<th>Tramo de tubería</th>
<th>Diámetro óptimo, in (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tubería de conexión entre pisos (tubería vertical)</td>
<td>3 (80)</td>
</tr>
<tr>
<td>Ramales</td>
<td>1 (25)</td>
</tr>
<tr>
<td>Tubería principal horizontal</td>
<td>2 (50)</td>
</tr>
</tbody>
</table>

Fuente: Autor.

Tabla 18. Resultados presiones y caudales por piso.

<table>
<thead>
<tr>
<th>Piso</th>
<th>Flujo Requerido, gpm (L/min)</th>
<th>Presión Requerida, psi (bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>170.99 (647.12)</td>
<td>50.98 (3.51)</td>
</tr>
<tr>
<td>2</td>
<td>112.84 (427.01)</td>
<td>58.49 (4.02)</td>
</tr>
<tr>
<td>3</td>
<td>125.19 (473.84)</td>
<td>61.26 (4.22)</td>
</tr>
<tr>
<td>4</td>
<td>116.19 (439.78)</td>
<td>69.39 (4.78)</td>
</tr>
</tbody>
</table>

Fuente: Autor.

2.3.1.2 Gráfica Hidráulica

Los resultados mostrados en la Tabla 19 se graficaron en un formato de papel semi-logarítmico, caudal exponencial $Q^{1.85}$ en eje X y presión P en el eje Y, con la intención de convertir las curvas de la bomba en una recta, en la cual se proyectó la bomba que suple las demandas de caudal y presión para cada uno de los pisos del edificio Aquinate. Los resultados se muestran en la Figura 11.
Con base a estos requisitos se selecciona la bomba contra incendios. Tal como se ve en la Figura 11, el punto de operación de la curva de la bomba debe estar por encima de las demandas requeridas, con esto se garantiza un factor de seguridad F.S. en caudal y presión necesarios en el sistema de extinción.

2.3.1.3 Selección de la bomba contra incendios
Según los resultados del diseño mostrados en la gráfica hidráulica, ver Figura 11, para el edificio Aquinate se requiere una bomba que suministre como mínimo un caudal de 170.99 gpm, correspondiente al piso 1, y una presión de 69.39 psi, correspondiente al piso 4. De acuerdo con lo anterior, fue seleccionada una bomba eléctrica de una etapa en línea, la cual trabaja con un punto de operación de 200 gpm@80 psi, de esta forma se garantiza el suministro de las demandas requeridas del sistema hidráulico. Asimismo, las características de la bomba contra incendios se muestran en la Tabla 20 y la curva de comportamiento en la Tabla 21.

Tabla 19. Características bomba de suministró.

<table>
<thead>
<tr>
<th>Motobomba de una etapa en línea para protección contra incendios (UL/FM).</th>
</tr>
</thead>
<tbody>
<tr>
<td>AURORA serie 911- Modelo: 3-383-9B.</td>
</tr>
</tbody>
</table>
17 Hp, motor eléctrico 60 Hz (3550 rpm) - Caudal y Presión nominal 200 gpm @ 80 psi

Fuente: Autor.

A continuación se muestra la curva de comportamiento de la bomba contra incendios.

Tabla 20. Curva de comportamiento de la bomba contra incendios

Al usar la bomba seleccionada se cumple con el suministro de agua contra incendio, incluido el factor de seguridad para cada uno de los pisos como se describe a continuación:

Piso 1. Requiere 50.98 psi y la bomba garantiza 81.99 psi lo que indica que hay un F.S. (Factor de Seguridad) de 31 psi.
Piso 2. Requiere 58.49 psi y la bomba garantiza 86.5 psi lo que indica que hay un F.S. (Factor de Seguridad) de 28 psi.

Fuente: Catalogo de bombas contra incendios Aurora Pumps (24).
2.3.2 Cálculos de componentes mecánicos
Esta sección está destinada a implementar los soportes para la tubería del sistema de protección contra incendios para el edificio Aquinate. Los soportes para la tubería se clasifican en dos ramas funcionales, soportes colgantes y soportes antisísmicos, donde los soportes colgantes se diseñan para soportar el peso de la tubería, mientras que los soportes antisísmicos aseguran la tubería en caso de movimientos telúricos\(^9\). Los criterios y especificaciones para el diseño de soportes están dados por las normativas NFPA-13, ASME B 31.3 (Guía de Procesos de tuberías) y ANSI/MSS - SP 58 (The Manufactures Standardization Society, Pipe Hanger and Support standards).

El procedimiento de diseño para determinar los soportes colgantes y soportes antisísmicos en el edificio Aquinate, consiste en, realizar la distribución de soportes a lo largo de la tubería, posteriormente, determinar de las cargas que actúan en la sección de tubería, para finalmente, seleccionar el tipo de soporte que mejor se adapte a las necesidades de sujeción. Se debe tener en cuenta que todos los soportes que sean seleccionados para implementar en el edificio Aquinate deben ser listados, es decir, tener un certificado de aprobación por laboratorios especializados para el uso estructural.

2.3.2.1 Diseño de los soportes colgantes
Las distancias recomendadas para los soportes de la tubería se muestran en la Tabla 22, la cual relaciona el diámetro de la tubería con el espaciamiento máximo entre soportes, estas distancias son publicadas bajo la norma ANSI/MSS SP 58 y NFPA-13, ambas, encargadas de estandarizar la resistencia y espaciamiento de los soportes para las tuberías de acero al carbón. Bajo los criterios de la Tabla 22 se realizó la distribución de los soportes colgantes para el edificio Aquinate, los cuales se muestran en los Anexos C al F, Planos red hidráulica del edificio Aquinate.

\(^9\) Movimiento de la tierra producto de la liberación brusca de energía, frecuentemente por el choque de las placas tectónicas.
Tabla 21. Espaciamiento para los soportes colgantes.

<table>
<thead>
<tr>
<th>Diámetro (in)</th>
<th>Espaciamiento (ft)</th>
<th>Espaciamiento (metros)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>3,66</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>4,57</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>4,57</td>
</tr>
</tbody>
</table>

Fuente: ANSI/MSS SP 58 y NFPA-13 (26).

Una vez determinado el espaciamiento entre soportes se procede a determinar las cargas que actúan en los diferentes tramos de tubería del sistema hidráulico.

Cargas para el soporte de tubería horizontal de 1 in

Es necesario determinar las cargas que actúan en la tubería para posteriormente seleccionar el soporte indicado. Con respecto a los soportes colgantes el requerimiento de diseño de la norma NFPA-13 sección: 9.1.2.1, determina que los sujetadores deben soportar un mínimo de 5 veces el peso de la tubería llena de agua más 250 lb (114 kg) en cada punto de sujeción. Bajo este criterio es necesario determinar el peso de la tubería llena de agua para poder determinar la carga en los soportes colgantes.

