EVALUACIÓN DEL USO Y LA CONCENTRACIÓN DE MALATHION EN LA CEBOLLA JUNCA EN LA VEREDA QUEBRADAS, MUNICIPIO DE AQUITANIA, Y SUS POSIBLES EFECTOS ADVERSOS SOBRE LA SALUD

ANA MARIA BERMÚDEZ ANDRADE
ANA MILENA CAÑÓN PEREZ

UNIVERSIDAD SANTO TOMÁS
FACULTAD DE INGENIERÍA AMBIENTAL
BOGOTÁ
2015
EVALUACIÓN DEL USO Y LA CONCENTRACIÓN DE MALATHION EN LA CEBOLLA JUNCA EN LA VEREDA QUEBRADAS, MUNICIPIO DE AQUITANIA, Y SUS POSIBLES EFECTOS ADVERSOS SOBRE LA SALUD

ANA MARIA BERMÚDEZ ANDRADE
ANA MILENA CAÑÓN PEREZ

Tesis de grado

Johan Alexander Álvarez Berrío
Ingeniero Ambiental y Sanitario

UNIVERSIDAD SANTO TOMÁS
FACULTAD DE INGENIERÍA AMBIENTAL
BOGOTÁ
2015
Primeramente agradezco a Dios por permitirme llegar hasta esta etapa tan importante no solo para mí, si no para mi familia también, quienes fueron partícipes y motor de cada una de mis actividades y esfuerzos para ser quien hoy soy, por esto agradezco a ellos también por darme fuerzas y ánimo incondicional, los amo demasiado. Además a mi novio por su ayuda, apoyo y paciencia en momentos de dificultad, por incentivar siempre a salir adelante y no desistir. Por último a los profesores y amigos que siempre estuvieron pendientes de cada paso que di para mejorar y salir adelante, muchas gracias.

ANA MARIA BERMÚDEZ ANDRADE

Agradezco a Dios haberme permitido llevar a cabo y culminar satisfactoriamente esta etapa de mi vida. A mi hija, tu afecto y tu cariño son el motivo de mi felicidad, de mi esfuerzo, de mis ganas de buscar lo mejor para ti, aún a tu corta edad me has enseñado el lado dulce y no amargo de la vida. A mis padres y hermana, fuente de apoyo constante e incondicional y más aún en mis duros años de carrera profesional, gracias por brindarme la oportunidad de realizar esta etapa académica. A mi novio gracias por tu paciencia y comprensión, por inspirarme a ser mejor para ti, gracias por estar siempre a mi lado. A las demás personas que me acompañaron durante este proceso, gracias por su continuo apoyo y colaboración.

ANA MILENA CAÑON PEREZ
AGRADECIMIENTOS

Al Señor Ramiro Vega y familia por permitirnos llevar a cabo este estudio y por todo el apoyo logístico y presencial a lo largo del proceso.

Al Ingeniero Johan Alexander Alvares Berrio, profesor de la Universidad Santo Tomás y director de esta tesis por su orientación, asesoría y constante apoyo durante la ejecución de este proyecto.

Al Ingeniero Duván Javier Mesa Fernández por ser el apoyo y la representación de la facultad en el desarrollo del trabajo.

Por último, agradecemos a nuestras familias y amigos por ser ese apoyo incondicional y compañía durante todo este tiempo porque sin ellos esto no sería posible.
TABLA DE CONTENIDO

RESUMEN ... 11

INTRODUCCIÓN .. 12

1.1. Objetivo general ... 13

1.2. Objetivos específicos .. 13

2.2. Marco teórico .. 17

2.2.1. Plaguicidas ... 17

2.2.2. Composición química de los plaguicidas .. 17

2.2.3. Clasificación de los plaguicidas ... 17

2.2.4. Cebolla larga o Junca .. 19

2.2.5. Cosecha ... 25

2.2.6. Plaguicidas aplicados a la cebolla ... 25

2.2.7. Cromatografía de gases ... 30

2.2.8. Muestreo Aleatorio Simple (MAS) .. 31

2.2. Marco Legal ... 32

3. DESARROLLO CENTRAL ... 34

3.1. Diseño metodológico .. 34

3.1.1. Recopilación de información preliminar ... 34

3.1.2. Instrumento para la caracterización de las prácticas agronómicas ... 34

3.1.3. Instrumento para la caracterización las condiciones de salud ... 35

3.1.4. Aplicación de los instrumentos ... 36

3.1.5. Diseño muestral para la toma de muestras de cebolla .. 37

3.1.6. Determinación de las concentraciones de Malathion en cebollas cosechadas 38

4. RESULTADOS Y ANÁLISIS .. 39

4.1. Análisis químico de las muestras .. 39

4.2. Plaguicidas encontrados ... 40

4.2.1. Chlorothalonil ... 41

4.2.2. Myclobutanil ... 41
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.3.</td>
<td>Profenofos</td>
<td></td>
<td></td>
<td>42</td>
</tr>
<tr>
<td>5.</td>
<td>CONCLUSIONES</td>
<td></td>
<td></td>
<td>74</td>
</tr>
<tr>
<td>6.</td>
<td>RECOMENDACIONES</td>
<td></td>
<td></td>
<td>76</td>
</tr>
<tr>
<td>7.</td>
<td>BIBLIOGRAFIA</td>
<td></td>
<td></td>
<td>77</td>
</tr>
<tr>
<td>8.</td>
<td>ANEXOS</td>
<td></td>
<td></td>
<td>86</td>
</tr>
</tbody>
</table>
INDICE DE IMAGENES

IMAGEN 1: Mapa localización del municipio Aquitania, Boyacá................................. 15
IMAGEN 2: Mapa vereda Quebradas, Aquitania... 16
IMAGEN 3. Mancha púrpura en cebolla larga... 22
IMAGEN 4. Invasión de *Mildiu veloso* en la cebolla larga... 23
IMAGEN 5. Pudrición blanca en cebolla larga... 23
IMAGEN 6. Presencia de *Cladorporium allí* en cebolla larga...................................... 24
IMAGEN 7. Armado de ruedas de cebolla... 25
IMAGEN 8. Preparación de Malathion... 27
IMAGEN 9. Malathion preparado y empacado en la fumigadora manual..................... 27
IMAGEN 10. Aplicación de Malathion en los cultivos de cebolla larga........................ 27
IMAGEN 11. Muestreo aleatorio simple ... 32
IMAGEN 12. Cosecha de cebolla en la vereda Quebradas... 36
INDICE DE CUADROS

CUADRO 1. Clasificación según el tipo de organismo al que son dirigidos. 18
CUADRO 2. Clasificación de plaguicidas según grupo químico del ingrediente activo. 18
CUADRO 3. Clasificación toxicológica de los plaguicidas según la Resolución 10834 de 1992. .. 19
CUADRO 4. Clasificación toxicológica de los plaguicidas según la OMS. 19
CUADRO 5. Plagas que atacan los cultivos de cebolla larga... 22
CUADRO 6. Normativa Aplicable al Proyecto .. 33
CUADRO 7. Relación de plaguicidas hallados.. 39
CUADRO 8. Entidades que permiten y prohíben el uso de los plaguicidas Chlorothalonil, Myclobutanil y Profenofos en la cebolla. .. 41
CUADRO 9. Consultas externa general y consulta por urgencias por insecticidas Organofosforados y Carbamatos en Aquitania. ... 49
INDICE DE GRAFICAS

GRAFICA 1: Porcentaje de consultas por posibles síntomas relacionados con el plaguicida Chlorothalonil en Aquitania por consulta externa ... 44
GRAFICA 2: Porcentaje de consultas por posibles síntomas relacionados con el plaguicida Chlorothalonil en Aquitania por consulta de urgencias .. 45
GRAFICA 3: Porcentaje de consultas por posibles síntomas relacionados con el plaguicida Myclobutanil en Aquitania por consulta externa .. 46
GRAFICA 4: Porcentaje de consultas por posibles síntomas relacionados con el plaguicida Myclobutanil en Aquitania por consulta de urgencias ... 46
GRAFICA 5: Porcentaje de consultas por posibles síntomas relacionados con el plaguicida Profenofos en Aquitania en consulta externa .. 47
GRAFICA 6: Porcentaje de consultas por posibles síntomas relacionados con el plaguicida Profenofos en Aquitania por consulta Urgencias .. 48
GRAFICA 8: Nivel de estudios agricultores .. 49
GRAFICA 9: Ocupación agricultores .. 50
GRAFICA 10: Tiene conocimiento de cuáles plaguicidas son utilizados para los cultivos de cebolla .. 50
GRAFICA 11: Plaguicidas que conocen los agricultores ... 51
GRAFICA 12: Uso de Malathion en los cultivos de cebolla larga .. 51
GRAFICA 13: Aplicación de Malathion en los cultivos de cebolla larga .. 51
GRAFICA 14: Dónde adquieren el Malathion y en qué presentación (envase plástico, bolsa, reempacado) ... 52
GRAFICA 15: Cantidad/medidas para preparar el Malathion .. 52
GRAFICA 16: Aplicación del plaguicida ... 53
GRAFICA 17: Cuándo aplicar Malathion en los cultivos de cebolla ... 53
GRAFICA 18: Cada cuanto es aplicado el Malathion ... 53
GRAFICA 19: Prácticas post cosecha .. 54
GRAFICA 20: Uso elementos de protección personal ... 54
GRAFICA 21: Cuáles son los elementos de protección personal utilizados 55
GRAFICA 22: Conocimiento de riesgos por contacto con Malathion ... 55
GRAFICA 23: Riesgos por el uso de Malathion ... 56
GRAFICA 24: Personas que han presentado incidentes con Malathion ... 56
GRAFICA 25: Tipo de contacto con el Malathion ... 57
GRAFICA 26: Síntomas presentados por el contacto con el Malathion .. 57
GRAFICA 27: Qué se hace con los envases vacíos de Malathion .. 57
GRAFICA 28: ¿Ha recibido capacitación acerca del uso de plaguicidas? 58
GRAFICA 29: Por parte de quién se ha recibido capacitación ... 58
GRAFICA 30: Nivel de educación .. 60
GRAFICA 31: Ocupación habitantes encuestados ... 60
GRAFICA 32: Previsión de salud .. 61
GRAFICA 33: Antecedentes de salud general.

GRAFICA 34: Síntomas de depresión.

GRAFICA 35: Desinterés o incapaz de disfrutar la vida la mayor parte del tiempo/casi todos los días.

GRAFICA 36: Problemas para dormir como dolor de cabeza casi todas las noches.

GRAFICA 37: Sentir cansancio o con menos energía la mayor parte del tiempo o casi todos los días.

GRAFICA 38: Problemas de concentración o memoria casi todos los días.

GRAFICA 39: Estado inquieto la mayoría de los días.

GRAFICA 40: Nota cambio drástico en el apetito (más o menos apetito).

GRAFICA 41: Actualmente está en tratamiento médico, sí o no.

GRAFICA 42: Antecedentes laborales, desempeño como aplicador de plaguicidas.

GRAFICA 43: De qué forma ha trabajado como aplicador.

GRAFICA 44: Tiempo en que ha aplicado plaguicidas.

GRAFICA 45: Aplicación de Malathion.

GRAFICA 46: Última aplicación de Malathion.

GRAFICA 47: Después de aplicar el Malathion cerca de su casa, ha presentado alguno de los síntomas cuestionados.

GRAFICA 48: Tiene o no un invernadero o huerto en la casa.

GRAFICA 49: Propiedad de campo.

GRAFICA 50: Cultiva el campo de su propiedad.

GRAFICA 51: Uso de plaguicidas en el campo, jardín o huerto.

GRAFICA 52: Uso elementos de protección personal al aplicar Malathion.

GRAFICA 53: Elementos de protección personal en el cuerpo.

GRAFICA 54: Elementos de protección personal en la cabeza.

GRAFICA 55: Elementos de protección personal en las manos.

GRAFICA 56: Elementos de protección personal en la zona respiratoria.

GRAFICA 57: Elementos de protección personal en los pies.

GRAFICA 58: Al finalizar la aplicación de plaguicida, se cambia de ropa de trabajo.

GRAFICA 59: Tiempo que transcurre entre el término de la aplicación y que se duche o se bañe.

GRAFICA 60: Ha sufrido intoxicación por plaguicidas diagnosticada por médico.

GRAFICA 61: Intoxicación por plaguicidas.

GRAFICA 62: Cuántas veces se ha intoxicado por plaguicidas.
RESUMEN

Mediante este estudio fue evaluado el uso y la concentración del plaguicida Malathion en los cultivos de cebolla (*Allium fistulosum*) la vereda Quebradas del municipio de Aquitania en el departamento de Boyacá, así como sus posibles efectos adversos sobre la salud; a través de las concentraciones halladas y los análisis de las encuestas realizadas tanto a los agricultores como a las personas que habitan en lugares aledaños a los cultivos de cebolla donde es usado este plaguicida; así como la información suministrada por la Empresa Social del Estado (E.S.E.) Hospital de Aquitania con respecto a los Registro Individual de Prestación de Servicios (RIPS).

De acuerdo con los resultados obtenidos de las muestras de cebolla analizadas por el método de cromatografía de gases acoplada a un espectrómetro de masas en tándem en el laboratorio, el plaguicida seleccionado no fue encontrado, no obstante fueron halladas concentraciones trazas de Chlorothalonil, Myclobutanil y Profenofos, plaguicidas de uso agrícola.

Teniendo en cuenta los límites máximos de residuos (LMR) de plaguicidas en alimentos de entidades nacionales e internacionales seleccionadas como el Instituto Colombiano Agropecuario (ICA), el Instituto Nacional de Vigilancia de Medicamentos y Alimentos (INVIMA), el Código de Alimentación (CODEX Alimentarius) y la agencia de protección ambiental de Estados Unidos Environmental Protection Agency (EPA), se realizó la comparación de los niveles obtenidos con el fin de determinar si pueden ser utilizados o no en el cultivo de cebolla.

Como resultado de la comparación de los plaguicidas, se encontró que el Chlorothalonil sí puede ser aplicado, mientras que el Myclobutanil y Profenofos no puede ser utilizado para los cultivos de cebolla larga o Junca, de acuerdo a información suministrada por el ICA en el listado de registros nacionales de plaguicidas químicos de uso agrícola actualizada en mayo de 2015, en las cuales se especifica el cultivo en el cual puede ser aplicado cada producto, las tablas contienen información específica tal como su respectivo registro, nombre de la empresa que lo distribuye, categoría toxicológica, uso específico, entre otras.
INTRODUCCIÓN

La vereda Quebradas se localiza en el municipio de Aquitania, departamento de Boyacá, bordeando el Lago de Tota, a 3030 m.s.n.m. El municipio representa el 95% de la producción de cebolla larga en la región, dando así gran dependencia a sus habitantes de dichos cultivos. [16]

El uso de plaguicidas en la actualidad tiene normativa legal vigente, que rara vez se cumple por parte de los agricultores pues apelan a la experiencia y a la costumbre para cuidar, proteger y fumigar sus cultivos, teniendo en cuenta que la agricultura convencional hace uso de diferentes agentes químicos tóxicos para reducir las pérdidas debidas al ataque de determinados organismos vivos convertidos en plagas [17]. Los plaguicidas agrícolas tienen principios activos, también excipientes, coadyuvantes y solventes como ingredientes secundarios, que en ocasiones resultan ser incluso más tóxicos que el mismo principio activo. [18]

El objetivo de la presente investigación fue realizar la evaluación del uso y la concentración de Malathion en la cebolla Junca (Allium fistulosum) cultivada en la vereda Quebradas, relacionándola con posibles efectos adversos sobre la salud para contribuir a la prevención de enfermedades ocasionadas por la exposición mínima a los plaguicidas y por su consumo sin tener la dosificación adecuada. Para esto fueron suministrados los RIPS propios de la región en la E.S.E. Hospital de Aquitania, los cuales brindaron información relacionada con las principales consultas por urgencias y por consulta externa; a su vez se realizaron dos tipos de encuestas, una dirigida directamente a los agricultores y otra dirigida a los habitantes de la vereda y con esto se obtuvo información sobre la exposición y frecuencia de aplicación del Malathion. Luego se tomaron muestras de cebolla Junca de la vereda, las cuales fueron analizadas por medio del método de cromatografía gaseosa acoplada a un espectrómetro de masas en tándem cuya finalidad es hallar valores correspondientes para presencia o ausencia de Malathion y otros plaguicidas.

Los análisis de laboratorio se realizaron tomando varias muestras de cebolla de los predios pertenecientes a la vereda Quebradas, en donde no se encontró la presencia de Malathion, que fue el plaguicida seleccionado para el desarrollo del estudio, sin embargo se encontraron tres plaguicidas que también pueden generar afectaciones a la salud y a los cultivos si no son aplicados en las cantidades establecidas; los plaguicidas encontrados fueron: Chlorothalonil, Myclobutanil y Profenofos.
1. OBJETIVOS

1.1. Objetivo general

Correlacionar las concentraciones de Malathion en cebolla cosechada de la vereda Quebradas en el Municipio de Aquitania - Boyacá, con posibles efectos adversos a la salud en habitantes propios de la región.

1.2. Objetivos específicos

Determinar por medio de la cromatografía de gases la concentración de Malathion en la cebolla.

Caracterizar el manejo de agroquímicos durante el proceso de producción de cebolla larga en la vereda Quebradas del Municipio de Aquitania - Boyacá.