Peso de la tubería vacía:

Es necesario determinar el peso de la tubería vacía y multiplicarlo por el espaciamiento entre soportes. Según la tabla de especificaciones para acero al carbón ASTM A-53 SCH 40, ver Anexo A, se encuentra el peso de la tubería de diámetro 1 in, y el espaciamiento entre soportes se determina con base a:

\[
W_{Tubería vacía} = W_{Vacia} \cdot l = 1,69 \frac{lb}{ft} \cdot 12 ft = 20,28 lb
\]

Dónde:
- \(W_{V}\) Peso tubería vacía
- \(l\) Longitud entre soportes

Peso del agua en tramo de tubería:

Es necesario considerar el peso del agua que actúa entre la longitud de los soportes, para esto, es necesario determinar el volumen y la densidad del agua, dando como resultado el peso del agua aplicado en la tubería.

Volumen de la tubería: Diámetro interno= 1,05 in, ver Anexo A.
\[V = \frac{\pi d^2}{4} \times l = 0,006 \text{ ft}^2 \times 12 \text{ ft} = 0,072 \text{ ft}^3 \]

Dónde:
\(V = \) Volumen
\(d = \) Diámetro

Peso del agua en sección de tubería:

\[W_{Agua} = V \times \rho = 0,072 \text{ ft}^3 \times 62,43 \frac{lb}{\text{ft}^3} = 4,49 \text{ lb} \]

Dónde:
\(\rho = \) Densidad del agua

Peso de tubería llena de agua:

\[W_{Tuberia llena} = W_{Agua} + W_{Tuberia} = 24,77 \text{ lb} \]

Peso requerido para el soporte de tubería:

\[W_{Soporte} = 5 \times W_{Tuberia llena} + 250 \text{ lb} = 373,85 \text{ lb} \]

El peso a soportar por cada componente de sujeción debe ser de 373,85 lb para tubería de 1 in. La norma, ANSI/MSS SP 58, pone a disposición un catálogo normativo, el cual contiene variedad de configuraciones establecidas aprobadas para soportes de tubería y aplicación contra incendios. El proceso de selección se realiza con el criterio de la carga a soportar por cada elemento mecánico, en el caso de la tubería de 1 in fue seleccionado un soporte B3100-1, el cual soporta una carga máxima de 730 lb, ver Figura 12, de esta forma, el factor de seguridad para soportes de tubería de 1 in, es de 1,95, dando un factor adicional en pro de la seguridad humana de los ocupantes del edificio Aquinate.
Figura 12. Soporte horizontal para tubería de 1 in.

Fuente: Catálogo NATIONAL PIPE HANGER CORPORATION (26).

Cargas para el soporte de tubería horizontal de 2 in

Es necesario determinar las cargas que actúan en la tubería para posteriormente seleccionar el soporte indicado. Con respecto a los soportes colgantes el requerimiento de diseño de la norma NFPA-13: 9.1.2.1, determina que los sujetadores deben soportar un mínimo de 5 veces el peso de la tubería llena de agua más 250 lb (114 kg) en cada punto de sujeción. Bajo este criterio es necesario determinar el peso de la tubería llena de agua para poder determinar la carga en los soportes colgantes.

Peso de la tubería vacía:

Es necesario determinar el peso de la tubería vacía y multiplicarlo por el espaciamiento entre soportes. Según la tabla de especificaciones para acero al carbón ASTM A-53 SCH 40, ver Anexo A, se encuentra el peso de la tubería de diámetro 2 in, y el espaciamiento entre soportes se determina con base a la Tabla 21.

\[W_{\text{Tubería vacía}} = W_{\text{Vacía}} \cdot l = 3,65 \frac{lb}{ft} \cdot 15 \, ft = 54,75 \, lb \]

Dónde:
W_V = Peso tubería vacía
l = Longitud entre soportes

Peso del agua en tramo de tubería:

Es necesario considerar el peso del agua que actúa entre la longitud de los soportes, para esto, es necesario determinar el volumen y la densidad del agua, dando como resultado el peso del agua aplicado en la tubería.

Volumen de la tubería: Diámetro interno= 2,07 in, ver Anexo A.

\[
V = \frac{\pi d^2}{4} \times l = 0,0233 \, ft^2 \times 15 \, ft = 0,35 \, ft^3
\]

Dónde:
\(V \) = Volumen
\(d \) = Diámetro

Peso del agua en sección de tubería:

\[
W_{Agua} = V \times \rho = 0,35 \, ft^3 \times 62,43 \, \frac{lb}{ft^3} = 21,82 \, lb
\]

Dónde:
\(\rho \) = Densidad del agua

Peso de tubería llena de agua:

\[
W_{Tubería llena} = W_{Agua} + W_{Tubería} = 76,57 \, lb
\]

Peso requerido para el soporte de tubería:

\[
W_{Soporte} = 5 \times W_{Tubería llena} + 250 \, lb = 632,85 \, lb
\]

El peso a soportar por cada componente de sujeción debe ser de 632,85 lb para tubería de 2 in. La norma ANSI/MSS SP 58, pone a disposición un catálogo normativo, el cual contiene variedad de configuraciones establecidas y aprobadas para soportes mecánicos de tubería contra incendios. El proceso de selección se realiza con el criterio de la carga a soportar por cada elemento mecánico, en el caso de la tubería de 2 in fue seleccionado un soporte B3100-2, el cual soporta una carga máxima de 730 lb, ver tabla 13, de esta forma, el factor de seguridad
para soportes de tubería de 2 in, es de 1,15, dando un factor adicional en pro de la seguridad humana de los ocupantes del edificio Aquinate.

Figura 13. Soporte horizontal para tubería de 2 in.

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Nominal Pipe Size</th>
<th>Red Size A Std NFPA**</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3106-2</td>
<td>2"</td>
<td>1½"-16</td>
<td>2"</td>
<td>2½"</td>
<td>2"</td>
</tr>
</tbody>
</table>

Fuente: Catalogo NATIONAL PIPE HANGER CORPORATION (26).

Soporte de tubería vertical de 3 in

Para el diseño de los soportes de la tubería vertical de 3 in, ASTM A35 SCH-40, las normativas ANSI/MSS SP 58 y NFPA-13, establecen una separación máxima de no mayor a 25 ft entre soportes laterales, considerando estas restricciones, los soportes laterales son ubicados en cada piso del edificio Aquinate, con una separación de 8.1 ft entre soportes. El elemento mecánico para la sujeción de la tubería es un soporte lateral de apriete a la tubería y sujeción lateral, el cual se muestra en la Figura 14, por otro lado, la distribución de los soportes laterales en el edificio Aquinate se muestra en los Anexos C al F, Planos red hidráulica del edificio Aquinate.

Figura 14. Soporte lateral para tubería de 3 in.

<table>
<thead>
<tr>
<th>PIPE SIZE</th>
<th>L</th>
<th>C-C</th>
<th>D</th>
<th>H</th>
<th>WEIGHT</th>
<th>MAX. REG. LOAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3½</td>
<td>11½</td>
<td>¾</td>
<td>¾</td>
<td>2.50</td>
<td>410</td>
</tr>
</tbody>
</table>

Fuente: Catalogo EATON (26).
2.3.2.2 Diseño de los soportes antisísmicos

Para realizar un proceso de diseño confiable de la sujeción de la tubería, es necesario considerar los fenómenos naturales que puedan afectar la integridad de la estructura, especialmente el caso de terremotos. Los terremotos se producen debido al choque de las placas tectónicas, ocasionando movimientos de la tierra como resultado de la propagación de ondas y la liberación repentina de energía. El medio de propagación de la energía es mediante ondas elásticas, y se subdividen en tres tipos de ondas, principalmente, ondas longitudinales, ondas transversales y ondas superficiales. Las ondas longitudinales viajan en el mismo sentido en el que vibran las partículas, las ondas transversales viajan en sentido perpendicular al sentido en el que vibran las partículas y finalmente, las ondas superficiales son la combinación de las ondas longitudinales y transversales a lo largo de la superficie terrestre. Es fundamental considerar todas las cargas que intervienen en el diseño de los soportes para la tubería, de esta forma garantizar un diseño confiable para las instalaciones del edificio Aquinate.

Como resultado de años de investigación, laboratorios especializados en soportes antisísmicos han publicado la normativa ANSI/MSS SP 58, con la finalidad de estandarizar el espaciamiento y las cargas de los soportes que actúan en los terremotos. Debido a que existen dos movimientos principales de propagación de las ondas, laterales y longitudinales, la norma obliga a implementar soportes antisísmicos tanto longitudinales como transversales a lo largo de la tubería principal horizontal. Los soportes antisísmicos laterales deben estar separados por una distancia no mayor a 12,2m (40 ft), mientras que, los soportes longitudinales deben estar separados por una distancia no mayor a 24,4m (80 ft), la distribución en el edificio se muestra en los Anexos C al F, asimismo, los accesorios que se implementaron en el diseño de soportes antisísmicos se muestran en las Figuras 15 y 16, por último la instalación y montaje se muestra en la Figura 17.

![Figura 15. Accesorios para los soportes antisísmicos longitudinales.](image)

Fuente: Catalogo EATON (26).
Una vez determinados los componentes del sistema antisísmico, en la Figura 17 se muestra un esquema de instalación de los soportes antisísmicos unidos con riestras de tubería de 1 pulgada, a su vez debe estar inclinado a 45° con respecto a la vertical. Esta configuración debe ser implementada donde lo indique los planos de los Anexos C al F.

Figura 17. Instalación de los soportes antisísmicos.

La ubicación más pertinente para el tanque de almacenamiento es en la zona de Soporte longitudinal y Soporte transversal.
parqueaderos, debido a que tiene un área disponible de 12.25 m² y no tiene techos que limiten la altura del tanque. Por otro lado, bajo las restricciones de espacio es seleccionado un tanque cilíndrico vertical, atmosférico de fondo plano con lámina de acero estructural ASTM A36M/ A 36 o ASTM A 283/ Grado A, B, C, D establecido bajo la norma API 650 sección 5 y NFPA-22.

Dimensionamiento

Diámetro nominal y altura del tanque: debido a las restricciones de espacio se va a fijar el valor del diámetro del tanque y se determina la altura del mismo de acuerdo con la Ecuación 7 necesaria para almacenar 38,836 m³, los resultados del diámetro y altura se muestran en la Tabla 22.

\[V_{cilindro} = \frac{\pi D^2 \cdot h}{4} \]

Donde
\(D = \) Diámetro nominal del tanque (m)
\(h = \) Altura del tanque (m)

Tabla 22. Dimensiones tanque de almacenamiento.

<table>
<thead>
<tr>
<th>Diámetro (m)</th>
<th>Altura (m)</th>
<th>Volumen (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,56</td>
<td>3,9</td>
<td>38,836</td>
</tr>
</tbody>
</table>

\[V_{cilindro} = \frac{\pi D^2 \cdot h}{4} \]

Fuente: Autor.

Una vez determinadas las dimensiones del tanque, el cálculo de soportes y la selección de la bomba contra incendios se concluye la etapa de diseño básico con detalle.
3. EVALUACIÓN ECONÓMICA

En esta sección se va a desarrollar el último objetivo del documento “Evaluar el costo del proyecto de acuerdo con las cantidades y presupuestos determinados de los componentes para la instalación del sistema de protección contra incendios.”

A continuación se determinan los costos del sistema de protección contra incendios que serán implementados en el edificio Aquinate. En primer lugar se realiza un listado de materiales, en el cual, fueron considerados los precios unitarios de los accesorios disponibles en el mercado, los precios mostrados en la Tabla 24 son precios promedios disponibles en el mercado. Posteriormente, se estiman los costos de instalación del sistema de protección contra incendios, estos costos consideran alquiler de maquinaria y pago del personal, asimismo consideran las prestaciones sociales exigidas en Colombia, ver Tabla 25.

La Tabla 25 se realizó considerando todos los costos relacionados en el proyecto del sistema de protección contra incendios, para finalmente obtener el costo final del proyecto.
Tabla 23. Listado de accesorios.

LISTADO DE ACCESORIOS

Localización: Universidad Santo Tomás sede Aquinate
Nombre del diseñador: Nicolás Felipe Torres Córdoba.
Fecha: 30 - 09 - 16

<table>
<thead>
<tr>
<th>Piso</th>
<th>Accesorio</th>
<th>Diámetro (in)</th>
<th>Cantidad</th>
<th>Cantidad</th>
<th>Cantidad</th>
<th>Cantidad</th>
<th>Cantidad</th>
<th>Total</th>
<th>Precio unitario</th>
<th>Precio Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tee</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>$ 7,240</td>
<td>$ 7,240</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reducción de 2 a 1</td>
<td>45</td>
<td>28</td>
<td>32</td>
<td>27</td>
<td>132</td>
<td>$ 6,690</td>
<td>$ 883,080</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>$ 12,840</td>
<td>$ 102,720</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>8</td>
<td>$ 24,380</td>
<td>$ 195,040</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Codo</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>17</td>
<td>8</td>
<td>34</td>
<td>$ 3,610</td>
<td>$ 122,740</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>24</td>
<td>$ 9,030</td>
<td>$ 216,720</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>16</td>
<td>$ 16,740</td>
<td>$ 267,840</td>
<td></td>
</tr>
</tbody>
</table>

| Residencia | Respuesta rápida | 81 | 78 | 74 | 55 | 288 | $ 68,500 | $ 19,728,000 |

1	Tubería	1	184.07	104.53	128.81	70.8	488.21	$ 21,773	$ 11,161,184
		2	93.52	85.21	94.04	77.86	350.63	$ 46,771	$ 17,219,355
		3	3.75	3.75	3.75	3.75	15.00	$ 93,715	$ 1,476,014

1	Unión ranurada	1	92	52	64	35	244	$ 7,440	$ 1,816,141
		2	47	43	47	39	175	$ 7,860	$ 1,377,976
		3	2	2	2	2	8	$ 11,640	$ 87,300