Realizar encuestas a los habitantes de la vereda Quebradas, respecto a los posibles efectos adversos generados por el Malathion para luego ser comparados con los RIPS obtenidos del puesto de salud del Municipio.

Comparar si los niveles en que se encuentra el Malathion en la cebolla larga, cumplen con la normativa internacional (OMS) y nacional para así relacionar los posibles efectos adversos en la salud humana.
2. MARCO REFERENCIAL

2.1. Localización del sitio de estudio

El municipio de Aquitania se localiza en el centro oriente del departamento de Boyacá, hace parte de la denominada provincia de Sugamuxi. Regionalmente posee una ubicación estratégica sobre estribaciones de la cordillera oriental, al pasar por su territorio rural la vía que comunica a Bogotá con el departamento del Casanare y con la vía marginal de los llanos, que sirve de comunicación con la región de la Orinoquia y Venezuela, siendo su área una de las más extensas del departamento. [19]

Aquitania tiene una extensión total de 828 Kilómetros cuadrados (Km²), el área urbana es de 0.52 Km² y la rural es 827.48 Km², la altitud de la cabecera municipal es de 3030 m.s.n.m, la temperatura media es 11.05ºC. [19]

El municipio está dividido en 16 veredas las cuales son: Toquilla, Soriano, Hatolaguna, Susacá, Cajón, Hatoviejo, Vargas, Quebradas, Tobal, Pérez, Hirva, Daito, Suse, Sisvaca, Maravilla, Mombita. Cabe resaltar que cada una de las veredas mencionadas se divide en cuartos, teniendo en cuenta su ubicación. [19]

El municipio de Aquitania, donde los cultivos de cebolla larga cubren el 95% del área plana cultivable de la cuenca del Lago de Tota en el municipio, repartido en 5.239 predios con una producción de 180.000 toneladas, no obstante el área del lago abarca los Municipios de Aquitania (108 Km²), Cuitiva (25 Km²) y Tota (7.4 Km²). [19] (Imagen 1).
IMAGEN 1: Mapa localización del municipio Aquitania, Boyacá.

Fuente: [20]
En la imagen 2, se observa la ubicación de la vereda Quebradas la cual está localizada en el municipio de Aquitania, Boyacá.

IMAGEN 2: Mapa vereda Quebradas, Aquitania.

Fuente: [21]
2.2. Marco teórico

2.2.1. Plaguicidas

Según el Código Internacional de Conducta Sobre la Distribución y Utilización de Plaguicidas, (Food and Agriculture Organization - FAO), un plaguicida se define como "cualquier sustancia o mezcla de sustancias que están destinadas a prevenir, destruir o controlar cualquier tipo de plaga, incluyendo los vectores de enfermedades humanas o de animales, las especies no deseadas de plantas o animales que causan perjuicio o que interfieren de cualquier otra manera ya sea en la producción, la elaboración, el almacenamiento, el transporte o la comercialización de los alimentos, los productos agrícolas, la madera y los productos de madera o los alimentos para animales, o que pueden administrarse a los animales para combatir los insectos, los arácnidos u otras plagas en o sobre sus cuerpos. El término incluye las sustancias que están destinadas a utilizarse como reguladoras del crecimiento de las plantas, defoliantes, desecantes, agentes para reducir la densidad de fruta o agentes para evitar la caída prematura de la fruta, y las sustancias aplicadas a los cultivos antes o después de la cosecha para proteger el producto contra la deterioración durante el almacenamiento y transporte". [22]

2.2.2. Composición química de los plaguicidas

Los plaguicidas de acuerdo a su composición, tienen unas sustancias que los caracterizan ya sea por su efectividad o eficiencia ante las plagas y así mismo su peligrosidad. Entre ellos, están los principios activos que son aquellos que producen la acción del plaguicida, las materias inertes que son las que facilitan el reparto y disminuyen la toxicidad, los adyuvantes o coadyuvantes que son aquellos que ayudan a que el producto sea más eficaz, modificando las propiedades (ya sean físicas o químicas) de la materia activa y finalmente, los aditivos que tienen diversas funciones principalmente como los antiapelmazantes, los colorantes, los repelentes olorosos, entro otros. [23]

2.2.3. Clasificación de los plaguicidas

De acuerdo con la FAO, los plaguicidas se clasifican según el tipo de organismo al que son dirigidos y según el grupo químico del ingrediente activo. [24] En el cuadro 1 se puede observar dicha clasificación de acuerdo al organismo al cual son conducentes.
CUADRO 1. Clasificación según el tipo de organismo al que son dirigidos.

<table>
<thead>
<tr>
<th>Organismo</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insecto</td>
<td>Insecticida</td>
</tr>
<tr>
<td>Hongos</td>
<td>Fungicida</td>
</tr>
<tr>
<td>Malezas</td>
<td>Herbicida</td>
</tr>
<tr>
<td>Acaros</td>
<td>Acaricidas</td>
</tr>
<tr>
<td>Nematodos</td>
<td>Nematicidas</td>
</tr>
<tr>
<td>Caracoles y babosas</td>
<td>Molusquicidas</td>
</tr>
<tr>
<td>Roedores</td>
<td>Rodenticidas</td>
</tr>
<tr>
<td>Organismos que habitan en el suelo</td>
<td>Desinfectantes del suelo</td>
</tr>
<tr>
<td>Atraer las plagas (trampas)</td>
<td>Atrayentes</td>
</tr>
<tr>
<td>Ahuyentar las plagas</td>
<td>Repelentes</td>
</tr>
<tr>
<td>Provocar caída de las hojas</td>
<td>Defoliantes</td>
</tr>
<tr>
<td>Aceleran o retarden el crecimiento de las plantas</td>
<td>Reguladores fisiológicos</td>
</tr>
</tbody>
</table>

Fuente: [24]

Los plaguicidas también se clasifican en diversas familias, según su estructura química, que incluyen desde los compuestos organoclorados y organofosforados hasta los compuestos inorgánicos, de acuerdo al Instituto Nacional de Salud Pública, tal y como se visualiza en el cuadro 2. [25]

CUADRO 2. Clasificación de plaguicidas según grupo químico del ingrediente activo.

<table>
<thead>
<tr>
<th>Familia Química</th>
<th>Ejemplo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organoclorados</td>
<td>DDT, aldrín, endosulfán, endrín</td>
</tr>
<tr>
<td>Organofosforados</td>
<td>Bromophos, diclorvos, malation, profenofos</td>
</tr>
<tr>
<td>Carbamatos</td>
<td>Carbaryl, methomyl, propoxur</td>
</tr>
<tr>
<td>Tiocarbamatos</td>
<td>Ditiocarbamato, mancozeb, maneb</td>
</tr>
<tr>
<td>Piretroides</td>
<td>Cypermethrin, fenvalerato, permethrin</td>
</tr>
<tr>
<td>Derivados bipiridilos</td>
<td>Clormequat, diquat, paraquat</td>
</tr>
<tr>
<td>Derivados del ácido fenoxiacético</td>
<td>Diclorprop, piclram, silvex</td>
</tr>
<tr>
<td>Derivados cloronitrofenolicos</td>
<td>DNOC, dinoterb, dinocap</td>
</tr>
<tr>
<td>Derivados de triazinas</td>
<td>Atrazine, ametrín, desmetrin, simazine</td>
</tr>
<tr>
<td>Compuestos orgánicos del estaño</td>
<td>Cyhexatin, dowco, plictran</td>
</tr>
<tr>
<td>Compuestos inorgánicos</td>
<td>Arsénico pentóxido, obpa, fosfito de magnesio</td>
</tr>
<tr>
<td>Compuestos de origen botánico</td>
<td>Rotenona, nicotina, aceite de canola.</td>
</tr>
</tbody>
</table>

Fuente: [25]

<table>
<thead>
<tr>
<th>Clasificación según la Resolución 10834 de 1992</th>
<th>Formulación líquida DL$_{50}$ aguda</th>
<th>Formulación sólida DL$_{50}$ aguda</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Oral</td>
<td>Dermal</td>
</tr>
<tr>
<td>I-IA. Extremadamente tóxico</td>
<td>20 o menor</td>
<td>40 o menor</td>
</tr>
<tr>
<td>II-IB. Altamente tóxico</td>
<td>>20 hasta 200</td>
<td>>40 hasta 400</td>
</tr>
<tr>
<td>II. Medianamente tóxico</td>
<td>>200 hasta 2000</td>
<td>>400 hasta 4000</td>
</tr>
<tr>
<td>IV. Ligeramente tóxico</td>
<td>Mayor de 2000</td>
<td>Mayor de 4000</td>
</tr>
</tbody>
</table>

Fuente: [26]

CUADRO 4. Clasificación toxicológica de los plaguicidas según la OMS.

<table>
<thead>
<tr>
<th>Clasificación de la Organización Mundial de la salud (OMS) según los riesgos</th>
<th>Formulación líquida DL$_{50}$ aguda</th>
<th>Formulación sólida DL$_{50}$ aguda</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Oral</td>
<td>Dermal</td>
</tr>
<tr>
<td>Clase Ia: productos sumamente peligrosos</td>
<td><20</td>
<td><40</td>
</tr>
<tr>
<td>Clase Ib: productos muy peligrosos</td>
<td>20 a 200</td>
<td>40 a 400</td>
</tr>
<tr>
<td>Clase II: productos moderadamente peligrosos</td>
<td>200 a 2000</td>
<td>400 a 4000</td>
</tr>
<tr>
<td>Clase III: Productos poco peligrosos</td>
<td>2000 a 3000</td>
<td>>a 4000</td>
</tr>
<tr>
<td>Clase IV: Productos que normalmente no ofrecen peligro</td>
<td>>a 3000</td>
<td>>a 2000</td>
</tr>
</tbody>
</table>

Fuente: [26]

2.2.4. Cebolla larga o Junca

La cebolla larga o Junca (*Allium fistulosum*) es un cultivo originario del norte de Europa que pertenece a la familia de las liliáceas. Este tipo de cebolla no forma verdaderos bulbos, sino un engrosamiento del conjunto de hojas en su base. [27]
Las raíces se producen en la base del tallo, son fasciculadas y poco abundantes; verticalmente alcanzan a medir hasta 30-45 cm y horizontalmente unos 30 cm. Las hojas son tubulares, de 25 a 35 cm de largo y 5-7 mm de diámetro, tienen una base larga y carnosa, la cual se une estrechamente con la base de las demás hojas, formando así un pseudotallo envuelto por láminas finas o túnica. El tallo verdadero es un disco comprimido, de donde parten las raíces y la base de las hojas. El tallo floral es hueco y cilíndrico, parecido a las hojas, termina en un grupo de pedicelos cortos y forma ovalada. Cada umbela tiene de 350 a 400 flores hermafroditas muy pequeñas donde cada una produce seis semillas pequeñas, planas y negras. Al igual que en esta especie los "tallos" son blanqueados con tierra y su composición probablemente es muy similar. [28]

Entre los principales factores para el éxito de los cultivos, se encuentra el tipo de suelo, el cual va de franco a franco arcilloso, buena profundidad, con un contenido de materia orgánica de medio a alto y con un pH entre 6 y 7. La cebolla Junca se produce en una temperatura aproximada de 8 a 15°C, en altitud de 2500 a 3400 m.s.n.m., precipitación (mm/año) 1000-1500. [29]

El control de plagas y enfermedades resulta ser el factor más costoso dentro de los costos de producción. Las enfermedades y plagas que atacan los cultivos de cebolla larga son:

2.2.4.1. Plagas

Gusano falso medidor (Trichoplusia ni**):** El gusano falso medidor es la larva de la palomilla nocturna *Trichoplusia ni*, de color café grisáceo. Las hembras ovipositan aisladamente en el follaje, huevecillos aplanados, blancos y con una fina retícula, de los que emergen larvas verdes muy típicas por caminar como medidores, sin carecer por completo de patas. Se les denomina falsos medidores para distinguirlos de los verdaderos medidores. El gusano falso medidor se alimenta únicamente del follaje, aunque su voracidad es tal que cuando se presenta en poblaciones elevadas defolia por completo las plantas, provocando grandes pérdidas. [30] Entre las medidas de control químicas se tienen aplicaciones alternas para evitar resistencia con Carbarilo, Endosulfan, Malathion, Metamidofos, Permetrin, Paration metilo y Tiodicarbamato [31].

Trips de la cebolla (Thrips tabaci**):** Es un plaga de insecto que afecta a hortalizas y ornamentales, y se ha considerado como la más importante en el cultivo de cebolla. Su metamorfosis comprende los estados de huevo, ninfa y adulto. El ciclo de vida completo se cumple en unos 15 a 20 días aproximadamente. Los adultos alcanzan una longitud de un milímetro y pueden vivir hasta 30 días. El principal daño que esta plaga genera consiste en crear manchas o estrías plateadas, distribuidas en todo el follaje, esto porque el insecto raspa con su aparato bucal la piel o epidermis del follaje de la cual se liberan jugos.
que sirven como alimento a los mismos. Al presentarse altas cantidades de trips en la cebolla, las hojas empiezan a tomar formas rizadas, arrugadas y retorcidas llegando incluso a detener su crecimiento. Estos efectos son más rigurosos bajo condiciones de sequía y altas temperaturas. Para el control se puede recurrir a la destrucción y quema de plantas que se encuentran muy afectadas y la utilización de trampas pegantes de color blanco o azul para la captura de trips adultos. El tratamiento químico se utiliza cuando en promedio existan 20 trips por planta, entre ninfas y adultos y se recomienda usar Acefato, Diazinon, Oxidemeton-metil o Dimetoato y Malathion. [32]

Chizas (Ancognatha scarabaeoides): Las chizas son larvas de escarabajos que se alimentan de las raíces de los pastos, afectando considerablemente la producción de biomasa, pueden causar daños en cultivos de frijol, maíz, cebolla, arracacha y papa, entre otros, para su control se utilizan métodos culturales y principalmente métodos químicos, mediante productos altamente tóxicos [33]. Se presentan ocasionalmente, el daño que originan es cortar las raíces de las plantas en cualquier estado de su desarrollo. Los altos costos que implica el control sobre éstas, ocasionan pérdidas en las áreas cultivadas que oscilan entre 75% y 100%. En la actualidad el control de las chizas se lleva a cabo por medio de la aplicación de diferentes insecticidas químicos. [34]

Gusano minador o dibujante (Liriomyza huidobrensis): Su metamorfosis incluye los estados de huevo, larva, pupa y adulto, los últimos son mosquitos pequeños de color gris oscuro con manchas amarillas en la cabeza y el tórax, pueden vivir hasta un mes y ponen cientos de huevos durante su ciclo de vida. Las larvas son las que ocasionan daños económicos al construir minas y grandes grupos en las hojas, llegando a secarlas. El manejo de estos insectos incluye el control de las malezas huéspedes, el uso de trampas pegantes de color amarillo para recolectar los adultos y el control químico dirigido a los adultos con productos a base de cyromazina o dimetoato. [32]

Chinche subterránea (Cyrtomenus bergi Froeschner): Es un insecto polífago que ataca los diversos cultivos de yuca, maíz, maní, cebolla, espárragos entre otros. La única forma de mantener control sobre éstos es utilizar insecticidas, lo cual conlleva al uso indiscriminado y presencia de residuos en el producto final y en el medio ambiente. [35]

Mosca de la cebolla (Hylemia antiqua): Ataca a las flores y los órganos verdes. El ápice de la hoja palidece y después muere. El ataque de las larvas lleva consigo la putrefacción de las partes afectadas de los bulbos, ya que facilita la penetración de patógenos, dañando el bulbo de forma irreversible. Genera daños importantes en semillero y en el momento de trasplante. [36]
Trozadores y tierreros (*Agrotis ipsilon*) - (*Peridioma sausia*): Causan daño durante la noche atacando en focos o parches, cortan las plántulas a ras de suelo y también se alimentan del follaje de las plantas ya desarrolladas. [16]

CUADRO 5. Plagas que atacan los cultivos de cebolla larga

<table>
<thead>
<tr>
<th>Plaga</th>
<th>Imagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gusano falso medidor (Trichoplusia ni)</td>
<td></td>
</tr>
<tr>
<td>Trips de la cebolla (Thrips tabaci)</td>
<td></td>
</tr>
<tr>
<td>Chizas (Ancognatha scarabaeoides)</td>
<td></td>
</tr>
<tr>
<td>Gusano minador (Liriomyza huidobrensis)</td>
<td></td>
</tr>
<tr>
<td>Chinche subterránea (Cyrtomenus bergi Froeschner)</td>
<td></td>
</tr>
<tr>
<td>Mosca de la cebolla (Hylemia antigua)</td>
<td></td>
</tr>
<tr>
<td>Trozadores y tierreros (Agrotis ipsilon) - (Peridioma sausia)</td>
<td></td>
</tr>
</tbody>
</table>

2.2.4.3. Enfermedades

Mancha púrpura (*Alternaria porri*): Corresponde a un hongo que ataca tanto las hojas, los tallos como las semillas, sus esporas tienen la capacidad de germinar y penetrar directamente la cutícula. Factores como temperaturas superiores a los 70ºC y lluvias o buen rocío, son condiciones que facilitan su invasión. [16] En la imagen 3 se puede observar la presencia de *Alternaria porri* en la cebolla larga.

IMAGEN 3. Mancha púrpura en cebolla larga.