1	Soportes colgantes	1	71	68	62	50	251	$ 15,400	$ 3,865,400
		2	28	25	24	18	95	$ 21,200	$ 2,014,000
		3	4	4	4	4	16	$ 27,650	$ 442,400

| 2 | Soportes antisísmicos | 1 | 14 | 16 | 14 | 11 | 55 | $ 70,700 | $ 3,888,500 |
| | | 3 | 1 | 1 | 1 | 1 | 4 | $ 71,500 | $ 286,000 |

| 1 | Válvula cheque | 3 | 1 | 1 | 1 | 1 | 4 | $ 252,000 | $ 1,008,000 |

| 1 | Válvula de alarma | 3 | 1 | 1 | 1 | 1 | 4 | $ 114,912 | $ 459,648.00 |

| 1 | Válvula de compuerta | 3 | 1 | 1 | 1 | 1 | 4 | $ 162,720 | $ 650,880 |

| 1 | Manómetro | 3 | 2 | 2 | 2 | 2 | 8 | $ 93,900 | $ 751,200 |

| 1 | Bomba eléctrica horizontal | N.A. | 1 | 0 | 0 | 0 | 1 | $ 45,000,000 | $ 45,000,000 |

| 1 | Tanque de almacenamiento | N.A. | 1 | 0 | 0 | 0 | 1 | $ 67,000,000 | $ 67,000,000 |

| | | | | | | | | | Precio de accesorios | $ 180,027,378 |

Fuente: Autor.
Posteriormente, se determinan los precios de instalación del sistema de protección contra incendios, en el cual se considera el precio del personal y alquiler de maquinaria, la Tabla 25 muestra el costo del personal por piso, esto debido a que es necesario crear cuadrillas que se encarguen de las instalaciones piso a piso del sistema general.

Tabla 24. Precio de instalación del proyecto.

<table>
<thead>
<tr>
<th>Cargo</th>
<th>Cantidad</th>
<th>Precio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervisor de obra</td>
<td>1</td>
<td>$1,200,000</td>
</tr>
<tr>
<td>Operarios</td>
<td>5</td>
<td>$870,000</td>
</tr>
<tr>
<td>Ingenieros residentes</td>
<td>1 de 4</td>
<td>$2,100,000</td>
</tr>
<tr>
<td>Costo del personal para la instalación por piso.</td>
<td>1</td>
<td>$7,650,000</td>
</tr>
<tr>
<td>Costo del personal para la instalación del edificio.</td>
<td>1</td>
<td>$30,600,000</td>
</tr>
<tr>
<td>Prestaciones sociales (53.77%)</td>
<td>1</td>
<td>$47,053,620</td>
</tr>
<tr>
<td>Alquiler de maquinaria</td>
<td>1</td>
<td>$2,300,000</td>
</tr>
<tr>
<td>Precio de instalación del proyecto</td>
<td>1</td>
<td>$49,353,620</td>
</tr>
<tr>
<td>Precio de accesorios</td>
<td>1</td>
<td>$180,027,378</td>
</tr>
<tr>
<td>Precio Total del proyecto</td>
<td>1</td>
<td>$229,380,998</td>
</tr>
</tbody>
</table>

Fuente: Autor.

De acuerdo con el listado de accesorios, Tabla 23, y costos relacionados con la instalación del sistema, Tabla 24, el precio final del proyecto es de $229’380.998. Con base al precio final del proyecto se espera que Universidad Santo Tomás establezca su plan de inversión para la implementación del sistema de protección contra incendios, de esta forma cumplir con las normas nacionales y garantizar la seguridad humana de los ocupantes que visiten la sede institucional.
4. CONCLUSIONES Y RECOMENDACIONES

- Como conclusión de este documento se observa que hay normas dedicadas al diseño de protección contra incendios para edificios, con base a lo anterior, se evidencia que el edificio Aquinate actualmente está incumpliendo con las normativas vigentes para Colombia, por tal motivo, se debe implementar sistemas de protección contra incendios con el criterio de rociadores automáticos para el edificio Aquinate.

- Se concluye con la investigación de este proyecto que los componentes contra incendios, tales como la bomba, rociadores y soportes a instalar en el edificio Aquinate deben ser listados, es decir, tener un certificado de calidad realizado por laboratorios de incendios que garanticen el uso confiable cuando se presente un incendio.

- La configuración de los sistemas de protección contra incendios pueden tener varias alternativas, la selección de cada una de estas, se debe hacer de acuerdo con la distribución del edificio, en el caso del presente proyecto la configuración en árbol con ramales centrados fue la más óptima, asimismo, el criterio de diseño depende de la ocupación del edificio y los requerimientos de protección son los indicados en la ingeniería conceptual.

- Se concluye que la bomba contra incendios seleccionada tiene la capacidad de suplir los diferentes caudales y presiones para cada piso del edificio Aquinate, incluido los factores de seguridad de presión que van desde 18 a 31 psi. Esto quiere decir que las bombas contra incendios deben ser seleccionadas para suplir diferentes consumos.

- Se recomienda que una vez instalado el sistema de protección contra incendio, se cumpla con un plan de mantenimiento preventivo según los estándares de protección de incendios y bajo las recomendaciones de los fabricantes. Asimismo, se recomienda realizar simulacros de evacuación de las instalaciones del edificio Aquinate.
IMPACTOS

SOCIAL
Con la implementación del sistema de protección contra incendio, la sociedad tendrá mayor disponibilidad de la sede institucional, pues la extinción automática disminuye los costos por daños y tiempos de reconstrucción del edificio, a su vez, evita la propagación del incendio a edificaciones aledañas, controlando el crecimiento y evitando afectar a la sociedad. Por otro lado, la universidad Santo Tomás sede Aquinate cumplirá con todos los requisitos establecidos por las normativas nacionales vigentes, por lo que aportara un valor de compromiso social frente a la seguridad humana.

HUMANÍSTICO
Con la implementación del sistema de protección contra incendios de extinción automática, se busca disminuir el riesgo de muerte de los ocupantes en la sede institucional, la universidad Santo Tomás brindara componentes de seguridad humana, dando como prioridad salvaguardar las vidas de los ocupantes y disminuir los riesgos relacionados con incendios.

AMBIENTAL
Con la rápida intervención del incendio por una extinción automática, se busca minimizar la emisión de gases tóxicos a la atmósfera. Los gases productos de la combustión tal como el CO (Monóxido de Carbono), afectan directamente al medio ambiente, contribuye al calentamiento global, a su vez, disminución de la capa de ozono dando paso a los rayos ultravioleta. Con la implementación del sistema de protección contra incendios el edificio evitará problemas ambientales graves que afectan la estabilidad de los ecosistemas y la estructura social humana.
BIBLIOGRAFÍA

13. JOHN, Hall. U.S. EXPERIENCE WITH SPRINKLERS. Fire Analysis and

ANEXOS

Anexo A. Resultados matriz QFD.

Fuente: Autor.
Anexo B. Características tubería de Acero ASTM A-53 SCH 40.

Steel Pipe Dimensions - ANSI Schedule 40

Internal and external diameters, areas, weights, volumes and number of threads for ANSI schedule 40 steel pipes

<table>
<thead>
<tr>
<th>Pipe Size (in)</th>
<th>Diameter (in)</th>
<th>Nominal Thickness (in)</th>
<th>Transverse Area (in²)</th>
<th>Length of Pipe (per sq. foot)</th>
<th>Volume (ft³)</th>
<th>Weight lb/ft</th>
<th>Weight kg/m</th>
<th>Number of Threads per inch of Screw</th>
</tr>
</thead>
<tbody>
<tr>
<td>¾</td>
<td>0.62</td>
<td>0.11</td>
<td>0.55</td>
<td>0.30</td>
<td>0.25</td>
<td>0.021</td>
<td>0.092</td>
<td>1.26</td>
</tr>
<tr>
<td>1</td>
<td>0.625</td>
<td>0.11</td>
<td>0.61</td>
<td>0.32</td>
<td>0.35</td>
<td>0.033</td>
<td>0.186</td>
<td>1.27</td>
</tr>
<tr>
<td>1½</td>
<td>0.6875</td>
<td>0.15</td>
<td>0.68</td>
<td>0.34</td>
<td>0.42</td>
<td>0.050</td>
<td>0.276</td>
<td>1.48</td>
</tr>
<tr>
<td>2</td>
<td>0.7809</td>
<td>0.16</td>
<td>0.78</td>
<td>0.36</td>
<td>0.53</td>
<td>0.071</td>
<td>0.405</td>
<td>2.11</td>
</tr>
<tr>
<td>2½</td>
<td>0.875</td>
<td>0.17</td>
<td>0.87</td>
<td>0.38</td>
<td>0.64</td>
<td>0.086</td>
<td>0.465</td>
<td>2.75</td>
</tr>
<tr>
<td>3</td>
<td>0.9789</td>
<td>0.20</td>
<td>0.98</td>
<td>0.41</td>
<td>0.77</td>
<td>0.107</td>
<td>0.581</td>
<td>3.53</td>
</tr>
<tr>
<td>3½</td>
<td>1.0882</td>
<td>0.22</td>
<td>1.09</td>
<td>0.44</td>
<td>0.89</td>
<td>0.125</td>
<td>0.704</td>
<td>4.40</td>
</tr>
<tr>
<td>4</td>
<td>1.2000</td>
<td>0.24</td>
<td>1.20</td>
<td>0.47</td>
<td>1.02</td>
<td>0.143</td>
<td>0.831</td>
<td>5.47</td>
</tr>
<tr>
<td>5</td>
<td>1.3125</td>
<td>0.26</td>
<td>1.32</td>
<td>0.50</td>
<td>1.15</td>
<td>0.164</td>
<td>0.961</td>
<td>6.61</td>
</tr>
<tr>
<td>6</td>
<td>1.4375</td>
<td>0.28</td>
<td>1.44</td>
<td>0.53</td>
<td>1.28</td>
<td>0.185</td>
<td>1.092</td>
<td>7.84</td>
</tr>
</tbody>
</table>

Anexo C. Plano red hidráulica piso 1.

Fuente: Autor.
Anexo D. Plano red hidráulica piso 2.

Fuente: Autor.
Anexo E. Plano red hidráulica piso 3.
Anexo F. Plano red hidráulica piso 4.

Fuente: Autor.
Anexo H. Cálculos hidráulicos piso 1.

CÁLCULOS HIDRÁULICOS SISTEMA DE ROCIADEORES AUTOMÁTICOS

Localización: Universidad Santo Tomás sede Aquinarte - Piso 1.
Nombre del diseñador: Nicolás Felipe Torres Córdoba.
Fecha: 30 - 09 - 16

RAMAL 1.

<table>
<thead>
<tr>
<th>Paso</th>
<th>Tramo/Node</th>
<th>Flujo (gpm)</th>
<th>Dimensión de la Tubería (in)</th>
<th>Accesorios en Tubería (ft)</th>
<th>Longitud Equivalente (ft)</th>
<th>Perdidas de Presión (psi/ft)</th>
<th>Sumatoria de Presión (psi)</th>
<th>Notas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RAMAL 1</td>
<td>14.820</td>
<td>D Nominal 1</td>
<td></td>
<td>9.252</td>
<td>0.0747</td>
<td>7.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>14.820</td>
<td>D Interno R 1.049</td>
<td>F 0.000</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>30.351</td>
<td>D Nominal 1</td>
<td></td>
<td>7.513</td>
<td>0.2815</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>17.577</td>
<td>D Nominal 1</td>
<td></td>
<td>7.513</td>
<td>0.6545</td>
<td>9.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>21.488</td>
<td>D Interno R 1.049</td>
<td></td>
<td>7.513</td>
<td>1.2993</td>
<td>14.723</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>69.375</td>
<td>D Nominal 1</td>
<td></td>
<td>7.513</td>
<td>10.205</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>171.000</td>
<td>D Interno R 2.067</td>
<td></td>
<td>7.513</td>
<td>15.010</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>140.510</td>
<td>D Nominal 2</td>
<td></td>
<td>7.513</td>
<td>20.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>140.510</td>
<td>D Interno R 2.067</td>
<td></td>
<td>7.513</td>
<td>24.606</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>140.510</td>
<td>D Nominal 2</td>
<td></td>
<td>7.513</td>
<td>29.256</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>140.510</td>
<td>D Interno R 2.067</td>
<td></td>
<td>7.513</td>
<td>33.816</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>140.510</td>
<td>D Nominal 2</td>
<td></td>
<td>7.513</td>
<td>38.406</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RAMAL 2.

<table>
<thead>
<tr>
<th>Paso</th>
<th>Tramo/Node</th>
<th>Flujo (gpm)</th>
<th>Dimensión de la Tubería (in)</th>
<th>Accesorios en Tubería (ft)</th>
<th>Longitud Equivalente (ft)</th>
<th>Perdidas de Presión (psi/ft)</th>
<th>Sumatoria de Presión (psi)</th>
<th>Notas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RAMAL 2</td>
<td>15.010</td>
<td>D Nominal 1</td>
<td></td>
<td>9.252</td>
<td>0.0765</td>
<td>7.100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>15.010</td>
<td>D Interno R 1.049</td>
<td>F 0.000</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>30.748</td>
<td>D Nominal 1</td>
<td></td>
<td>7.513</td>
<td>0.2884</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>17.766</td>
<td>D Nominal 1</td>
<td></td>
<td>7.513</td>
<td>0.6704</td>
<td>10.004</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>70.275</td>
<td>D Nominal 1</td>
<td></td>
<td>7.513</td>
<td>1.3306</td>
<td>15.101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>69.375</td>
<td>D Nominal 1</td>
<td></td>
<td>7.513</td>
<td>19.505</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RAMAL 3.