Fuente: [16]
Mildiu veloso (*Peronospora destructor*): La presencia de éste, indica que las condiciones ambientales se encuentran favoreciendo el desarrollo del hongo, por tanto, la enfermedad se manifiesta a través de lesiones elípticas grandes a lo largo de la hoja, es habitual que dichas lesiones sean invadidas por hongos como *Alternaria sp* y *Stemphylium sp* que comienzan a esporular en abundancia sobre las partes lesionadas [16]. A continuación en la imagen 4 se representa la presencia de *Mildiu veloso* en cultivos de cebolla larga.

IMAGEN 4. Invasión de Mildiu veloso en la cebolla larga.

![Mildiu veloso en cebolla larga](image4.jpg)

Fuente: [16]

Pudrición blanca (*Sclerotium cepivorum*): Es una de las enfermedades que ocasionan más daño a los cultivos de cebolla y ajo a nivel mundial. Es causada por el hongo *Sclerotium cepivorum*. Los síntomas iniciales se observan en las hojas en donde se produce un amarillamiento progresivo desde las puntas hacia sus bases. En la imagen 5 se visualiza la invasión de la enfermedad en las cebollas largas. Paralelamente, y en la base de la cebolla, se produce un abundante crecimiento algodonoso (micelio), y al avanzar la enfermedad se forman unos cuerpos negros, redondos, del tamaño de la cabeza de un alfiler que son las estructuras de reproducción del hongo llamadas esclerocios, las cuales pueden permanecer y sobrevivir en el suelo por muchos años, en residuos de cosechas enfermas o en algunas malezas susceptibles. La presencia de más de un esclerocio por gramo de suelo se considera peligrosa y se produce especialmente si existen condiciones ambientales favorables. Los ámbitos húmedos y fríos, suelos húmedos y temperaturas del suelo entre 10 y 23°C favorecen el desarrollo de esta enfermedad. [16]

IMAGEN 5. Pudrición blanca en cebolla larga.

![Pudrición blanca en cebolla larga](image5.jpg)

Fuente: [16]
Secamiento de las puntas: Es producido por el hongo *Heterosporium alli*. Comienza por la presencia de pequeñas manchas alargadas o elípticas e irregulares, un poco hundidas de color blanco y en ocasiones gris claro en el centro; algunas veces se aprecia un margen azuloso. Estas manchas se pueden unir y necrosar en grandes áreas de la hoja, dando el aspecto de un secamiento generalizado en las puntas de las hojas. Para el manejo de esta enfermedad se recomienda no descuidar el buen manejo del cultivo. [32]

Secamiento: El organismo que ocasiona esta enfermedad es el hongo *Cladosporium alli*. Las primeras manifestaciones de la enfermedad producida por este hongo se reconocen por la aparición de pequeñas manchas de color blanco, que luego van tomando formas alargadas o elípticas e irregulares; en el centro de estas manchas se observan crecimientos del hongo de color verde oliva; la enfermedad puede llegar a necrosar grandes áreas de follaje, dando la apariencia de un secamiento generalizado. Las condiciones meteorológicas adecuadas para su desarrollo, son la alta precipitación y la humedad relativa, las cuales favorecen el proceso de infección. Después de 8 días de presentarse las precipitaciones, se comienza a observar los síntomas de la enfermedad. Para el manejo de esta enfermedad se recomienda evitar excesos de humedad en el suelo y no exagerar en la frecuencia y cantidad de agua en los riegos. Cuando se observen los primeros síntomas de la enfermedad se sugiere aplicar Difenoconazol (0,3-0,5 L/ha) [38]. En la imagen se puede visualizar el estado inicial de ataque a la cebolla por *Cladorporium alli*.

IMAGEN 6. Presencia de *Cladorporium alli* en cebolla larga.

![Imagen de cebolla con manchas de Cladorporium alli]
Fuente: [38]
2.2.5. Cosecha

Existen dos sistemas de cosecha. La primera donde se arranca toda la planta, se deshoja y la mitad de los propágulos se descalcetan quedando listos para volver a ser sembradas. La segunda consiste en hacer un hueco alrededor de la planta, arrancando los hijuelos y dejando en el sitio los 4 o 5 que van a reemplazar la planta; este es el sistema más utilizado en la región de la laguna de Tota (Boyacá). El tiempo de recolección de la cebolla se basa según el sistema de cosecha, cuando este se realiza mediante el método de arrancar toda la planta se demora entre 5 y 6 meses en cosechar, mientras que cuando el método se realiza dejando hijuelos el tiempo de cosecha es de 3 meses dependiendo del manejo del cultivo y sus condiciones ambientales. Sin embargo estos periodos están condicionados a la fertilización del terreno y la disponibilidad de riego [16].

El empaque de las cebollas se realiza en ruedas (las ruedas son una envoltura y/o atado de múltiples cebollas largas que resultan en la cosecha para su posterior comercialización), con un peso promedio de 50 Kg. y ruedas pony de 25Kg. La cebolla de rama es altamente perecible por lo cual su mercadeo debe hacerse rápido. Se pueden almacenar a 0º C y humedad relativa del 90-95% por pocos días. [16]

IMAGEN 7. Armado de ruedas de cebolla

Fuente: [39]

2.2.6. Plaguicidas aplicados a la cebolla

Para tener mayor eficiencia y controlar las plagas en el cultivo de la cebolla se utilizan los siguientes plaguicidas:

- **Mancozeb**: Es un fungicida selectivo y muy activo, su grupo químico es Ditiocarbamato y su clasificación toxicológica es III siendo medianamente toxico, es un polvo humectante que actúa por contacto sobre las hojas para el control preventivo de un amplio espectro de hongos, en un amplio rango de cultivos. Se aplica al cultivo solamente disuelto en agua, el producto se suspende cuando se ha controlado la plaga o se erradica del cultivo, tiene baja persistencia en el suelo, se degrada rápidamente en presencia de agua y oxígeno, es probable que se filtre en aguas subterráneas. [39]
- **Antracol**: La clase de plaguicida al cual pertenece es fungicida, su grupo químico es Ditiocarbamato, el ingrediente activo es Propineb, su clasificación toxicológica es IV siendo ligeramente tóxico, es un polvo mojable, inhibe la germinación de esporas y evita el desarrollo de hongos. Aporta Zinc a la planta y ayuda a corregir deficiencias. Se aplica en un intervalo de 5 a 10 días dependiendo de la incidencia de la enfermedad y de las condiciones climáticas. Intervalo entre la última aplicación y cosecha es de 7 días; no tiene riesgo de bioacumulación y es no persistente. [40]

- **Nativo**: Es un fungicida foliar, pertenece al grupo químico de estobilurina + triazol, líquido con el activo en suspensión estable, para aplicar diluido en agua, su alta proporción de Tebuconazole le permite tener un alto poder de detención a las enfermedades presentes y el Trifloxistrobin le conduce la residualidad necesaria, su clasificación toxicológica es III siendo medianamente tóxico. Este fungicida mantiene por más tiempo el cultivo sano y verde, con el consecuente mejoramiento en el rendimiento final. El producto es absorbido rápidamente por hojas y tallos verdes, y es redistribuido por toda la planta, posee efecto residual de protección del cultivo. [41]

- **Malathion**: Es un organofosforado con actividad insecticida y acaricida, de amplio espectro. Pertenece al grupo químico de los organofosforados, su ingrediente activo es Malathion S 1,2 di-etilo o, o-dimetiot fosforoditioato. La categoría de toxicidad es III en el cuadro de clasificación toxicológica, lo que significa que es un plaguicida medianamente tóxico actúa por actividad, ingestión, inhalación y por contacto. El Malathion se utiliza para propósitos agrícolas con el fin de matar y controlar insectos en cosechas y en jardines.

El Malathion es un plaguicida medianamente tóxico para vertebrados, químicamente relacionado con los gases que afectan al sistema nervioso; mata insectos y otros animales e inclusive a los humanos, a través de un efecto en el sistema nervioso. Inhibe la enzima acetilcolinesterasa la cual se encuentra en los tejidos nerviosos y en los glóbulos rojos, que degrada la acetilcolina, un químico esencial en la transmisión de impulsos nerviosos a través de las junturas entre los nervios, generando convulsiones, descoordinación, parálisis, y por último la muerte. [43] Ecológicamente, el Malathion es fácilmente biodegradable, se descompone rápidamente en el medio ambiente y en plantas depuradoras de aguas residuales, su descomposición puede ser aeróbica y anaerobia, biológica y no biológica. En condiciones normales, el Malathion tiene movilidad media en el suelo, pero se descompone rápidamente. [42]

El Malathion es un inhibidor de la colinesterasa de baja toxicidad para los mamíferos, una vez en contacto con cualquier superficie de la piel y ojos penetra
rápidamente en el cuerpo. La ropa contaminada por el producto debe quitarse inmediatamente y toda la piel debe lavarse escrupulosamente, la exposición repetida a inhibidores de colinesterasa tales como el Malathion 57% EC puede causar repentinamente un incremento de las susceptibilidad a la dosis de cualquier inhibidor de colinesterasa. [42]

En la imagen 8 se aprecia cómo se realiza la preparación del plaguicida Malathion en la vereda Quebradas, en la cual se observa que no se hace uso de los elementos de protección personal y tampoco equipos adecuados para disolverlo en el tanque de agua.

IMAGEN 8. Preparación de Malathion.

![Imagen 8](Image)

Fuente: [44]

En la imagen 9 se visualiza el Malathion ya preparado y dispuesto en el equipo, fumigadora manual para posteriormente fumigar los cultivos de cebolla larga como se representa en la imagen 10.

IMAGEN 9. Malathion preparado y empacado en la fumigadora manual.

![Imagen 9](Image)

Fuente: [44]

IMAGEN 10. Aplicación de Malathion en los cultivos de cebolla larga.

![Imagen 10](Image)

Fuente: [44]
• **Chlorothalonil:** Su nombre químico es Tetrachloroisofthalonitrilo, el grupo al que pertenece es el de los Fungicidas, el grupo químico al que pertenece es el de los hidrocarburos aromático-Benceno sustituido, su fórmula química es C₈Cl₄N₂, el peso molecular es 265.9, el estado físico son cristales incoloros e inoloros, el punto de ebullición es 350°C/760 mmHg y su punto de fusión es 252.1 °C. Tiene la capacidad de disolverse en el agua con una concentración de 0.81 mg/l. El Chlorothalonil es químicamente estable en soluciones acuosas neutras o ácidas [48], se encuentra disponible en polvo líquido absorbente, gránulos disolventes en agua y también en polvos irrigables. Este plaguicida es un ingrediente activo el cual causa irritación ocular a las membranas mucosas de los ojos y cuando entra en contacto con el tracto respiratorio, además causa dermatitis alérgica. Aparentemente, la piel y la capa gastrointestinal absorben este plaguicida de manera muy mínima. [49]

• **Myclobutanil:** El Myclobutanil es el nombre común de este fungicida, su nombre químico es 2-p-clorofenil-2-(1H-1,2,4-triazol-1-il metil) hexano-nitrilo, el grupo químico al cual pertenece es Triazol, su fórmula química es C₁₅H₁₇ClN₄, este producto funciona como fungicida sistémico, con acción preventiva-curativa, para su aplicación se debe utilizar un equipo pulverizador diluyendo antes en agua. [50] El Myclobutanil es recomendado para el control de enfermedades foliares y de los frutos; su modo de acción es inhibir la biosíntesis de las levaduras y las células fúngicas. Las carencias para Myclobutanil, de acuerdo a las tolerancias por el CODEX Alimentarius son: Tomate y pimiento aplicar cada 7 días, para el durazno y nectarino cada 3 días, para el manzano cada 14 días, para el melón, la sandía, el zapallo y la remolacha se recomienda aplicar cada 20 días, para el peral cada 18 días y para las uvas cada 10 días, para evitar intoxicaciones en el consumidor final y daños en los cultivos de los alimentos anteriormente mencionados. [51] El Myclobutanil no es altamente tóxico pero por inhalación, puede provocar cefalea, tos e irritación nasal, por tener contacto con la piel puede causar irritación dérmica, enrojecimiento y picazón, por contacto con los ojos, lagrimeo e irritación en los ojos y por ingestión causar náuseas, vómito y diarrea. [51]

La Autoridad Nacional de Licencias Ambientales (ANLA), según la Resolución 0070 del 28 de Enero de 2013, establece que el producto Bunker 40 WP que tiene como base el ingrediente activo de grado técnico Myclobutanil, debe ser utilizado como un fungicida de uso agrícola para el control de enfermedades fungosas en los cultivos de cebolla (*Allium fistulosum*) como lo es la aparición de la mancha púrpura (*Alternaria porri*), para esto la dosis que debe ser aplicada una sola vez son 80g/ha. Y el volumen de aplicación es de 100 a 400 Litros/ha. [52]
• **Profenofos:** El Profenofos, es el nombre común de este plaguicida su nombre comercial es Curacron, Ferticron, Polycron, Selectron, Su fórmula química es C11H15BrClO3PS, su peso molecular es 373.6, este plaguicida pertenece al grupo de los insecticidas-acaricidas, hace parte del grupo químico de los organofosforados, es de uso agrícola. Su uso exclusivo es en plantas formuladoras de plaguicidas agrícolas. Su solubilidad en el agua es a 28 mg/L a 25°C. El punto de ebullición de este insecticida es igual a 100°C. [53] Este plaguicida es extremadamente tóxico para crustáceos, insectos y zooplancton; en los peces, su toxicidad varía de alta a extremadamente altas, se saben de mortandades de estos organismos después de la aplicación del plaguicida bajo condiciones recomendadas. [53]

Las intoxicaciones con compuestos organofosforados pueden generar tres cuadros clínicos: la intoxicación aguda, el síndrome intermedio y una neurotoxicidad tardía. El cuadro de intoxicación aguda genera un conjunto de signos y síntomas denominados síndrome colinérgico el cual se presenta como consecuencia de la excesiva estimulación de los receptores de acetilcolina, y que se caracteriza principalmente por cambios en el estado de conciencia, debilidad muscular y excesiva actividad secretora. El síndrome intermedio aparece posterior a los efectos agudos, es decir 24 - 48 horas después de la exposición, pero antes que la neuropatía retardada; se caracteriza por debilidad de los músculos proximales de las extremidades, flexores del cuello, lengua, faringe y músculos respiratorios, con compromiso de la función respiratoria, disminución o ausencia de los reflejos miotendinosos y compromiso de pares craneales (principalmente el sexto). La neuropatía retardada se presenta principalmente con los compuestos que contienen flúor; puede iniciarse entre una a cuatro semanas después de la exposición aguda al tóxico, su recuperación puede ser total o parcial entre 6-12 meses con una adecuada rehabilitación. Se ha encontrado evidencia sobre la asociación entre exposición crónica a organofosforados y la aparición de síntomas extrapiramidales y psiquiátricos como psicosis, ansiedad, depresión, alucinaciones y agresividad. En niños se ha demostrado que la intoxicación por organofosforados puede producir trastornos del desarrollo psicomotor, con alteración de las pruebas neuroconductuales. [54]

Entre los principales signos de una intoxicación con organofosforados se encuentran la visión borrosa, rinorrea, broncorrea, sialorrea, broncoespasmo, cianosis, diaforesis, náuseas, vómito, diarrea, cólico abdominal, incontinencia de esfínteres, bradicardia, Calambres, mialgias, fasciculaciones, debilidad, parálisis flácida, hiperiglicemia, Cefalea, ansiedad, confusión, irritabilidad, alteración del estado de conciencia, ataxia, depresión respiratoria, convulsiones. [54]
2.2.7. Cromatografía de gases

La cromatografía es una técnica para la separación de los compuestos orgánicos e inorgánicos térmicamente estables y volátiles. Existen dos tipos principales de cromatografía, la gas–líquido que se desarrolla por medio del reparto de los componentes de una mezcla química, entre una fase gaseosa que fluye (gas de arrastre o transporte) y una fase líquida estacionaria, sujeta a un soporte sólido, y la cromatografía gas–sólido, la cual emplea adsorbente sólido como fase estacionaria. [45]

Las muestras analizables por cromatografía de gases deben tener un punto de ebullición inferior a unos 250º C, además la sustancia debe ser estable en estado gaseoso y no pirolizarse (romperse por calor). En cuanto al gas portador que se vaya a utilizar, debe arrastrar los analitos por el interior de la columna y proporcionar una matriz adecuada al detector; este mismo debe ser inerte, lo que significa que no debe reaccionar con la muestra, además debe estar fácilmente disponible, con una alta pureza y debe ser económico. Los gases portadores comúnmente utilizados son Helio, Argón, Nitrógeno e Hidrógeno. Las presiones que debe suministrar el gas portador en la cabeza de la columna oscilan entre 50 y 200kPa y los flujos en el interior del sistema deben ser de entre 10 y 50 ml/min. [45]

La identificación de picos se realiza por comparación de los tiempos de retención de la muestra y de esquemas de identidad conocida. El detector universal es el de ionización a la llama, existiendo otros detectores de usos algo más específicos como el de fósforo-nitrógeno, captura electrónica, etc. Entre todos los detectores usados en cromatografía de gases, solo el espectrómetro de masas es capaz de identificar inequívocamente un compuesto. La inyección puede aplicarse de manera manual o mediante un dispositivo automático, este último mencionado, mejora notablemente la reproducibilidad de los cromatogramas, especialmente en lo que se refiere a la cuantificación, mientras que la inyección manual, presenta una mayor dificultad en cuanto a la reproducibilidad de la misma, ya que no es fácil de medir con precisión y sensibilidad volúmenes de entre 1 y 5 µL. [45]