<table>
<thead>
<tr>
<th>Paso</th>
<th>Tramo/Node</th>
<th>Flujo (gpm)</th>
<th>Dimensión de la Tubería (in)</th>
<th>Accesorios en Tubería (ft)</th>
<th>Longitud Equivalente (ft)</th>
<th>Perdidas de Presión (psi/ft)</th>
<th>Sumatoria de Presión (psi)</th>
<th>Notas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RAMAL 3</td>
<td>31.370</td>
<td>D Nominal 1</td>
<td></td>
<td>9.252</td>
<td>0.2992</td>
<td>31.400</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>31.370</td>
<td>D Interno R 1.049</td>
<td>F 0.000</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>69.375</td>
<td>D Nominal 1</td>
<td></td>
<td>7.513</td>
<td>0.433</td>
<td>1.905</td>
<td></td>
</tr>
</tbody>
</table>

TUBERÍA PRINCIPAL.

<table>
<thead>
<tr>
<th>Paso</th>
<th>Tramo/Node</th>
<th>Flujo (gpm)</th>
<th>Dimensión de la Tubería (in)</th>
<th>Accesorios en Tubería (ft)</th>
<th>Longitud Equivalente (ft)</th>
<th>Perdidas de Presión (psi/ft)</th>
<th>Sumatoria de Presión (psi)</th>
<th>Notas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>140.510</td>
<td>D Nominal 2</td>
<td></td>
<td>7.513</td>
<td>0.0370</td>
<td>21.460</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>140.510</td>
<td>D Interno R 2.067</td>
<td></td>
<td>7.513</td>
<td>0.1763</td>
<td>25.552</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>140.510</td>
<td>D Nominal 2</td>
<td></td>
<td>7.513</td>
<td>0.2535</td>
<td>30.157</td>
<td></td>
</tr>
</tbody>
</table>

BALANCE HIDRÁULICO PUNTO 10.

<table>
<thead>
<tr>
<th>Paso</th>
<th>Tramo/Node</th>
<th>Flujo (gpm)</th>
<th>Dimensión de la Tubería (in)</th>
<th>Accesorios en Tubería (ft)</th>
<th>Longitud Equivalente (ft)</th>
<th>Perdidas de Presión (psi/ft)</th>
<th>Sumatoria de Presión (psi)</th>
<th>Notas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>140.510</td>
<td>D Nominal 2</td>
<td></td>
<td>7.513</td>
<td>0.0370</td>
<td>21.460</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>140.510</td>
<td>D Interno R 2.067</td>
<td></td>
<td>7.513</td>
<td>0.1763</td>
<td>25.552</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>140.510</td>
<td>D Nominal 2</td>
<td></td>
<td>7.513</td>
<td>0.2535</td>
<td>30.157</td>
<td></td>
</tr>
</tbody>
</table>

BALANCE HIDRÁULICO PUNTO 12.

<table>
<thead>
<tr>
<th>Paso</th>
<th>Tramo/Node</th>
<th>Flujo (gpm)</th>
<th>Dimensión de la Tubería (in)</th>
<th>Accesorios en Tubería (ft)</th>
<th>Longitud Equivalente (ft)</th>
<th>Perdidas de Presión (psi/ft)</th>
<th>Sumatoria de Presión (psi)</th>
<th>Notas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>171.000</td>
<td>D Nominal 3</td>
<td></td>
<td>7.513</td>
<td>0.0370</td>
<td>21.762</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>171.000</td>
<td>D Interno R 3.068</td>
<td></td>
<td>7.513</td>
<td>0.1763</td>
<td>25.552</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>171.000</td>
<td>D Nominal 3</td>
<td></td>
<td>7.513</td>
<td>0.2535</td>
<td>30.157</td>
<td></td>
</tr>
</tbody>
</table>

RESULTADOS

- **Qt**: 171 gpm (647.23 L/min)
- **p10**: 25.552 psi
- **p12**: 30.157 psi

Fuente: Autor.
Anexo I. Cálculos hidráulicos piso 2.

CÁLCULOS HIDRÁULICOS SISTEMA DE ROCIA DO AUTOMÁTICOS

Localización: Universidad Santo Tomás sede Aquinate - Piso 2.
Página No. 2 de 4.
Nombre del diseñador: Nicolás Felipe Torres Córdoba.
Fecha: 30-09-16

RAMAL 1.

<table>
<thead>
<tr>
<th>Tramo/Nodo</th>
<th>Flujo (gpm)</th>
<th>Dimensión de la Tubería (in)</th>
<th>Accesorios en Tuberías (ft)</th>
<th>Longitud Equivalente (ft)</th>
<th>Perdidas de Presión (psi/ft)</th>
<th>Sumatoria de Presión (psi)</th>
<th>Notas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 a</td>
<td>21.100</td>
<td>D Nominal 1</td>
<td>L 14.900</td>
<td>0.1437</td>
<td>Pr 14.210</td>
<td></td>
<td>1 q= 211 ft2 *0.1 gpm/ft2= 21.1 gpm</td>
</tr>
<tr>
<td>2</td>
<td>22.644</td>
<td>D Nominal 1</td>
<td>T 5 L 5.577</td>
<td>0.5536</td>
<td>Pt 16.351</td>
<td></td>
<td>q= 5.6 gpm/psi * v16.351 psi</td>
</tr>
<tr>
<td>3</td>
<td>43.744</td>
<td>SCH 1</td>
<td>T 10.577</td>
<td></td>
<td>Pf 5.855</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RAMAL 2.

<table>
<thead>
<tr>
<th>Tramo/Nodo</th>
<th>Flujo (gpm)</th>
<th>Dimensión de la Tubería (in)</th>
<th>Accesorios en Tuberías (ft)</th>
<th>Longitud Equivalente (ft)</th>
<th>Perdidas de Presión (psi/ft)</th>
<th>Sumatoria de Presión (psi)</th>
<th>Notas</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 a</td>
<td>24.690</td>
<td>D Nominal 1</td>
<td>T 5 L 9.318</td>
<td>0.1922</td>
<td>Pr 19.450</td>
<td></td>
<td>4 q= 264.9*0.1= 26.49 gpm</td>
</tr>
<tr>
<td>5</td>
<td>21.420</td>
<td>SCH 1</td>
<td>T 14.318</td>
<td></td>
<td>Pf 2.751</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RAMAL 3.

<table>
<thead>
<tr>
<th>Tramo/Nodo</th>
<th>Flujo (gpm)</th>
<th>Dimensión de la Tubería (in)</th>
<th>Accesorios en Tuberías (ft)</th>
<th>Longitud Equivalente (ft)</th>
<th>Perdidas de Presión (psi/ft)</th>
<th>Sumatoria de Presión (psi)</th>
<th>Notas</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 a</td>
<td>22.984</td>
<td>D Nominal 1</td>
<td>T 5 L 5.577</td>
<td>0.5691</td>
<td>Pe 16.845</td>
<td></td>
<td>q= 5.6 gpm/psi * v16.845 psi</td>
</tr>
<tr>
<td>6</td>
<td>44.404</td>
<td>SCH 1</td>
<td>T 10.577</td>
<td></td>
<td>Pf 6.020</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TUBERÍA PRINCIPAL.

CÁLCULOS HIDRAULICOS PUNTO 3.

<table>
<thead>
<tr>
<th>Tramo/Nodo</th>
<th>Flujo (gpm)</th>
<th>Dimensión de la Tubería (in)</th>
<th>Accesorios en Tuberías (ft)</th>
<th>Longitud Equivalente (ft)</th>
<th>Perdidas de Presión (psi/ft)</th>
<th>Sumatoria de Presión (psi)</th>
<th>Notas</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 a</td>
<td>68.437</td>
<td>D Nominal 2</td>
<td>T 14.173</td>
<td>0.0466</td>
<td>Pt 22.206</td>
<td></td>
<td>3 q= 68.437 gpm</td>
</tr>
<tr>
<td>3</td>
<td>68.437</td>
<td>SCH 2</td>
<td>T 14.173</td>
<td></td>
<td>Pf 0.660</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CÁLCULOS HIDRAULICOS PUNTO 7.

<table>
<thead>
<tr>
<th>Tramo/Nodo</th>
<th>Flujo (gpm)</th>
<th>Dimensión de la Tubería (in)</th>
<th>Accesorios en Tuberías (ft)</th>
<th>Longitud Equivalente (ft)</th>
<th>Perdidas de Presión (psi/ft)</th>
<th>Sumatoria de Presión (psi)</th>
<th>Notas</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 a</td>
<td>112.842</td>
<td>SCH 3</td>
<td>T 19.286</td>
<td></td>
<td>Pf 0.331</td>
<td></td>
<td>q3=0.433*(12.286 ft)= 5.320 psi</td>
</tr>
<tr>
<td>10 C</td>
<td>112.842</td>
<td>D Nominal 3</td>
<td>T 12.286</td>
<td>0.0172</td>
<td>Pt 46.964</td>
<td></td>
<td>q= 112.842 gpm</td>
</tr>
<tr>
<td>11 D</td>
<td>112.842</td>
<td>D Nominal 3</td>
<td>T 15 L 2.650</td>
<td>0.0172</td>
<td>Pt 52.615</td>
<td></td>
<td>qD= 112.842 gpm</td>
</tr>
<tr>
<td>12 E</td>
<td>112.842</td>
<td>D Nominal 3</td>
<td>T 17.650</td>
<td></td>
<td>Pf 0.303</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 F</td>
<td>112.842</td>
<td>D Nominal 3</td>
<td>T 14.000</td>
<td>0.0172</td>
<td>Pt 52.310</td>
<td></td>
<td>qE= 112.842 gpm</td>
</tr>
</tbody>
</table>

RESULTADOS.

<table>
<thead>
<tr>
<th>PUMP</th>
<th>Flujo (gpm)</th>
<th>Dimensión de la Tubería (in)</th>
<th>Accesorios en Tuberías (ft)</th>
<th>Longitud Equivalente (ft)</th>
<th>Perdidas de Presión (psi/ft)</th>
<th>Sumatoria de Presión (psi)</th>
<th>Notas</th>
</tr>
</thead>
<tbody>
<tr>
<td>112.842</td>
<td></td>
<td>SCH 4</td>
<td>CV 1 T 37.123</td>
<td></td>
<td>Pf 0.637</td>
<td></td>
<td>112.842 gpm (427.1 L/min)</td>
</tr>
</tbody>
</table>

Fuente: Autor.
Anexo J. Cálculos hidráulicos piso 3.

CÁLCULOS HIDRÁULICOS SISTEMA DE ROCIADORES AUTOMÁTICOS

Localización: Universidad Santo Tomás sede Aquinato - Piso 3.
Fecha: 30 - 09 - 16
Nombre del diseñador: Nicolás Felipe Torres Córdoba.

Tramo/Nodo 1

<table>
<thead>
<tr>
<th>Paso N°</th>
<th>Tramo/Nodo</th>
<th>Flujo (gpm)</th>
<th>Dimensión de la Tubería (in)</th>
<th>Accesorios en Tuberías (ft)</th>
<th>Longitud Equivalente (ft)</th>
<th>Sumatoria de Presión (psi)</th>
<th>Notas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>1a</td>
<td>18.840</td>
<td>D Nominal 1</td>
<td>1</td>
<td>L 15.781</td>
<td>0.1165</td>
<td>Pr 11.320</td>
</tr>
<tr>
<td>1b</td>
<td>1b</td>
<td>18.840</td>
<td>SCH</td>
<td>40</td>
<td>T 15.781</td>
<td></td>
<td>Pe 0.000</td>
</tr>
<tr>
<td>2a</td>
<td>2a</td>
<td>20.314</td>
<td>D Nominal 1</td>
<td>1</td>
<td>L 15.026</td>
<td>0.4509</td>
<td>Pe 0.000</td>
</tr>
<tr>
<td>2b</td>
<td>2b</td>
<td>39.154</td>
<td>SCH</td>
<td>40</td>
<td>T 15.026</td>
<td></td>
<td>Pe 0.000</td>
</tr>
<tr>
<td>3a</td>
<td>3a</td>
<td>25.003</td>
<td>D Nominal 1</td>
<td>1 E 2 L</td>
<td>5.479</td>
<td>1.1243</td>
<td>Pt 19.934</td>
</tr>
<tr>
<td>3b</td>
<td>3b</td>
<td>64.157</td>
<td>SCH</td>
<td>40</td>
<td>T 7.479</td>
<td></td>
<td>Pe 8.409</td>
</tr>
</tbody>
</table>

Tramo/Nodo 2

<table>
<thead>
<tr>
<th>Paso N°</th>
<th>Tramo/Nodo</th>
<th>Flujo (gpm)</th>
<th>Dimensión de la Tubería (in)</th>
<th>Accesorios en Tuberías (ft)</th>
<th>Longitud Equivalente (ft)</th>
<th>Sumatoria de Presión (psi)</th>
<th>Notas</th>
</tr>
</thead>
<tbody>
<tr>
<td>4a</td>
<td>4a</td>
<td>17.840</td>
<td>D Nominal 1</td>
<td>1</td>
<td>L 17.126</td>
<td>0.1053</td>
<td>Pe 10.150</td>
</tr>
<tr>
<td>4b</td>
<td>4b</td>
<td>17.840</td>
<td>SCH</td>
<td>40</td>
<td>T 17.126</td>
<td></td>
<td>Pe 0.000</td>
</tr>
<tr>
<td>5a</td>
<td>5a</td>
<td>19.362</td>
<td>D Nominal 1</td>
<td>1</td>
<td>L 15.036</td>
<td>0.4102</td>
<td>Pe 11.954</td>
</tr>
<tr>
<td>5b</td>
<td>5b</td>
<td>37.202</td>
<td>SCH</td>
<td>40</td>
<td>T 15.026</td>
<td></td>
<td>Pe 0.000</td>
</tr>
<tr>
<td>6a</td>
<td>6a</td>
<td>23.836</td>
<td>D Nominal 1</td>
<td>1 E 5 L</td>
<td>5.479</td>
<td>1.0253</td>
<td>Pt 18.118</td>
</tr>
<tr>
<td>6b</td>
<td>6b</td>
<td>61.038</td>
<td>SCH</td>
<td>40</td>
<td>T 10.479</td>
<td></td>
<td>Pe 10.744</td>
</tr>
</tbody>
</table>