2.2.7.1. Cromatografía gaseosa acoplada a un espectrómetro de masas en tándem

La cromatografía de gases es una técnica separativa que tiene la cualidad de conseguir la separación de mezclas muy complejas. Pero una vez separados, detectados, e incluso cuantificados todos los componentes individuales de una muestra problema, el único dato del cual se dispone para la identificación de cada uno de ellos es el tiempo de retención de los correspondientes picos cromatográficos. [46]
La espectrometría de masas puede identificar de manera casi inequívoca cualquier sustancia pura, pero normalmente no es capaz de identificar los componentes individuales de una mezcla sin separar previamente sus componentes, debido a la extrema complejidad del espectro obtenido por superposición de los espectros particulares de cada componente. Por lo tanto, la asociación de las dos técnicas, GC (“Gas Chromatography” – Cromatografía de Gases) y MS (“Mass Spectrometry” – Espectrometría de Masas) da lugar a una técnica combinada GC-MS que permite la separación e identificación de mezclas complejas. [46]

Una mezcla de compuestos inyectada en el cromatógrafo de gases se separa en la columna cromatográfica obteniendo el arrastre sucesivo de los componentes individuales aislados que pasan inmediatamente al espectrómetro de masas. Cada uno de estos componentes se registra en forma de pico cromatográfico y se identifica mediante su respectivo espectro de masas. En este proceso, el espectrómetro de masas, además de proporcionar los espectros, actúa como detector cromatográfico al registrar la corriente iónica total generada en la fuente iónica, cuya representación gráfica constituye el cromatograma o “TIC” (Total Ion Current - Corriente Iónica Total). En efecto, la corriente iónica generada por todos los iones da lugar a un pico gaussiano de área proporcional a la concentración del compuesto detectado. [46]

Las mejores técnicas de análisis cualitativo son aquéllas que combinan la capacidad de separación de la cromatografía con la capacidad de la identificación de técnicas como la espectroscopía de masas (técnicas acopladas). Por otra parte, también se utiliza la cromatografía de gases para establecer la cantidad de componentes individuales presentes en una muestra, empleando curvas de calibración de los correspondientes patrones. A tal efecto, se pueden emplear diferentes detectores basados generalmente en la medida de una determinada propiedad física de los componentes a analizar. Algunos de ellos son universales, mientras que otros resultan más selectivos y responden únicamente a algunos de los componentes de una mezcla. En este sentido, la espectrometría de masas acoplada a la cromatografía de gases puede resultar un detector universal para la cuantificación de sustancias orgánicas si se registran el total de los iones generados o bien un detector más específico cuando se seleccionan unos iones de masa determinada. [46]

2.2.8. Muestreo Aleatorio Simple (MAS)

El muestreo aleatorio simple es útil, y debe ser aplicado, cuando la distribución espacial de contaminantes en un sitio potencialmente contaminado presenta homogeneidad. Se caracteriza porque cualquier punto de muestreo presenta la misma probabilidad de ser seleccionado que los restantes puntos de muestreo. Además, tal probabilidad es independiente entre puntos. Lo que significa que la
selección de un determinado punto de muestreo no tiene ninguna influencia sobre la probabilidad de que cualquier otro punto de muestreo sea seleccionado. [47]

Por tanto, si se aplicara este procedimiento en un sitio potencialmente contaminado para obtener \(n \) número de muestras, cualquier combinación de \(n \) muestras tendría la misma probabilidad de ser seleccionada. El número de combinaciones posibles estaría determinado por el tamaño de la muestra [47].

IMAGEN 11. Muestreo aleatorio simple

En la imagen 10 se puede observar un bosquejo para la toma de muestras, teniendo en cuenta una zona de estudio previamente seleccionada y sabiendo que en el muestreo aleatorio simple cualquier punto de muestreo presenta la misma probabilidad de ser seleccionado que los restantes puntos de muestreo.

2.2. Marco Legal

En el estudio elaborado, la normativa vigente que se tuvo en cuenta fue la basada en normas de usos de plaguicidas en la agricultura, los residuos de estos en los alimentos y aquellos que están prohibidos o autorizados para su uso. El Codex Alimentarius es reconocido internacionalmente ya que su objetivo es proteger la salud de los consumidores y asegurar las prácticas en el transporte internacional de los alimentos. En este código se mencionan los alimentos que no deben contener una cantidad muy alta de residuos de plaguicidas y también se establecen unos límites máximos de residuos los cuales deben tenerse en cuenta en la venta de los alimentos.

En el cuadro 4 se encuentra normativa legal referente al uso de plaguicidas en Colombia, las cuales son adaptables al estudio elaborado, establecidas por diferentes entidades como son el Ministerio de Agricultura, el Congreso de la República, el Ministerio de Salud, entre otras.
CUADRO 6. Normativa Aplicable al Proyecto

<table>
<thead>
<tr>
<th>Ley, Resolución, Decreto o Acuerdo</th>
<th>Año de emisión</th>
<th>Entidad que emite</th>
<th>Objeto de la norma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolución 2189</td>
<td>1974</td>
<td>Ministerio de Agricultura</td>
<td>Cancela los registros de los productos fungicidas de uso agrícola producidos a base de compuestos de Mercurio.</td>
</tr>
<tr>
<td>Ley 9</td>
<td>1979</td>
<td>Congreso de la República</td>
<td>Incluye normas generales sobre la producción, formulación, almacenamiento, distribución y movilización y aplicación de plaguicidas</td>
</tr>
<tr>
<td>Resolución 704</td>
<td>1986</td>
<td>Presidencia de la República</td>
<td>Prohíbe el uso de DDT, sus derivados y compuestos a menos que se empleen en la ejecución de programas o campañas adelantadas o autorizadas por el Ministerio de Salud.</td>
</tr>
<tr>
<td>Decreto 1843</td>
<td>1991</td>
<td>Ministerio de Salud</td>
<td>Reglamenta parcialmente los títulos III, V, VI, VII y XI de la Ley 9 de 1979 sobre uso y manejo de plaguicidas con el objeto de evitar que afecten la salud de la comunidad, la sanidad animal y vegetal o causen deterioro al medio ambiente.</td>
</tr>
<tr>
<td>Resolución 1756</td>
<td>2006</td>
<td>ICA</td>
<td>Por el cual se adopta el manual de procedimientos de regulación y control de plaguicidas químicos de uso agrícola.</td>
</tr>
<tr>
<td>Resolución 2906</td>
<td>2007</td>
<td>Ministerio de Protección Social</td>
<td>Se establecen los límites máximos de residuos de plaguicidas (LMR) en alimentos para consumo humano y piensos o forrajes.</td>
</tr>
<tr>
<td>Resolución 1167</td>
<td>2010</td>
<td>ICA</td>
<td>Se establecen los requisitos para el registro y el control de personas que se dediquen a la comercialización de insumos agropecuarios y/o semillas</td>
</tr>
</tbody>
</table>

Fuente: Las autoras
3. DESARROLLO CENTRAL

La determinación de la concentración de Malathion en muestras de cebolla larga en la vereda y la correlación de los posibles efectos adversos en la salud se llevó a cabo de la siguiente manera.

3.1. Diseño metodológico

3.1.1. Recopilación de información preliminar

Según el Esquema de Ordenamiento Territorial (EOT), el municipio de Aquitania se divide en 16 veredas que ocupan una extensión de 91.317 Ha, equivalentes al 96.8% del territorio, la vereda Quebradas ocupa una extensión de 24.9 hectáreas que corresponden al 0.026% de la extensión total del municipio. Está ubicada en la parte central del municipio, limita con el casco urbano, las veredas Hato Viejo, Tobal y Pérez. Cuenta con una población total de 298 habitantes. [55]

Para seleccionar el sitio de trabajo en el cual se desarrolló el estudio se tuvo en cuenta diferentes factores tales como el nivel de producción y calidad de cebolla, la cercanía a la laguna del cultivo (tiene un costo más alto debido a la calidad de la misma), la facilidad de acceso a la vereda tanto para la toma de muestras de las cebollas como para la aplicación de las encuestas según la población a encuestar, teniendo en cuenta que fueron dirigidas a los agricultores y habitantes aledaños a los cultivos, además la localización de los predios y los cultivos donde la cebolla ya se encontraba en condiciones para ser retirada, así como también se tuvo en cuenta que en los mismos se hiciera uso de plaguicidas.

3.1.2. Instrumento para la caracterización de las prácticas agronómicas

Teniendo en cuenta la ubicación de las fincas y el lugar donde la cebolla Junca estaba en cosecha, se aplicaron las encuestas a los agricultores para con esto realizar la caracterización del plaguicida Malathion, en donde se realizaron preguntas con respecto a la aplicación de dicho plaguicida en los cultivos de cebolla, el manejo de los equipos de protección personal, conocimiento acerca del Malathion, y a su vez información primaria como edad, sexo, educación, ocupación. Con esto se elaboró la correlación con los RIPS, los cuales fueron adquiridos por medio del E.S.E Hospital de Aquitania.

De acuerdo con la información suministrada por la Alcaldía del municipio de Aquitania, Boyacá y a su vez la encuesta del SISBEN, la vereda de Quebradas cuenta con 298 habitantes de los cuales 119 se desempeñan actualmente como agricultores. Para conocer el número de encuestas que se debían realizar a los agricultores de la vereda Quebradas, se aplicó la fórmula para el tamaño de
muestra en poblaciones finitas teniendo en cuenta que se conocía el total de la población que cultiva:

Fórmula 1.

\[
 n = \frac{z^2 \cdot q \cdot N}{e^2 \cdot N - 1 + z^2 \cdot p \cdot q}
\]

Dónde:

- \(n \): tamaño de muestra (número total de encuestas)
- \(z \): Es la desviación del valor medio que aceptamos para lograr el nivel de confianza deseado (tablas).
- \(p \): Variabilidad positiva y para valores poblacionales se toma valor de 0.5
- \(q \): Variabilidad negativa y para valores poblacionales se toma valor de 0.5
- \(N \): Número de población
- \(e \): Es el margen de error máximo que admito (por ejemplo. 5%) [56]

Reemplazando: \(n = \frac{1.96^2 \cdot 0.5 \cdot 0.5 \cdot 119}{0.1^2 \cdot 119 - 1 + 1.96^2 \cdot 0.5 \cdot 0.5} = 52 \)

Se tiene que, según la aplicación de la fórmula para hallar la cantidad de encuestas a realizar en los agricultores de Aquitania, se aplicaron cincuenta y dos (52) encuestas con las preguntas correspondientes a esta población. En el anexo 1 se puede observar el diseño de encuesta aplicada, el cual desarrolla indicadores como el manejo de los equipos de protección personal, conocimiento acerca del Malathion, así como información primaria.

3.1.3. Instrumento para la caracterización las condiciones de salud

En la vereda Quebradas, teniendo en cuenta el censo realizado y la ubicación de las fincas, se aplicaron las encuestas a los habitantes propios de cada finca, se realizaron preguntas relacionadas con los posibles efectos provocados por la aplicación de Malathion como lo son dificultad respiratoria, debilidad, dolor de cabeza, mareo, entre otros y a su vez información primaria como edad, sexo, educación, para posteriormente hacer la correlación con los RIPS que fueron suministrados por el E.S.E Hospital de Aquitania. Para el traslado en dicho municipio, se realizó en compañía de personas nativas del municipio y vereda. Para saber el número de encuestas que se debían realizar a los habitantes de la vereda Quebradas se aplicó la fórmula 1 para el tamaño de muestra en poblaciones finitas teniendo en cuenta la población de 298 habitantes con que cuenta la vereda.
Reemplazando: \[n = \frac{1.96^2 \times 0.5 \times 0.5 \times 298}{0.1^2 \times 298 - 1 + 1.96^2 \times 0.5 \times 0.5} = 73 \]

Se tiene que, según la aplicación de la fórmula para hallar la cantidad de encuestas a realizar en la comunidad de Aquitania, se aplicaron setenta y tres (73) encuestas con las preguntas correspondientes a esta población. En el anexo 2 se puede observar el diseño de encuesta aplicada a los habitantes de la región, el cual desarrolla indicadores como posible sintomatología presentada por contacto, inhalación como lo son la dificultad respiratorio, dolor de cabeza, tiempo transcurrido entre la terminación de la fumigación y el cambio de ropa, tiempo el cual ha trabajado como aplicador de cebolla (si aplica), así como información primaria.

3.1.4. Aplicación de los instrumentos

Al tener en cuenta la vereda Quebradas como punto de partida para el estudio, se realizó un censo el cual consistió en ubicar las fincas pertenecientes a la vereda, para poder aplicar las encuestas, teniendo en cuenta la distribución geográfica, el acceso a las mismas, la producción y la calidad de la cebolla. Se obtuvo información acerca de la aplicación del plaguicida, las cantidades, la frecuencia y demás factores, para luego poder realizar la caracterización del mismo y a su vez información sobre posibles efectos adversos por la aplicación del plaguicida en la zona.

En la imagen 12 se puede observar el momento en que algunos de los agricultores retiran la cebolla al encontrarse en su última etapa, es decir, madura para posteriormente reunirlas en ruedas y comercializarlas.

IMAGEN 12. Cosecha de cebolla en la vereda Quebradas.

Fuente: Las autoras.
3.1.5. Diseño muestral para la toma de muestras de cebolla

Al aplicar la fórmula para determinar el tamaño muestral queda reducida a la expresión cuando se trabaja con universos de tamaño muy grande (se considera muy grande a partir de 100.000 individuos).

\[
n = \frac{z^2 \times p \times (1 - p)}{e^2}
\]

Dónde:

- \(n\) = El tamaño de la muestra que queremos calcular
- \(N\) = Tamaño del universo (p.e. 136 millones de cebolla cultivada)
- \(Z\) = Es la desviación del valor medio que aceptamos para lograr el nivel de confianza deseado. En función del nivel de confianza que busquemos, usaremos un valor determinado que viene dado por la forma que tiene la distribución de Gauss. Los valores más frecuentes son:
 - Nivel de confianza 90% -> \(Z=1,645\)
 - Nivel de confianza 95% -> \(Z=1,96\)
 - Nivel de confianza 99% -> \(Z= 2,575\)
- \(e\) = Es el margen de error máximo que admito (p.e. 5%)
- \(p\) = Es la proporción que esperamos encontrar. Como regla general, se usará \(p=50\%\) si no se tiene ninguna información sobre el valor que se espera encontrar. Si tengo alguna información, usaré el valor aproximado que espero (ajustando hacia el 50% ante la duda). [57]

\[
n = \frac{1,96^2 \times 0,5 \times (1 - 0,5)}{0,05^2} = 384
\]

Al tomarse la vereda Quebradas como punto de partida para el estudio, se aplicó la fórmula para determinar el tamaño de la muestra, se realizó un muestreo aleatorio simple en la vereda, se tomaron 6 predios y en estos se tomó la muestra compuesta (conformada por 64 cebollas) para completar la cantidad del tamaño muestral, debido que el laboratorio exigió un peso mínimo de 1000 g por muestra analizada y así, determinar las concentraciones de Malathion en la cebolla cosechada.
3.1.5.1. Cadena de custodia

De acuerdo a lo señalado en el diseño muestral, el muestreo fue llevado a cabo como un muestreo aleatorio simple (por predios y/o fincas) con el fin de obtener de allí una única muestra compuesta por predio debido a la gran cantidad de cebolla cultivada:

1. Las muestras de cebollas fueron guardadas en bolsas de polietileno con el fin de no alterar las condiciones de cada una de éstas, por un tiempo aproximadamente de 20 horas, cabe tener en cuenta que cada muestra por predio fue rotulada en su respectiva bolsa, las muestras se mantuvieron en un lugar a baja temperatura, de igual manera cada una de las muestras se mantuvieron separadas para no afectar sus condiciones.

2. Posteriormente, las muestras tomadas de cebolla se llevaron en un tiempo promedio de 20 horas (día siguiente) al laboratorio donde se elaboraron los análisis con cromatografía gaseosa acoplada a espectrofotómetro de masas en tándem. Cada una de las bolsas de polietileno llevaron una cadena de custodia, la vida útil de la cebolla larga es de 20 días manteniéndose en refrigeración a (4°C).

3. En el laboratorio se utilizó el método GC-MSMS: Cromatografía gaseosa acoplada a un espectrómetro de masas en tándem, barrido 168 moléculas, usando como gas de arrastre el helio. El cual es un método acreditado ISO 17025:2005 para análisis en frutas, verduras y cereales. El instrumento empleado fue un cromatógrafo con auto-muestreador Agilent y el espectrofotómetro marca Waters.

3.1.6. Determinación de las concentraciones de Malathion en cebollas cosechadas

El resultado del muestreo, fue una muestra compuesta por cada predio, teniendo en cuenta la disminución de costos para los análisis de laboratorio y a su vez la representatividad de la muestra.

Las muestras se tomaron y fueron guardadas en bolsas de polietileno, luego se conservaron en una nevera, la cual mantuvo características similares con respecto a la temperatura y conservación de las mismas, para posteriormente ser llevadas al laboratorio donde fueron analizadas.

Las muestras fueron llevadas a un laboratorio certificado en donde se realizaron análisis por el método cromatografía de gases acoplada a un espectrómetro de masas en tándem para determinar la concentración de Malathion en las mismas.
4. RESULTADOS Y ANÁLISIS

4.1. Análisis químico de las muestras

La determinación de los plaguicidas se determinó por cromatografía, cuyos resultados se relacionan en el cuadro N° 5, en donde se puede observar que la ausencia de Malathion, y la presencia de concentraciones (trazas) de Chlorothalonil, Myclobutanil y Profenofos.