Balance Hidráulico Punto 8

<table>
<thead>
<tr>
<th>Paso N°</th>
<th>Tramo/Nodo</th>
<th>Flujo (gpm)</th>
<th>Dimensión de la Tubería (in)</th>
<th>Accesorios en Tuberías (ft)</th>
<th>Longitud Equivalente (ft)</th>
<th>Sumatoria de Presión (psi)</th>
<th>Notas</th>
</tr>
</thead>
<tbody>
<tr>
<td>7a</td>
<td>7a</td>
<td>64.157</td>
<td>D Nominal 1</td>
<td>2</td>
<td>L 12.566</td>
<td>0.0413</td>
<td>Pt 28.343</td>
</tr>
<tr>
<td>7b</td>
<td>7b</td>
<td>64.157</td>
<td>SCH</td>
<td>40</td>
<td>T 12.566</td>
<td></td>
<td>Pe 0.519</td>
</tr>
</tbody>
</table>

RESULTADOS

- Q = 125.196 gpm (473.87 L/min)
- P = 61.269 psi (4.22 bar)

Fuente: Autor.
Anexo K. Cálculos hidráulicos piso 4.

CÁLCULOS HIDRÁULICOS SISTEMA DE ROCIADORES AUTOMÁTICOS

Nombre del diseñador: Nicolás Felipe Torres Córdoba. Fecha: 30 - 09 - 16

<table>
<thead>
<tr>
<th>Tramo/Nodo</th>
<th>Flujo (gpm)</th>
<th>Dimensión de la Tubería (ft)</th>
<th>Accesorios en Tuberías (ft)</th>
<th>Longitud Equivalente (ft)</th>
<th>Perdidas de Presión (psi/ft)</th>
<th>Sumatoria de Presión (psi)</th>
<th>Notas</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAMAL 1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>q 25.660</td>
<td>D Nominal 1</td>
<td>E 2</td>
<td>20.303</td>
<td>0.2063</td>
<td>Pr 21.010</td>
</tr>
<tr>
<td>a</td>
<td>Q 25.660</td>
<td></td>
<td>D Interno R</td>
<td>1.049</td>
<td>F 2.000</td>
<td></td>
<td>Pe 0.000</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pf 2.518</td>
</tr>
<tr>
<td>RAMAL 2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>q 21.710</td>
<td>D Nominal 1</td>
<td>E 2</td>
<td>15.322</td>
<td>0.1515</td>
<td>Pr 15.030</td>
</tr>
<tr>
<td>a</td>
<td>Q 21.710</td>
<td></td>
<td>D Interno R</td>
<td>1.049</td>
<td>F 0.000</td>
<td></td>
<td>Pe 0.000</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pf 2.321</td>
</tr>
<tr>
<td>RAMAL 3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>q 21.933</td>
<td>D Nominal 1</td>
<td>E 2</td>
<td>15.322</td>
<td>0.1544</td>
<td>Pr 15.340</td>
</tr>
<tr>
<td>a</td>
<td>Q 21.933</td>
<td></td>
<td>D Interno R</td>
<td>1.049</td>
<td>F 0.000</td>
<td></td>
<td>Pe 0.000</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pf 2.365</td>
</tr>
</tbody>
</table>

TUBERÍA PRINCIPAL.

<table>
<thead>
<tr>
<th>Tramo/Nodo</th>
<th>Flujo (gpm)</th>
<th>Dimensión de la Tubería (ft)</th>
<th>Accesorios en Tuberías (ft)</th>
<th>Longitud Equivalente (ft)</th>
<th>Perdidas de Presión (psi/ft)</th>
<th>Sumatoria de Presión (psi)</th>
<th>Notas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>q 25.660</td>
<td>D Nominal 1</td>
<td>E 2</td>
<td>15.322</td>
<td>0.0000</td>
<td>Pr 0.000</td>
</tr>
<tr>
<td>a</td>
<td>Q 25.660</td>
<td></td>
<td>D Interno R</td>
<td>1.049</td>
<td>F 0.000</td>
<td></td>
<td>Pe 0.000</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pf 0.000</td>
</tr>
</tbody>
</table>

BALANCE HIDRÁULICO PUNTO 5.

<table>
<thead>
<tr>
<th>Tramo/Nodo</th>
<th>Flujo (gpm)</th>
<th>Dimensión de la Tubería (ft)</th>
<th>Accesorios en Tuberías (ft)</th>
<th>Longitud Equivalente (ft)</th>
<th>Perdidas de Presión (psi/ft)</th>
<th>Sumatoria de Presión (psi)</th>
<th>Notas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>q 70.700</td>
<td>D Nominal 1</td>
<td>E 2</td>
<td>0.0000</td>
<td>Pr 23.530</td>
<td>q= 23.528</td>
</tr>
<tr>
<td>a</td>
<td>Q 70.700</td>
<td></td>
<td>D Interno R</td>
<td>1.049</td>
<td>F 0.000</td>
<td></td>
<td>Pe 0.000</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pf 0.000</td>
</tr>
</tbody>
</table>

BALANCE HIDRÁULICO PUNTO 6.

<table>
<thead>
<tr>
<th>Tramo/Nodo</th>
<th>Flujo (gpm)</th>
<th>Dimensión de la Tubería (ft)</th>
<th>Accesorios en Tuberías (ft)</th>
<th>Longitud Equivalente (ft)</th>
<th>Perdidas de Presión (psi/ft)</th>
<th>Sumatoria de Presión (psi)</th>
<th>Notas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>q 116.196</td>
<td>D Nominal 1</td>
<td>E 2</td>
<td>15.322</td>
<td>0.1240</td>
<td>Pr 24.090</td>
</tr>
<tr>
<td>a</td>
<td>Q 116.196</td>
<td></td>
<td>D Interno R</td>
<td>1.049</td>
<td>F 0.000</td>
<td></td>
<td>Pe 0.000</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pf 0.000</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pf 0.433</td>
</tr>
</tbody>
</table>

RESULTADOS

<table>
<thead>
<tr>
<th>Flujo (gpm)</th>
<th>Dimensión de la Tubería (ft)</th>
<th>Accesorios en Tuberías (ft)</th>
<th>Longitud Equivalente (ft)</th>
<th>Perdidas de Presión (psi/ft)</th>
<th>Sumatoria de Presión (psi)</th>
<th>Notas</th>
</tr>
</thead>
<tbody>
<tr>
<td>116.196</td>
<td>15.322</td>
<td>0.0000</td>
<td>Pr 24.090</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0181</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0181</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0181</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0181</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Autor.

72