CUADRO 7. Relación de plaguicidas hallados

<table>
<thead>
<tr>
<th>Predios</th>
<th>Plaguicidas hallados</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No se detectaron plaguicidas</td>
</tr>
<tr>
<td>2</td>
<td>Se detectaron trazas de plaguicida Chlorothalonil</td>
</tr>
<tr>
<td>3</td>
<td>No se detectaron plaguicidas</td>
</tr>
<tr>
<td>4</td>
<td>Se detectaron trazas de plaguicidas Chlorothalonil, Myclobutanil y Profenofos</td>
</tr>
<tr>
<td>5</td>
<td>Se detectaron trazas de plaguicida Chlorothalonil</td>
</tr>
<tr>
<td>6</td>
<td>Se detectaron trazas de plaguicida Chlorothalonil</td>
</tr>
</tbody>
</table>

Fuente: Las autoras.

Para la detección de estos plaguicidas en las muestras de cebolla Junca se realizó en el laboratorio la prueba de cromatografía de gases acoplada a un espectrómetro de masas en tándem en donde no se registraron valores por encima del límite de comunicación (límite de detección de la técnica) establecido por el laboratorio (mayor a 0,01 mg/kg) en las muestras por lo que fue necesario revisar en trazas menores, por lo tanto se encontró que las cantidades registradas de los plaguicidas anteriormente mencionados son menores a 0,01 mg/kg, además no superan los límites máximos de residuos permisibles establecidos por cada una de las entidades seleccionadas como lo son EPA, el INVIMA, el CODEX Alimentarius y el ICA. En el Anexo 3 se pueden observar los análisis arrojados por el laboratorio.

Existen diferentes factores que determinan la ausencia de Malathion, uno de ellos es la persistencia ya que este plaguicida al tener contacto con el producto donde es aplicado (cebolla larga) se disipa rápidamente debido a su volatilización, en promedio una hora [58]. Por esto, la cinética del plaguicida es de primer orden, lo que significa que la velocidad es proporcional a la concentración del plaguicida. En los suelos su persistencia es baja. La vida del plaguicida en los sistemas terrestres varía de 1 a 25 días pues depende de la velocidad de degradación del contenido de materia orgánica o del grado de adsorción a las partículas. Con respecto a los animales, cuando la mayor parte del plaguicida entra al cuerpo, éste es metabolizado y eliminado casi por completo en 24 horas y cuando es absorbido por las plantas, se localiza principalmente en las partes que contienen agua, lo que facilita también su metabolismo. [59]
Uno de los plaguicidas que es utilizado en la vereda Quebradas para los cultivos de cebolla, es el Malathion 57% EC el cual según los registros del ICA, la categoría de toxicidad es III en el cuadro de clasificación toxicológica, lo que significa que es un plaguicida medianamente toxico. La DL 50 en formulación líquida en dosis oral es de 2000 a 3000 y dérmica es mayor a 4000. [26]

Como se mencionó, hubo ausencia de Malathion en las muestras de cebolla Junca, por tanto, se realizó comparación con normativa nacional e internacional con información del CODEX Alimentarius, la EPA, el INVIMA y el ICA de los plaguicidas Chlorothalonil, Myclobutanil y Profenofos que fueron encontrados. Es importante tener en cuenta que estas trazas de plaguicidas fueron encontradas en varios predios, pero hubo un predio (Número 4) el cual obtuvo trazas de los tres plaguicidas cuando se realizó la encuesta los habitantes de dicho predio afirmaron la aplicación de otros tipos de plaguicidas pero no se refirieron a ninguno de los antes mencionados esto puede significar que en este predio no se realiza la adecuada aplicación de la dosis lo cual puede indicar que la cebolla producida en este predio y que está siendo de igual forma comercializada podría estar presentando riesgos para la salud de las personas tanto para consumo de la misma como para los habitantes que viven en este y cerca de este predio y a su vez para las personas que aplican este tipo de plaguicidas sin ninguno tipo de protección personal.

Teniendo en cuenta que los componentes del Malathion al ser expuesto con el aire, reaccionan de tal manera que se volatilizan de una forma rápida, es factible que dado este carácter la concentración del mismo no haya sido detectada.

4.2. Plaguicidas encontrados

De acuerdo con los resultados de la cromatografía de gases, la cual realizó un barrido de diversas moléculas con el fin de, no solo averiguar el plaguicida seleccionado para el estudio, si no realizar un reporte de diversos plaguicidas que pudieran estar presentes en las muestras de cebolla, como resultado de esta cromatografía los plaguicidas encontrados fueron el Chlorothalonil, Myclobutanil y Profenofos. A continuación existe una relación entre tres entidades que permiten o prohíben el uso de los plaguicidas hallados en las muestras tomadas de cebolla larga, mencionadas en el cuadro 6.
CUADRO 8. Entidades que permiten y prohíben el uso de los plaguicidas Chlorothalonil, Myclobutanil y Profenofos en la cebolla.

<table>
<thead>
<tr>
<th>Producto-Institución</th>
<th>EPA</th>
<th>INVIMA</th>
<th>CODEX Alimentarius</th>
<th>ICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorothalonil</td>
<td>Permitido 0.5 ppm</td>
<td>Permitido 0.5 mg/Kg</td>
<td>Permitido 10 mg/Kg</td>
<td>Permitido</td>
</tr>
<tr>
<td>Myclobutanil</td>
<td>No Permitido</td>
<td>No Permitido</td>
<td>No Permitido</td>
<td>Permitido</td>
</tr>
<tr>
<td>Profenofos</td>
<td>No Permitido</td>
<td>No Permitido</td>
<td>No Permitido</td>
<td>No permitido</td>
</tr>
</tbody>
</table>

Fuente: Las autoras.

4.2.1. Chlorothalonil

El cuadro 6 se elaboró de acuerdo con las tablas establecidas por cada una de las entidades nacionales e internacionales acerca de los límites máximos de residuos de plaguicidas en los alimentos y de la prohibición o aprobación de los plaguicidas, las cuales se pueden observar en los anexos 4, 5 y 6. En estos cuadros se puede observar que el Chlorothalonil es permitido por todas las entidades internacionales y nacionales seleccionadas, para ser aplicado en los cultivos de cebolla, cada una de ellas establecen unos límites máximos de residuos, para la EPA 0.5 ppm, el INVIMA 0.5 mg/Kg, el CODEX Alimentarius 10 mg/Kg y el ICA permite a cuatro empresas distribuir este producto, las cuales son Proficol Andina B.V. Sucursal Colombia, Trust Química Ltda., Syngenta S.A. y Adama Andina B.V. Sucursal Colombia para las cuales el plaguicida se encuentra clasificado en la categoría III de toxicidad [60], lo que significa que es poco peligroso teniendo en cuenta la tabla de la clasificación toxicológica de los plaguicidas y la formulación o presentación que en el caso de este producto es polvo líquido cuya dosis letal (DL₅₀) aguda oral es entre 2000 a 3000 mientras que dermal es mayor a 4000. [26] Este plaguicida también genera daños al medio ambiente siendo tóxico para los peces y microcrustáceos. La aplicación de éste en los cultivos de cebolla, debe ser cada 7 a 10 días si es necesario con 3 repeticiones cada una con una cantidad de 2 a 5L/Ha. [61]

4.2.2. Myclobutanil

Como se observa en el cuadro 6, se tiene que el Myclobutanil no está autorizado por la ninguna de las entidades internacionales seleccionadas, mientras que para la entidad nacional ICA, este plaguicida sí está permitido para su aplicación en los cultivos de cebolla y la empresa autorizada para su distribución es Point de Colombia Ltda. según la actualización hasta el presente año 2015, la cual lo clasifica en la tabla toxicológica de plaguicidas, en la categoría III, lo que significa que es poco peligroso y debido a su formulación sólida que es (polvo) la DL₅₀ oral es de 500 a 2000 y dermal es mayor a 1000 [26].
Cabe tener en cuenta que el hecho de que este plaguicida esté clasificado como poco peligroso no lo excluye de generar daños al ambiente, a los cultivos de cebolla, a los agricultores así como a los consumidores finales, pues de no seguir las indicaciones de su aplicación y tampoco hacer uso de los elementos de protección personal, el contacto con este traerá consecuencias. Es de importancia exigir a la entidad distribuidora, dictar capacitaciones a las personas que manejan este tipo de plaguicidas que sirvan de sensibilización y precaución.

Finalmente, acerca del Myclobutanil, las tres entidades con las cuales se planteó hacer comparación de los límites permisibles o máximos de residuos coinciden en no permitir el uso de este en alimentos como la cebolla Junca, teniendo en primer lugar que se trata de un alimento altamente consumido por la comunidad, pero que el tiempo que tarda en hacer efecto éste es de una hora, asfixiando el proceso Adenosín Trifosfato (ATP) de las células fúngicas, lo que se traduce en una concentración fuerte que a pesar de la eficiencia para atacar el hongo, puede desencadenar en afecciones al consumidor final, ver anexos 7 y 8. [26]

4.2.3. Profenofos

De acuerdo con el análisis y comparaciones que se han realizado con los anteriores plaguicidas, se puede observar en el cuadro 6 que la EPA no establece ni permite el uso del Profenofos en los cultivos de cebolla, según lo identificado en las tablas suministradas por la EPA este plaguicida es recomendado tan solo para uso de carnes de ganado o animales tales como la cabra, el caballo y la oveja, pues como se mencionó en la descripción del plaguicida, este hace efecto primordialmente en insectos y gusanos, los cuales tienden a salir con frecuencia en el ganado. Un ejemplo de ello es el gusano barrenador que es la larva de la mosca el cual se alimenta de carne viva del ganado, las cuales se reposan principalmente en las heridas de los animales o en las mucosas. [62]

En el INVIMA y el CODEX Alimentarius tampoco se permite el uso del plaguicida, al igual que en el ICA, donde se prohíbe ser aplicado en los cultivos de cebolla larga; actualmente, se encuentran autorizadas tres empresas en Colombia para la distribución de este producto pero para ser aplicado en cultivos de papa, tomate, frijol, arroz y claveles, ver anexos 9 y 10, con respecto a la clasificación toxicológica, existen empresas que clasifican el Profenofos en la categoría II lo que significa que es moderadamente peligroso, mientras que otras empresas como Grupo Químico Andino Ltda. Lo clasifican en la categoría IB [60] como producto muy peligroso donde la DL₅₀ oral es de 20 a 200 y dermal es 40 a 400 siendo su formulación líquido [26]. Finalmente, como se ha apreciado en los cuadros anteriores, el principal objetivo del Profenofos es atacar los insectos que se encuentran en cultivos de flores o claveles, además en alimentos de granos, como los frijoles y arroz recomendado en estos productos.
Se debe tener en cuenta que de los tres plaguicidas encontrados en los análisis de laboratorio de las muestras de cebolla de algunos predios, el Profenofos se caracteriza por ser de mayor riesgo toxicológico al igual que podría generar mayores efectos adversos en la salud, es por esto, que se debe tener precaución al momento de aplicar no solo este si no cualquier tipo de plaguicida, es decir, seguir el procedimiento adecuado en las cantidades recomendadas para la preparación y aplicación de estos productos, ya que si es mal suministrado se pueden dañar los cultivos de alimentos, además se podrían ocasionar daños a la salud de los agricultores, habitantes aledaños y consumidores finales. Es de vital importancia hacer uso de los elementos de protección personal para evitar contacto alguno con estos plaguicidas.

4.3. Correlación con los RIPS de Aquitania

A continuación se presenta la correlación con los RIPS suministrados por la E.S.E. Hospital de Aquitania sobre las consultas externas y las consultas por urgencias registradas durante un periodo de tiempo de un año tomado desde Enero de 2014 hasta Enero de 2015, esto con el fin de analizar los síntomas por posible intoxicación con los plaguicidas chlorotalonil, myclobutanil y profenofo con el porcentaje de la población que los presenta en el municipio de Aquitania.

De acuerdo con los RIPS y los posibles efectos adversos a la salud ocasionados por los plaguicidas encontrados en la cebolla, se tienen en cuenta cuadros clínicos referentes a la intoxicación por plaguicidas hidrocarburos aromáticos-bencenos grupo al cual pertenece el Cholothalonil, los cuales pueden causar efectos agudos y crónicos en el sistema nervioso central, la intoxicación aguda produce cefalea, náuseas, mareo, unos de los efectos agudos más conocidos es la irritación respiratoria (tos y dolor de garganta), además de otros efectos crónicos como la sequedad, irritación y agrietamiento de la piel, dermatitis, eritema y prurito, al ser inhalado además de la tos genera disfonía y arritmia cardiaca; dentro otros efectos crónicos se encuentra la epistaxis, hematuria y hemorragia vaginal [63], tal como se puede apreciar en el en los anexos 11 y 12, en el anexo 11 se puede visualizar la tabla con las consultas de los posibles síntomas generados al tener algún tipo de contacto con el plaguicida chlorotalonil por consulta externa, con su respectivo número de consultas y porcentaje. De igual manera en el anexo 12 se observa la tabla del porcentaje de consultas de los posibles síntomas por urgencias.

En las consultas tanto externas como urgencias en la E.S.E. Hospital de Aquitania, se diagnosticaron algunos de los síntomas anteriormente mencionados, por lo que al ser señales provocadas por el Chlorothalonil más específicas, puede existir una correlación con los RIPS suministrados tal como se aprecia en las gráficas 1 y 2 donde dos de los síntomas mencionados, presentaron un alto grado de frecuencia en consultas.

De las consultas registradas por dermatitis se encuentran las alérgicas por contacto, de causa no especificada, por contacto con irritantes, por haber tenido
contacto con productos químicos y demás, es decir, que al mencionar los productos químicos, los plaguicidas posiblemente hacen parte de esta lista, ya que gran parte de las actividades realizadas por los habitantes de esta región se relacionan con la agricultura, los cuales, en su gran mayoría no utilizan los equipos de protección personal y diariamente tienen contacto con cultivos fumigados con plaguicidas a pesar de no ser la dermatitis por contacto con químicos la más consultada. Es importante mencionar que muchos de los habitantes aledaños a los predios donde se practica la agricultura, no están exentos de estar en medio de un ambiente contaminado por plaguicidas, ya que el Chlorothalonil al ser aplicado, inmediatamente se encuentra en contacto con el aire circundante, por lo que este se encuentra presente tanto en la fase de vapor como en la fase particulada con una vida media estimada de 7 días. La persistencia de este plaguicida está establecida como poco persistente y el rango de días de su eliminación es de 6 a 43 días luego de su aplicación. [64]. De la gráfica 1 se puede observar que las enfermedades y síntomas del sistema nervioso es la de mayor frecuencia por consulta externa en donde se incluye la cefalea, mareo, náuseas y demás, lo cual concuerda con la gráfica 2.

GRAFICA 1: Porcentaje de consultas por posibles síntomas relacionados con el plaguicida Chlorothalonil en Aquitania por consulta externa

<table>
<thead>
<tr>
<th>Enfermedad</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Otras enfermedades</td>
<td>82.6%</td>
</tr>
<tr>
<td>Enfermedades y síntomas del sistema nervioso</td>
<td>1.956%</td>
</tr>
<tr>
<td>Enfermedades respiratorias</td>
<td>0.0283%</td>
</tr>
<tr>
<td>Enfermedades de la sangre</td>
<td>0.3946%</td>
</tr>
<tr>
<td>Enfermedades en la piel</td>
<td>0.6584%</td>
</tr>
<tr>
<td>Enfermedades cardiacas</td>
<td>0.0867%</td>
</tr>
</tbody>
</table>

Fuente: Las autoras.
GRAFICA 2: Porcentaje de consultas por posibles síntomas relacionados con el plaguicida Chlorothalonil en Aquitania por consulta de urgencias.

El Myclobutanil, uno de los plaguicidas con trazas halladas en las cebollas, presenta una sintomatología específica, al tener contacto con este ya sea por vía oral o dermal, la sintomatología de este producto y los registros en los RIPS de la E.S.E Hospital de Aquitania, reporta que la cefalea, las náuseas, el vómito, la diarrea, los trastornos específicos de los ojos y la nariz y la dermatitis por contacto debido a productos químicos, son las consultas que se relacionan, pero cabe aclarar que son síntomas que no solo pueden ser producidos por el Myclobutanil sino por otros agentes ajenos. Como se observa en las gráficas 3 y 4, en donde se presenta una relación con los posibles signos de intoxicación por parte de este plaguicida. En los anexos 13 y 14 se pueden observar las tablas en donde se especifica la cantidad de consultas por posibles signos de intoxicación con el plaguicida Myclobutanil con su respectivo porcentaje.

El Myclobutanil es poco persistente; este plaguicida al aplicarse en la cebolla tiene contacto directo con el aire y se presenta en vapor y en partículas, estas son removidas al depositarse con la lluvia y el polvo. La movilidad en el suelo es baja y es eliminado rápidamente, en el agua se adsorbe en los sólidos suspendidos y sedimentos. El potencial de bioconcentración varía de moderado a alto, por esto se considera que es utilizado en los productos agrícolas, porque hace efecto de manera rápida en su objetivo, las plagas. [65]
GRAFICA 3: Porcentaje de consultas por posibles síntomas relacionados con el plaguicida Myclobutanil en Aquitania por consulta externa

Fuente: Las autoras.

GRAFICA 4: Porcentaje de consultas por posibles síntomas relacionados con el plaguicida Myclobutanil en Aquitania por consulta de urgencias

Fuente: Las autoras.

Con respecto al Profenofos, éste presenta una sintomatología característica de los plaguicidas organofosforados, con respecto a estos se puede observar los anexos 15 y 16 acerca de las consultas por posibles signos de intoxicación, este
plaguicida de los tres hallados en la cebolla, se considera es el más tóxico debido a que los efectos que genera en la salud son más complejos, entre ellos están la cefalea, excesiva mucosidad nasal y bucal, salivación excesiva, ojos llorosos, calambres abdominales, aumento de la transpiración y el pulso, descoordinación, visión borrosa, confusión mental, temblores, contracciones musculares, convulsiones, dificultad respiratoria y debilidad muscular; como se puede analizar, este plaguicida afecta con mayor intensidad el sistema nervioso y el sistema muscular de acuerdo con los síntomas listados. A continuación se presentan las gráficas 5 y 6 con las respectivas consultas por urgencias y consulta externa de acuerdo con los RIPS suministrados que presentan algunos de los posibles efectos generados por el Profenofos. En el anexo 16 se observa la tabla con datos precisos acerca de las consultas realizadas con los posibles síntomas generados por contacto con este plaguicida.

GRAFICA 5: Porcentaje de consultas por posibles síntomas relacionados con el plaguicida Profenofos en Aquitania en consulta externa.

<table>
<thead>
<tr>
<th>Enfermedad</th>
<th>Consultas porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Otras enfermedades</td>
<td>97.25%</td>
</tr>
<tr>
<td>Enfermedades del sistema digestivo</td>
<td>0.124%</td>
</tr>
<tr>
<td>Enfermedades respiratorías</td>
<td>0.007%</td>
</tr>
<tr>
<td>Enfermedades cardiacas y/o a la sangre</td>
<td>0.12%</td>
</tr>
<tr>
<td>Enfermedades y síntomas del sistema nervioso</td>
<td>1.78%</td>
</tr>
<tr>
<td>Dolores musculares</td>
<td>0.73%</td>
</tr>
</tbody>
</table>

Fuente: Las autoras.
GRAFICA 6: Porcentaje de consultas por posibles síntomas relacionados con el plaguicida Profenofos en Aquitania por consulta Urgencias.

Fuente: Las autoras.

En la correlación realizada con los RIPS, se pudo observar que unos de los registros hechos en Aquitania tanto por consulta general como por consulta de urgencias es por insecticidas organofosforados o carbamatos, el cual es el grupo químico al cual pertenece el Profenofos al igual que el Malathion, así que con este caso existe estrecha relación, pues como se pudo observar, el plaguicida con el cual se hace la correlación, aunque no se encontró un alto grado de residuos y concentración en la cebolla analizada, también hace parte de los productos varios utilizados en el municipio para el cuidado de sus cultivos.

Con respecto al cuadro 7, estas consultas pueden existir por diferentes factores y uno de ellos puede ser el no hacer uso de los elementos de protección personal al igual que una posible mala dosificación de los plaguicidas generando no solo daños a los cultivos si no también altas concentraciones en el ambiente y entorno de los predios, donde varias personas habitan, además a pesar que este plaguicida es poco persistente, su vida media es de 8,6 horas. Como bien se sabe, el plaguicida al ser aplicado en los cultivos, mantiene contacto con los flujos de aire, donde los vapores reaccionan con radicales hidroxilo y las pequeñas partículas son removidas con la lluvia y el polvo. En el suelo, la movilidad de este plaguicida es baja y es eliminado rápidamente por hidrólisis químicas y por biodegradación. [66]
CUADRO 9. Consultas externa general y consulta por urgencias por insecticidas Organofosforados y Carbamatos en Aquitania.

<table>
<thead>
<tr>
<th>Consulta</th>
<th>N° de consultas diagnosticadas</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consulta externa general</td>
<td>Insecticidas organofosforados y carbamatos</td>
<td>2</td>
</tr>
<tr>
<td>Consulta urgencias</td>
<td>Insecticidas organofosforados y carbamatos</td>
<td>2</td>
</tr>
</tbody>
</table>

Fuente: Las autoras.

4.4. Tabulación encuestas agricultores.

La encuesta elaborada para los agricultores, se encuentra directamente relacionada con el conocimiento, uso y aplicación del plaguicida Malathion, al no encontrar residuos de éste en las muestras de cebolla analizadas, se hace una relación con algunas de las respuestas suministradas por los agricultores de la vereda Quebradas. La edad de la comunidad de agricultores encuestada oscila entre los 14 y 49 años, donde se encontraron desde niños que todavía no han culminado sus estudios hasta personas que están haciendo estudios técnicos y se dedican completamente a la agricultura como sembradores de cebolla y/o aplicadores de plaguicidas entre ellos el Malathion tal como se puede apreciar en la GRAFICA 9.

GRAFICA 7: Nivel de estudios agricultores.

Fuente: Las autoras.

Con respecto al nivel de estudios observado en la gráfica 8, la mayoría de los agricultores encuestados no han culminado la básica media y algunos de ellos sí, esto debido a las dificultades económicas para el ingreso a la educación superior así como también en su mayoría, los hombres prefieren dedicarse a las labores agrícolas como el cultivo de cebolla, su transporte o comercialización a pesar que los institutos educativos cuentan con el apoyo del SENA.
GRAFICA 8: Ocupación agricultores.

Fuente: Las autoras

GRAFICA 9: Tiene conocimiento de cuáles plaguicidas son utilizados para los cultivos de cebolla.

Fuente: Las autoras.

De acuerdo con la gráfica anterior y las siguientes, la mayoría de los agricultores tienen conocimiento acerca de los plaguicidas que son utilizados para la conservación de los cultivos de cebolla, teniendo en cuenta que cada uno los conoce con un nombre diferente y así mismo los riesgos que para ellos representan, pues según registros de la Alcaldía del municipio de Aquitania, en el año 2007 hubo intoxicaciones por estos donde el 55% fueron intoxicaciones intencionales suicidas mientras que el 45% de las intoxicaciones fueron causadas accidentalmente o por exposición. [67]
En las gráficas 10 y 11 se puede observar que la mayoría de agricultores tiene conocimiento en cuanto a los plaguicidas que son aplicados a la cebolla el 25% de los agricultores tiene conocimiento sobre la aplicación de Malathion, plaguicida objeto del estudio.

GRAFICA 10: Plaguicidas que conocen los agricultores.

<table>
<thead>
<tr>
<th>Plaguicida</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>No conoce</td>
<td>4%</td>
</tr>
<tr>
<td>Fitoraz</td>
<td>13%</td>
</tr>
<tr>
<td>Antracol</td>
<td>8%</td>
</tr>
<tr>
<td>Malathion</td>
<td>12%</td>
</tr>
<tr>
<td>Elosal</td>
<td>17%</td>
</tr>
<tr>
<td>Malathion</td>
<td>25%</td>
</tr>
</tbody>
</table>

Fuente: Las autoras.

GRAFICA 11: Uso de Malathion en los cultivos de cebolla larga

<table>
<thead>
<tr>
<th>Uso</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sí</td>
<td>75%</td>
</tr>
<tr>
<td>No</td>
<td>25%</td>
</tr>
</tbody>
</table>

Fuente: Las autoras.

GRAFICA 12: Aplicación de Malathion en los cultivos de cebolla larga.

<table>
<thead>
<tr>
<th>Uso</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matar plagas</td>
<td>77%</td>
</tr>
<tr>
<td>Matar mosquito</td>
<td>6%</td>
</tr>
<tr>
<td>Matar chiza</td>
<td>10%</td>
</tr>
<tr>
<td>Matar muque</td>
<td>6%</td>
</tr>
<tr>
<td>No sabe</td>
<td>2%</td>
</tr>
</tbody>
</table>

Fuente: Las autoras.
De acuerdo con las gráficas 12 y 13 acerca del uso y aplicación de Malathion, las personas de mayor edad y con más experiencia en su oficio, tienen conocimiento acerca de la aplicación de Malathion en la cebolla como lo puede ser para evitar las plagas, los mosquitos, la chiza o “muque” como ellos lo denominan y también acerca de su preparación para ser aplicados, es decir, que deben ser disueltos en agua, mientras que las personas de menor edad, no tienen conocimiento acerca de los plaguicidas que son usados para los cultivos de cebolla.

GRAFICA 13: Dónde adquieren el Malathion y en qué presentación (envase plástico, bolsa, reempacado)

<table>
<thead>
<tr>
<th>Presentación</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>No sabe</td>
<td>17,31%</td>
</tr>
<tr>
<td>En la agrícola del pueblo, envase plástico</td>
<td>82,69%</td>
</tr>
</tbody>
</table>

Fuente: Las autoras.

GRAFICA 14: Cantidad/medidas para preparar el Malathion

<table>
<thead>
<tr>
<th>Medida</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Litro/hectárea</td>
<td>73,08%</td>
</tr>
<tr>
<td>2 bolsas (450mg)/hectárea</td>
<td>9,62%</td>
</tr>
<tr>
<td>No sabe</td>
<td>17,31%</td>
</tr>
</tbody>
</table>

Fuente: Las autoras.

Además de tener conocimiento de los plaguicidas que son utilizados para los cultivos de cebolla y como producto principal del estudio, el Malathion, los agricultores también tienen conocimiento acerca de la presentación del producto, en dónde se comercializa, la dosis adecuada que debe prepararse para la aplicación, el cual según la ficha técnica es de 1,5-3 L/Ha, esto sin tener una capacitación o asesoría por parte de una entidad o empresa distribuidora de plaguicidas, sino por la experiencia y conocimientos adquiridos a través de la práctica continua de la agricultura, esto se puede observar en las gráficas 14 y 15.
De acuerdo con la gráfica 16, la técnica de aplicación de plaguicida más utilizada es la aspersión al follaje, la cual así mismo, es la más recomendada para el control tanto de insectos como de plagas, para esta práctica se puede hacer uso de diferentes equipos como los son la bomba de espalda manual, mecánica y la bomba halada o accionada por tractor. En el municipio el equipo de mayor uso es la bomba de espalda manual.

GRAFICA 16: Cuándo aplicar Malathion en los cultivos de cebolla.

Fuente: Las autoras.

GRAFICA 17: Cada cuanto es aplicado el Malathion

Fuente: Las autoras.
De acuerdo a las gráficas 17 y 18 se puede observar que el Malathion es aplicado principalmente cuando se encuentran plagas que puedan afectar el producto, así mismo se observa que es aplicado periódicamente en una proporción de 8-10 días en temporada de invierno y de 15-20 días en temporada de verano, según la información suministrada por los mismos agricultores encuestados que han aplicado plaguicidas.

GRAFICA 18: Prácticas post cosecha.

<table>
<thead>
<tr>
<th></th>
<th>Limpiar la cebolla</th>
<th>Pelado de las hojas</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>11,5%</td>
<td>71,2%</td>
<td>17,3%</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Las autoras.

De acuerdo con la gráfica 19 acerca de las prácticas realizadas por los agricultores en el proceso de cosecha de las cebollas, el 11,5 % de los agricultores indicaron que no realiza ningún tipo de práctica a la hora de la post-cosecha, sin embargo un 17,3 % afirma que limpian la cebolla inmediatamente la retiran y el 71,2% afirma realizar un pelado de hojas con el fin de empezar a armar las ruedas para su posterior comercialización, esta técnica es la más indicada pero teniendo en cuenta que se debe contar con mesas o área de limpieza para la facilitación del deshoje y las partes dañadas que podrían arruinar la apariencia de la cebolla, además se debe evitar un deshoje excesivo pues se pierde peso o se reduce la apariencia saludable del producto, esto con el fin de satisfacer a los compradores. [68]

GRAFICA 19: Uso elementos de protección personal.

<table>
<thead>
<tr>
<th></th>
<th>No</th>
<th>Si</th>
</tr>
</thead>
<tbody>
<tr>
<td>15%</td>
<td>85%</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Las autoras
Con respecto al uso de los elementos de protección personal, la mayoría de los agricultores hace uso de éstos aunque no en su totalidad, pues como se puede apreciar en las gráficas 20 y 21, varios de ellos, no utilizan mascarillas y/o tapabocas adecuado con el fin de evitar la inhalación de los plaguicidas, gafas para que cantidades mínimas de gases no causen irritación; en su mayoría, los agricultores usan las botas de caucho, con respecto al delantal, este se recomienda para evitar contacto de la ropa con los plaguicidas y llevarla contaminada al lugar de residencia.

GRAFICA 20: Cuáles son los elementos de protección personal utilizados.

![Grafica 20](image)

Fuente: Las autoras.

GRAFICA 21: Conocimiento de riesgos por contacto con Malathion

![Grafica 21](image)

Fuente: Las autoras.

Los riesgos que provoca el mal uso del Malathion y en general los plaguicidas, son varios, para ello, se elaboraron preguntas relacionadas con el conocimiento de los riesgos y cuáles creen que se pueden generar como consecuencia del contacto o consumo ya sea accidental o intencional de alguno de estos, tal como se mencionó en el análisis de la gráfica 10. Como se puede apreciar en la gráfica 22...
y 23, los agricultores saben que al manipular plaguicidas, directamente se encuentran expuestos a tener efectos adversos en la salud de acuerdo al tipo de contacto, así mismo como se demostró en la gráfica 21, a pesar que tan solo un 45% hace uso de la máscara respiratoria, los demás son conscientes que los plaguicidas especialmente el Malathion, causa daños respiratorios y ellos al haber hecho uso de estos en algunas situaciones, han sentido asfixia.

GRAFICA 22: Riesgos por el uso de Malathion

<table>
<thead>
<tr>
<th></th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daño a la salud</td>
<td>15%</td>
</tr>
<tr>
<td>Intoxicación</td>
<td>12%</td>
</tr>
<tr>
<td>Asfixia</td>
<td>17%</td>
</tr>
<tr>
<td>Infección respiratoria</td>
<td>31%</td>
</tr>
<tr>
<td>Dolor de cabeza</td>
<td>25%</td>
</tr>
</tbody>
</table>

Fuente: Las autoras.

GRAFICA 23: Personas que han presentado incidentes con Malathion.

<table>
<thead>
<tr>
<th></th>
<th>0%</th>
<th>10%</th>
<th>20%</th>
<th>30%</th>
<th>40%</th>
<th>50%</th>
<th>60%</th>
<th>70%</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>63%</td>
</tr>
<tr>
<td>Si</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>37%</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Las autoras.

De acuerdo a la gráfica 24, existe un 37% de agricultores que han tenido incidentes con el Malathion a pesar de tener conocimiento sobre los riesgos o daños que estos pueden generar a la salud según su manipulación y la dosificación, además tienen conocimiento de experiencias por otras personas que han tenido incidentes y este debe ser un motivo por el cual se debe tener un mayor cuidado personal.
De acuerdo a las gráficas 25 y 26 acerca del tipo de contacto que han tenido algunos agricultores con el plaguicida y sus síntomas, un 33% de estos contactos ha sido por inhalación y como se mencionó anteriormente, uno de los síntomas que se presentan con más frecuencia al manipular el plaguicida es el mareo con un 38% y dolor de cabeza con un 29%, teniendo en cuenta que solo el 45% de los agricultores hace uso adecuado de mascara respiratoria.

GRAFICA 25: Síntomas presentados por el contacto con el Malathion.

De acuerdo a la gráfica 26 se mencionan algunos de los síntomas que presentaron algunos de los agricultores que han tenido incidentes o manipulación con el Malathion siendo el dolor de cabeza y el mareo los mayores síntomas manifestados, seguido de estos la asfixia y el ardor en la piel.

Con esto, se obtuvo que la sintomatología provocada por el Malathion dada en investigaciones realizadas, se pudiera encontrar una posible relación con las presentadas en los agricultores de la vereda Quebradas.
Los envases en donde vienen los plaguicidas son plásticos, por esto mismo, al terminar de utilizar el producto, estos deben tener un programa posconsumo establecido por la persona natural o jurídica titular del respectivo registro expedido por el ICA y el INVIMA (Resolución 1675 de 2013); el procedimiento a seguir para la eliminación de los envases es realizar triple lavado, se perfora el envase y se depositan en un lugar adecuado para evitar el riesgo de contaminación de personas, animales y medio ambiente. En Colombia, la empresa Cementos Boyacá cuenta con un horno para la incineración de estos envases de plaguicidas, el cual se encuentra ubicado en el municipio de Nobsa. [69] Por esto, se elaboró la pregunta sobre qué hacen los agricultores con los envases vacíos y el 42% de los agricultores los desechan y un 33% los depositan en bolsas, solo un 25% los depositan en bolsas que luego son recogidos por la Corporación Autónoma Regional de Boyacá (CORPOBOYACA) que los envía a Cementos Boyacá para su procesamiento.

Finalmente, en la encuesta diseñada para los agricultores, se preguntó si a ellos en algún momento, desde el inicio de su trabajo recibieron alguna capacitación sobre el uso, la manipulación, la dosificación para la aplicación de plaguicidas en los cultivos de cebolla, los riesgos y/o daños a la salud que los plaguicidas les
ocasionan, un 65% de ellos no han recibido algún tipo de capacitación por parte de las tiendas distribuidoras de plaguicidas o de CORPOBOYACA. Esto se puede apreciar en las gráficas 28 y 29.

GRAFICA 28: Por parte de quién se ha recibido capacitación.

<table>
<thead>
<tr>
<th>Cargo</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vecino/amigo/jefe</td>
<td>62%</td>
</tr>
<tr>
<td>Técnico del municipio</td>
<td>12%</td>
</tr>
<tr>
<td>Agro servicio local</td>
<td>15%</td>
</tr>
<tr>
<td>Técnico representante del insecticida</td>
<td>0%</td>
</tr>
<tr>
<td>Ingeniero agrónomo</td>
<td>12%</td>
</tr>
</tbody>
</table>

Fuente: Las autoras.

4.5. Tabulación encuesta habitantes de la región

La encuesta diseñada para los habitantes de la vereda Quebradas, se encuentra relacionada con algunos posibles síntomas que pueden ser provocados por contacto o estar habiendo en un ambiente contaminado ya sea por Malathion u otros plaguicidas, también se elaboraron preguntas sobre el conocimiento de estos y su distancia a cultivos donde manipulen plaguicidas, al igual que la anterior encuesta se hizo relación de las respuestas con los plaguicidas hallados en la cebolla.

La comunidad encuestada tenía un rango entre los 19 y 65 años de edad, donde se encontraron personas que ya había culminado su bachillerato y así mismo, otros que no hicieron estudios o lo dejaron incompleto y algunos de ellos se dedicaron a laborar en la agricultura de la región. En las siguientes gráficas se pueden observar las respuestas obtenidas de los habitantes de la región.

Como se mencionó en la gráfica 8 de la encuesta a los agricultores, la mayoría de los habitantes del municipio de Aquitania llegan a la mitad o culminan el bachillerato, muy pocos son quienes deciden o tienen la oportunidad de continuar estudiando, ya sea por cuestiones económicas o por dedicarse a las actividades agrícolas de su región.
Con respecto a la ocupación de las personas encuestadas, el 49% de los habitantes se dedican a labores de agricultura como se mencionó anteriormente incluyendo el sexo femenino desempeñando labores tanto de sembrado como de aplicación de plaguicidas en los diferentes cultivos del Municipio (cebolla y papa).
GRAFICA 31: Previsión de salud.

De acuerdo a la gráfica 32 se observó cual es la atención en salud (EPS o Sisben) con el que cuentan los habitantes de la región para la asistencia médica, esto con el fin de relacionar que cantidad de personas se encuentran incluidas en las consultas registradas en los RIPS, en la E.S.E Hospital de Aquitania donde se evidencio lo siguiente:

- Caprecom: 5145 usuarios.
- Comparta: 5994 usuarios.
- Comfamiliar: 3011 usuarios.

Lo que significa que la mayoría de personas encuestadas pertenecen a las EPS registradas en los RIPS.

GRAFICA 32: Antecedentes de salud general.

Fuente: Las autoras.
Referente la gráfica 33 sobre los antecedentes de salud general, se obtiene que el 78,08 % de los habitantes encuestados consumen bebidas con alcohol en la jornada laboral como el guarapo de miel y al finalizar la jornada cerveza.

GRAFICA 33: Síntomas de depresión.

<table>
<thead>
<tr>
<th></th>
<th>Si</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>42,5</td>
<td>57,5</td>
</tr>
</tbody>
</table>

Fuente: Las autoras.

De acuerdo con estudios elaborados anteriormente acerca de las afectaciones a la salud y/o síntomas como consecuencia del contacto o consumo de Malathion, se analizó que uno de ellos es interferir en el funcionamiento normal del sistema nervioso. [70] Donde unos de los efectos es la depresión, los dolores de cabeza, el desinterés por las cosas, la concentración y además estar inquieto, es por esto que se realizaron preguntas relacionadas con los mencionados anteriormente. Las cuales se pueden apreciar junto con su respuesta en las siguientes gráficas, desde la 35 hasta la 40, cada una con el porcentaje de acuerdo a la población encuestada.

GRAFICA 34: Desinterés o incapaz de disfrutar la vida la mayor parte del tiempo/casi todos los días.

<table>
<thead>
<tr>
<th></th>
<th>Si</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>13,7</td>
<td>86,3</td>
</tr>
</tbody>
</table>

Fuente: Las autoras.
GRAFICA 35: Problemas para dormir como dolor de cabeza casi todas las noches.

GRAFICA 36: Sentir cansancio o con menos energía la mayor parte del tiempo o casi todos los días.

GRAFICA 37: Problemas de concentración o memoria casi todos los días.

Fuente: Las autoras.
GRAFICA 38: Estado inquieto la mayoría de los días

Fuente: Las autoras.

GRAFICA 39: Nota cambio drástico en el apetito (más o menos apetito).

Fuente: Las autoras.

Se mencionó con respecto a las gráficas anteriores que el Malathion puede afectar el funcionamiento normal del sistema nervioso, por lo que con la gráfica 41 sobre el tratamiento médico que algunas personas llevan, se pretendió conocer si alguno tiene relación para tratar sintomatología o enfermedades afines provocadas por el plaguicida estudiado.

GRAFICA 40: Actualmente está en tratamiento médico, sí o no.

Fuente: Las autoras.
De acuerdo con los medicamentos utilizados por algunos de los habitantes de la región, según los tratamientos médicos asignados, alguno de ellos fueron Apidra, Metamucil, Omeprazol, y Vistosa, donde la mayoría de estos están relacionados con enfermedades de diabetes, colesterol, gastritis, acidez estomacal y el Metacarbamol y la Aspirina si se encuentra relacionada con los dolores de cabeza, los dolores musculares y además síntomas gripales.

GRAFICA 41: Antecedentes laborales, desempeño como aplicador de plaguicidas.

Fuente: Las autoras.

GRAFICA 42: De qué forma ha trabajado como aplicador.

Fuente: Las autoras.

GRAFICA 43: Tiempo en que ha aplicado plaguicidas.

Fuente: Las autoras.
De acuerdo a las gráficas 42-44 se puede observar que un 46,6 % de la población encuestada se dedica a labores de aplicación de plaguicidas de manera temporal, con un periodo de tiempo de 10 años según los porcentajes arrojados. En la gráfica 45 se preguntó si dentro de los plaguicidas que han manejado se encuentra el Malathion a pesar de no haberse encontrado en las muestras de cebolla analizadas, pues fue el producto a estudiar.

GRAFICA 44: Aplicación de Malathion.

<table>
<thead>
<tr>
<th>%</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>36,99%</td>
</tr>
<tr>
<td>No</td>
<td>9,59%</td>
</tr>
<tr>
<td>No aplica</td>
<td>53,42%</td>
</tr>
</tbody>
</table>

Fuente: Las autoras.

GRAFICA 45: Última aplicación de Malathion.

<table>
<thead>
<tr>
<th>%</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3 días</td>
<td>63,01%</td>
</tr>
<tr>
<td>1 semana</td>
<td>20,55%</td>
</tr>
<tr>
<td>2 semanas</td>
<td>4,11%</td>
</tr>
<tr>
<td>3 semanas</td>
<td>1,37%</td>
</tr>
<tr>
<td>1 mes</td>
<td>0%</td>
</tr>
<tr>
<td>Más tiempo</td>
<td>2,74%</td>
</tr>
<tr>
<td>No aplica</td>
<td>8,22%</td>
</tr>
</tbody>
</table>

Fuente: Las autoras.

De acuerdo con la gráfica 46, la temporada en que se realizaron las encuestas y la toma de muestras fue época seca, donde el Malathion se aplica cada 10 o 15 días y algunos de los cultivos de cebolla estaban iniciando a sembrarse y por tanto con aplicación reciente de plaguicidas donde coincide las tabulaciones anteriores.
GRAFICA 46: Después de aplicar el Malathion cerca de su casa, ha presentado alguno de los síntomas cuestionados.

<table>
<thead>
<tr>
<th>Síntoma</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pánico</td>
<td>0%</td>
</tr>
<tr>
<td>Pérdida del conocimiento</td>
<td>27,80%</td>
</tr>
<tr>
<td>Mareo</td>
<td>0%</td>
</tr>
<tr>
<td>Sudor en exceso</td>
<td>0%</td>
</tr>
<tr>
<td>Dolor de cabeza</td>
<td>55,60%</td>
</tr>
<tr>
<td>Visión borrosa</td>
<td>11,10%</td>
</tr>
<tr>
<td>Ojos llorosos</td>
<td>8,30%</td>
</tr>
<tr>
<td>Diarrea</td>
<td>0%</td>
</tr>
<tr>
<td>Dificultad para respirar</td>
<td>50%</td>
</tr>
<tr>
<td>Vómito</td>
<td>0%</td>
</tr>
</tbody>
</table>

Fuente: Las autoras

Debido que en la vereda donde se llevó a cabo el estudio, gran parte del área es usada para la siembra de cebolla, a los habitantes se les preguntó si en el momento en que son aplicados los plaguicidas, al ellos estar en este entorno sufren algunos síntomas enlistados en la encuesta, donde el 55.6% respondió que presentan dolores de cabeza y el 50% dificultad para respirar, cabe tener en cuenta que en una persona se presentan varios síntomas; se tuvo en cuenta que existen factores ajenos a los plaguicidas que ocasionan estos síntomas tal y como se aprecia en la relación de los plaguicidas hallados con los RIPS.

Además de que la comunidad encuestada se encuentra en un lugar donde el ambiente se encuentra contaminado por los plaguicidas para beneficio de los agricultores, algunos de ellos también son dueños o propietarios de invernaderos o huertos o simplemente habitan en casa donde a su alrededor existen cultivos, donde en su mayoría ellos mismos los cultivan o arriendan para producir algún alimento propio de la región así como se observa en las siguientes gráficas 48, 49 y 50.

GRAFICA 47: Tiene o no un invernadero o huerto en la casa.

<table>
<thead>
<tr>
<th>Sí</th>
<th>32,88%</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>67%</td>
</tr>
</tbody>
</table>

Fuente: Las autoras.
Como se ha mencionado, la mayoría de la cubierta vegetal de la vereda Quebradas ha sido utilizada para la siembra de cebolla larga y como se observa en las gráficas anteriores, la mayoría de las personas habitan en un sitio ya sea arrendado o propio, donde como se observa en la gráfica 44, se dedican a cultivarlo ya sea por ellos mismos o personas que contratan para sembrarlo.

El tema principal del estudio fue el uso de plaguicidas, por esto, debido que gran parte de los habitantes cultivan su campo con cebolla larga, fue de vital importancia saber si ellos tenían conocimiento si en sus propiedades, utilizaban plaguicidas, la respuesta de las personas encuestadas en su mayoría fue sí tal y como se observa en la gráfica 51.

Fuente: Las autoras.
Actualmente, el uso de los elementos de protección personal es un tema de gran importancia, ya que en la mayoría de actividades productivas, para minimizar accidentes laborales son de vital importancia, por esto, la actividad agrícola no se encuentra exenta de hacer uso de estos, pues los plaguicidas también son causantes de enfermedades y riesgos para la salud.

A continuación se relacionan las respuestas de los habitantes de la región que practican la aplicación de plaguicidas principalmente Malathion, los cuales son 27 y hacen o no uso de los distintos elementos de protección personal en las diferentes partes del cuerpo, desde la gráfica 52 hasta la gráfica 56 respectivamente.

GRAFICA 51: Uso elementos de protección personal al aplicar Malathion.

<table>
<thead>
<tr>
<th></th>
<th>Si</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>75,3%</td>
<td>24,7%</td>
</tr>
</tbody>
</table>

Fuente: Las autoras.

Teniendo en cuenta que de los habitantes de la región encuestados, 34 de ellos han aplicado plaguicidas como se aprecia en la gráfica 42, las siguientes gráficas correspondientes al uso de elementos de protección personal fueron respondidas por dichas personas.

GRAFICA 52: Elementos de protección personal en el cuerpo.

<table>
<thead>
<tr>
<th></th>
<th>Si</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>23,3%</td>
<td>76,7%</td>
</tr>
</tbody>
</table>

Fuente: Las autoras.
Como se observa en la gráfica 54, la mayoría de las personas no utilizan elemento de protección personal en la cabeza, pues opinaron que al encontrarse una zona de campo, no se encuentran expuestos a la caída de algún equipo en la cabeza para lo cual se sugirió que es de gran importancia hacer uso de alguno, ya que al utilizar herramientas como la “pica” la cabeza se encuentra en riesgo pues se encuentra en movimiento repetitivo.

GRAFICA 54: Elementos de protección personal en las manos.

GRAFICA 55: Elementos de protección personal en la zona respiratoria.

Fuente: Las autoras.
El elemento de protección personal para la zona respiratoria como lo son las caretas con sus respectivos filtros, son también muy importantes, pues al aplicar los plaguicidas, el vapor es aspirado por los trabajadores que lo estén manipulando, a pesar que la mayoría de los aplicadores afirmaron usar protección respiratoria, no está siendo usado, pues utilizan pañoletas o trapos alrededor de la nariz y la boca para evitar aspirar los vapores.

GRAFICA 56: Elementos de protección personal en los pies.

![Diagrama de pastel mostrando el porcentaje de personas que siempre, a veces y nunca utilizan caretas para la zona respiratoria.](image)

Fuente: Las autoras.

En el campo la mayoría de las personas hacen uso de las botas de caucho, para lo cual, están utilizando el elemento de protección personal, principalmente en las actividades agrícolas.

GRAFICA 57: Al finalizar la aplicación de plaguicida, se cambia de ropa de trabajo.

![Diagrama de barras mostrando el porcentaje de personas que nunca, a veces y siempre cambian de ropa de trabajo después de aplicar plaguicidas.](image)

Fuente: Las autoras.

La mayoría de los plaguicidas por su principio activo y concentración química, al tener contacto con la piel, ocasionan dermatitis, por esto se realizó la pregunta a los aplicadores de plaguicidas, sobre cuánto tiempo transcede al finalizar su jornada laboral o más específicamente, al terminar de aplicar los, hasta cambiar su ropa de trabajo y sí sinceramente la cambian, cada una de las respuestas se encuentran en las gráficas 58 y 59.
GRAFICA 58: Tiempo que transcurre entre el término de la aplicación y que se duche o se bañe.

Fuente: Las autoras.

GRAFICA 59: Ha sufrido intoxicación por plaguicidas diagnosticada por médico.

Fuente: Las autoras.

También se elaboraron preguntas sobre intoxicación diagnosticada por médico con plaguicidas. Donde se tabuló que dos personas sufrieron intoxicaciones diagnosticadas, esto debido a no tener precaución al aplicarlos como se observa en la gráfica 61 y en la gráfica 62 se observan siete personas que fueron intoxicadas por plaguicidas pero fueron tratadas por ellos mismos.

GRAFICA 60: Intoxicación por plaguicidas.

Fuente: Las autoras.
Respecto a las respuestas obtenidas sobre la cantidad de veces que se han intoxicado con plaguicidas a pesar de no ser un alto grado de personas, se considera alto el hecho de presentar dos personas que han tenido tres veces intoxicaciones con plaguicidas y cuatro personas que han pasado el número de repeticiones propuestas en la encuesta diseñada como se observa en la gráfica 62 a continuación.

GRAFICA 61: Cuántas veces se ha intoxicado por plaguicidas.

![Gráfica 61: Cuántas veces se ha intoxicado por plaguicidas.](image)

Fuente: Las autoras.

Tras la pregunta relacionada con la frecuencia de intoxicación con plaguicidas que han tenido las personas involucradas, se preguntó cuándo fue la última vez que les ocurrió esto a lo cual hubo un largo periodo de tiempo al haber pasado, pues el menor tiempo fue hace un año para dos personas y las otras fueron en un periodo de tres años, cinco años y siete años, donde existen factores influyentes como haber tenido poca precaución, el no uso de los elementos de protección personal y no haber tenido instrucciones acerca de la aplicación de los plaguicidas.

Posteriormente, al saber que ha habido intoxicaciones con plaguicidas y hace cuánto tiempo ocurrió, se indagó si sabían o recordaban el nombre del plaguicida con el cual ocurrió el accidente, para lo cual algunas personas no recordaban el nombre del producto y otros manifestaron que había sido con Malathion y Fitoraza, los cuales son algunos de los plaguicidas de más uso en la región.

Finalmente, como se observó en la tabulación de la encuesta aplicada a los habitantes de la región que en gran mayoría se dedican a las actividades de agricultura-siembra de alimentos, varios de ellos aunque no superando la mitad de la población total encuestada, en el transcurso de los oficios realizados a lo largo de su actividad laboral, han tenido contacto con los plaguicidas y por lo mismo los han manipulado, para esto es de suma importancia recibir inducciones o capacitaciones de personas o entidades autorizadas con conocimientos valederos sobre las propiedades de los productos a utilizar, las cantidades sugeridas para la preparación, los cultivos donde pueden ser aplicados, así mismo los riesgos al ambiente y la salud, entre otros, para ello se preguntó si actualmente pertenecían a algún programa de control de salud y todos negaron su participación.
5. CONCLUSIONES

Teniendo en cuenta los valores obtenidos por los informes del laboratorio no se encontraron evidencias de residuos de Malathion puesto que no superaron el límite mínimo de comunicación (0.01 mg/Kg) adoptado por el laboratorio para la cromatografía de gases, se obtuvieron trazas de plaguicidas como Chlorothalonil, Myclobutanil y Profenofos los cuales no superaron el límite de concentración (0.01 mg/Kg, 0.01 mg/Kg, 0.01 mg/Kg) respectivamente pero si indicaron presencia en la cebolla registrando valores por encima de cero (0) pero que por temas de calidad por parte del laboratorio no es posible saber un valor exacto del resultado, esto lleva a concluir que no hubo presencia de Malathion en los análisis posiblemente por su baja persistencia en el ambiente.

Dado que el Malathion es un plaguicida de alto uso en la región para la aplicación en los cultivos de cebolla larga y teniendo en cuenta que no se registraron trazas ni valores que demuestren un hallazgo en la cebolla, cabe recalcar que este no se encuentra autorizado por algunas entidades internacionales ni nacionales encargadas de establecer los límites permisibles de residuos de plaguicidas en los alimentos y a su vez los plaguicidas aprobados que para este caso es la cebolla larga, es importante tener en cuenta que las cebollas se encontraron en buen estado a pesar del uso de varios plaguicidas.

Obteniendo las encuestas aplicadas a los agricultores se pudo concluir que no tienen un uso adecuado de los equipos de protección personal (EPP) en el momento de realizar la preparación y aplicación de los plaguicidas, no hay un control estricto de las entidades encargadas de la distribución de dichos productos en cuanto a la cantidad para aplicar por hectárea, muchos de ellos no se cambian inmediatamente terminan la aplicación y con esto no solo está en peligro sus vidas si no de las personas con las que conviva puesto que muchas veces al terminar las labores se dirigen a sus viviendas, a su vez no existe un control con los envases vacíos luego de la aplicación y ellos mencionan tener sintomatologías asociadas al plaguicida seleccionado en el estudio sin afirmar que sea por este motivo explícitamente.

Obteniendo las encuestas aplicadas a los habitantes de la región, se concluyó que la mayoría de habitantes presenta una sintomatología muy representativa por el uso de Malathion teniendo en cuenta que no se evidenciaron trazas ni un valor significativo de presencia de Malathion en la cebolla se puede concluir que este plaguicida puede llegar a causar efecto a largo plazo después de una exposición a bajas concentraciones, en una dosis simple y/o múltiple y en forma repetida en el tiempo.
Debido a la presencia de los tres plaguicidas antes mencionados, los cuales son considerados como poco peligrosos a excepción del Profenofos que es considerado como moderadamente peligroso, se puede concluir que el Chlorothalonil y el Myclobutanil se encuentran permitidos por el ICA para su uso a nivel nacional a excepción del INVIMA que prohíbe el uso de Myclobutanil, mientras que el Profenofos no se encuentran permitido actualmente para su uso en dicho alimento por ninguna entidad.

Realizando la comparación de los tres plaguicidas a los cuales se encontraron trazas se puede concluir que hay una correlación subjetiva con respecto a los RIPS y las diversas consultas por urgencias y por consulta externa en el E.S.E Hospital de Aquitania no se puede afirmar que sea propiamente por la aplicación de estos plaguicidas pero sí se puede decir que son varios los casos asociados a la sintomatología propia de estos plaguicidas.
6. RECOMENDACIONES

Para futuros estudios que se realicen en el municipio de Aquitania siguiendo esta metodología, se recomienda extender el tiempo de muestreo, teniendo en cuenta las épocas del año más húmedas y más secas para con esto tener un mayor número de repeticiones que permitan obtener resultados más favorables.

Es recomendable realizar el estudio en habitantes no consumidores de cebolla con el fin de darle un alcance más amplio a la investigación puesto que la sintomatología puede aumentar o disminuir según como sean los casos.

Se recomienda a las entidades encargadas de la venta de plaguicidas realizar auditorías o controles periódicos del verdadero uso que se les da y así mismo realizar capacitaciones sobre el uso, la aplicación, los riesgos causados a los alimentos, el ambiente y la salud por la mala manipulación de los productos utilizados para evitar plagas, esto con el fin de fomentar las buenas prácticas agrícolas en la región y a su vez promover el uso de la agricultura orgánica.

Es recomendable realizar un estudio con un plaguicida diferente al seleccionado anteriormente en la investigación, el Malathion, teniendo en cuenta la persistencia y las posibles afectaciones a la salud de los plaguicidas encontrados.

Al momento de desarrollar las metodologías para el muestreo de cebolla, se recomienda tomarlas en horas de la mañana, debido a la gran cantidad de agricultores presentes en la zona que puede ayudar a complementar la investigación y a su vez a la toma de muestras de cebolla, así como aumentar la frecuencia de recolección de muestras de cebolla para obtener datos más ajustados a la realidad.

Para futuros estudios que puedan ser desarrollados en el municipio de Aquitania, se podría complementar el estudio del uso y la concentración de Malathion con la medición de diversas variables en las fuentes hídricas superficiales que se encuentran dentro del área de muestreo.

Se recomienda a las autoridades ambientales contar con información actualizada respecto a las condiciones hidrometeorológicas y ambientales de las diferentes zonas del país, especialmente aquellas que pueden estar siendo afectadas por agentes contaminantes, producto de la actividad humana.

Se recomienda al Departamento Administrativo Nacional de Estadística (DANE) contar con información actualizada respecto al Censo del Cultivo de Cebolla Larga a nivel nacional para con esto contribuir con diversas investigaciones en aquellas zonas que pueden estar siendo afectadas por agentes contaminantes producto de la actividad humana.
7. BIBLIOGRAFÍA

[11 Facultad de ciencias forestales y ambientales, «Botánica,» de Herbario MER, Venezuela, Universidad de los Andes, 2006, p. 120.

]

]

]

]

]

]

]

[20 Google Maps, «Aquitania-Boyacá, Colombia,» 2014. [En línea]. Available:
https://www.google.es/maps/place/Aquitania,+Boyac%C3%A1,+Colombia/@5.421,-72.86541,50699m/data=!3m2!1e3!4b1!4m2!3m1!1s0x8e6a5782663f5a6d:0x8fef2e85aaa642c01. [Último acceso: Septiembre 2014].
]

]

]

]

]

[25 M. J. G. Gil y A. M. S. Soto, «Contaminantes emergentes en aguas, efectos y posibles
tratamientos,» Cuernavaca, México, 2012.

[27] Infojardin, Cebolleta, Cebolletas, Cebolla verde, Cebolla de invierno, Cebolla de verdeo, Cebolla inglesa, Cebollino inglés, Cebollino japonés, Colombia, 2012.

[38] M. Machado Mancilla, «Planteamiento de un proceso para la conservación de la cebolla junca
mediante el método de deshidratación gravimétrica,» Universidad tecnológica de Pereira, Pereira, 2012.

[46 D. M. Gutiérrez M.C., «La cromatografía de gases y la espectrometría de masas: Identificación de compuestos causantes de mal olor,» Barcelona, 2002.

[50] Environmental Protection Agency, «Appendix C: Environmental Fate Date,» 2005. [En línea].

[53] INECC, «Ficha técnica profenotos,» 2012. [En línea]. Available:

[57] Universidad Autónoma del Estado de Hidalgo, «Muestra y Muestreo,» Enero 2012. [En línea].
Available:

[59] INNEC, «Malatión,» 2012. [En línea]. Available:

[60] Instituto Colombiano Agropecuario ICA, «Listado de Registros nacionales de plaguicidas químicos de uso agrícola,» 25 Febrero 2015. [En línea]. Available:

[62 The center for food security and Public health, «Miasis por el gusano barrenador,» COPEG,]

[67 Consejo municipal de Aquitania, Boyacá, «Plan de desarrollo "Aquitania para todos"», Boyacá,]
2008-2011.

[68 D. Gómez y V. Marco, «Postcosecha,» de Producción orgánica de hortalizas de clima templado,]

[70 Agencia para sustancias tóxicas y el registro de enfermedades (ATSDR), Resumen de salud pública Malatión, Springfield, 2003.

[73 CODEX Alimentarius, «Residuos de plaguicidas en los alimentos-Chlorothalonil,» CODEX, 2013.]

[74 Environmental Protection Agency EPA-Myclobutanil, Tolerances and exemptions for pesticide chemical residues in food, EPA, 1989.

[75 CODEX Alimentarius, «Residuos de plaguicidas en los alimentos-Myclobutanil,» CODEX, 2013.]

[77 CODEX Alimentarius, «Residuos de plaguicidas en los alimentos-Profenofos,» CODEX, 2013.]

[78 INECC, «Caracteristicas fisico-quimicas de los plaguicidas y su transporte en el ambiente,» Mexico, DF, 2008.

[81 Syngenta, «Selecron 720 EC. Insecticida-Acaricida,» Monthey, Basilea, Cartagena, 2013.]

GLOSARIO

Antiapelmazante: Aditivos utilizados para conservar alimentos cristalinos o en polvo. Estos aditivos absorben la humedad que haría que las partículas de los alimentos se agrupasen. [1]

Aspersión: Este método de riego implica una lluvia más o menos intensa y uniforme sobre la parcela con el objeto de que el agua se infiltre en el mismo punto donde cae. [2]

Cadena de custodia: Proceso por medio del cual se mantiene una muestra bajo posesión física o control durante su ciclo de vida completo, es decir, desde que se toma hasta que se desecha. [3]

Correlación: Trata de establecer la relación o dependencia que existe entre las dos variables que intervienen en una distribución bidimensional. Es decir, determinar si los cambios en una de las variables influyen en los cambios de la otra. [4]

Enzima: Es una proteína natural que cataliza reacciones bioquímicas específicas, reacciones que sin la intervención de esta proteína, se producirían lentamente o no se producirían. [5]

Micelio: Conjunto o masa de filamentos tubulares parecidos a telas de araña, que representa la unidad estructural de la mayoría de los hongos. [6]

Necrosarse: Es la muerte de un tejido y ocurre cuando no está llegando suficiente sangre al tejido, ya sea por lesión, radiación o sustancias químicas. La necrosis es irreversible. [7]

Organofosforados: Los plaguicidas organofosforados constituyen un amplísimo grupo de compuestos de síntesis, en general altamente tóxicos, con un precedente en los gases de guerra, a menudo conocidos bajo el apelativo de ‘gases nerviosos’, entre los que se encuentran el sarín, tabun y soman, y que se desarrollaron de manera especial a partir de la Segunda Guerra Mundial. [8]

Ovipositar: Acto de poner o depositar huevos por uno de los miembros, ya sea femenino o masculino, de los animales ovíparos. [9]

Polífago: Que se alimenta de varios huéspedes, por ejemplo una plaga polífaga. [10]

Propágulos: Son plántulas que son capaces de independizarse produciendo plantas adultas tras su enraizamiento; en los briofitos se forman pequeñas plantas hijas con los restos de meristemos activos del borde de las hojas, éstos al caer al suelo logran convertirse en plantas independientes. [11]
Trazas: Técnica de análisis para determinar la cantidad porcentual (inferior al 0.01% en peso) de un componente o sustancia de un elemento en una muestra. [12]

Triazoles: Como grupo fungicida, es uno de los más utilizados alrededor del mundo. Se usan en tratamiento de semillas y en aplicaciones foliar. Esta familia química se introdujo en 1980 y está constituida por: difenoconazol, fenbuconazol, flutriafol, miclobutanil, propiconazol, tebuconazol, tetraconazol, triadimefon y tritionazol. [13]

Umbelas: Formación de inflorescencia abierta que presentan flores que parecen salir del mismo punto y llegar a la misma altura. [14]

Volatileización: Modificación del estado físico, que da lugar a la formación de un gas o vapor. [15]
8. ANEXOS

ANEXO 1: Encuesta agricultores.

Fecha __________ Nombre______________________________

C.C.: ___________________ Fecha Nacimiento: ________/______/_____

Edad ______ Sexo M___ F___

INFORMACIÓN GENERAL

1. Nivel de educación

Analfabeto ()

Básica incompleta. () Básica completa ()

Media incompleta. () Media completa. ()

Técnico () Universitario ()

2. Ocupación

Sembrador de la cebolla () Aplicador de plaguicidas ()

Comprador () Visitante ()

CONOCIMIENTO DE PLAGUICIDAS

3. ¿Conoce usted qué plaguicidas son utilizados para los cultivos de cebolla?
Si () No ()

¿Cuáles? ________________________________

4. ¿Entre los plaguicidas que usted utiliza se encuentra el MALATHION (Agromat, Atrapa, Carthion, etc)? Si () No ()

5. ¿Para qué es utilizado el MALATHION en los cultivos de cebolla larga?

__

6. ¿Dónde adquieren el Malathion y en qué presentación (envase plástico, bolsa, reempacado)?

__
7. ¿Cómo/dónde almacena el producto luego de comprarlo?

8. ¿Cómo realiza la preparación del producto, como lo diluye?

9. ¿Cuánta cantidad de MALATHION prepara, aplica y bajo qué medidas (hectáreas, fanegadas, etc.?)

10. ¿Cómo realiza la aplicación del producto (al follaje, hasta que gotee la planta)?

11. ¿A qué hora particularmente es aplicado el MALATHION?

Mañana ()
Tarde ()
Noche ()

12. ¿Cómo decide cuándo debe aplicar el MALATHION a los cultivos de cebolla larga?

Al encontrar plagas ()
Al verificar que la plaga está presente en forma abundante en el cultivo ()
Después de hacer un muestreo para determinar el umbral de aplicación ()
Se aplica periódicamente ()
Se aplica en algunas fases de cultivo ()

13. ¿Si se aplica periódicamente: Cada cuánto se aplica el Malathion?

Diariamente ()
Semanalmente ()
Mensual ()

14. ¿Si se aplica en algunas fases del cultivo, en cuáles fases se aplica?

15. ¿El Malathion es aplicado antes de la cosecha y/o después?
16. ¿Tiene algunas prácticas de post cosecha como lo son el lavado de las cebollas o el pelado de hojas entre otras?

17. ¿Utiliza equipos de protección personal al aplicar plaguicidas MALATHION?
 Si () No ()
 ¿Cuáles?

 Guantes () Botas () Delantales () Overol () Gafas () Máscara respiratoria () Otros _______________________

18. ¿Cree que corre riesgos cuando se expone a estos productos químicos?
 Si () No ()
 ¿Cuáles?

 __

19. ¿Ha tenido algún incidente relacionado con el uso de productos químicos?
 Si () No ()
 Contacto con la piel () Inhalación () Ingestión () Contacto con los ojos ()
 Otros ________________________________

 ¿Qué síntomas tuvo?
 __

20. ¿Qué hace con los envases de plaguicidas vacíos?
 __

21. ¿Qué equipos o maquinarias usa para la aplicación?
 Bomba de espalda manual () Nebulizadora tirada por tractor ()
 Bomba de espalda a motor () Bomba traída por tractor o automotor a pistón ()
 Otros ________________________________
23. ¿Ha recibido algún tipo de capacitación acerca del uso de plaguicidas?
Si () No ()

Si así es, ¿quién las ha dictado?

a) Ingeniero agrónomo
b) Técnico representante del insecticida
c) Agro servicio local
d) Técnico del municipio
e) Vecino/amigo/jefe

¡GRACIAS POR SU COLABORACIÓN!
ANEXO 2: Encuesta habitantes de la región.

Fecha ____________ Nombre__

C.C.: ________________ Fecha Nacimiento: _____/______/_____

Edad _______ Sexo M___ F___

INFORMACIÓN GENERAL

1. Nivel de educación

Analfabeto ()
Básica incompleta. () Básica completa ()
Media incompleta. () Media completa. ()
Técnico () Universitario ()

2. Ocupación

Sembrador de la cebolla () Aplicador de plaguicidas ()
Comprador () Visitante ()
Habitante de la región () Otro________________________

3. Previsión en Salud:

Caprecom () Comparta () Comfamiliar () Ninguna ()
No sabe () Otros ______________________

ANTECEDENTES DE SALUD GENERAL

4. Hábitos:

Bebe Alcohol ()
Consume Drogas ()
Fuma ()
Otro ______________________

90
5. Encuesta de Síntomas de Depresión

1) ¿Se ha sentido triste o deprimida (o) la mayor parte del tiempo, casi todos los días?
 Si () No ()

2) ¿Ha estado desinteresado o incapaz de disfrutar de la vida la mayor parte del tiempo, casi todos los días?
 Si () No ()

3) ¿Ha tenido problemas para dormir (dolor de cabeza), casi todas las noches?
 Si () No ()

4) ¿Se ha sentido cansada (o) con menos energía la mayor parte del tiempo, casi todos los días?
 Si () No ()

5) ¿Ha notado problemas de concentración o memoria, casi todos los días?
 Si () No ()

6) ¿Ha estado inquieto casi todos los días?
 Si () No ()

7) ¿Ha notado un cambio drástico en el apetito (más o menos)?
 Si () No ()

8) ¿Ha notado un cambio importante en el apetito? (más apetito o menos)
 Si () No ()

6. Tratamientos:

 ¿Usa algún medicamento? Si () No ()
 ¿Cuál (es)? __

ANTECEDENTES LABORALES:

7. ¿Usted se desempeña como aplicador de plaguicidas? Si () No ()

8. ¿Si trabaja como aplicador, en qué forma? Permanente () Temporal ()

9. Durante cuantos años ha aplicado plaguicidas: __
10. ¿Cuándo fue la última aplicación? Días: ____________

11. ¿Después de aplicar o ser aplicado el Malathion cerca de su casa ¿usted ha presentado alguno de estos síntomas?
 - Vómito ()
 - Dificultad para respirar ()
 - Diarrea ()
 - Ojos llorosos ()
 - Visión borrosa ()
 - Dolor de cabeza ()
 - Diarrea ()
 - Sudor en exceso ()
 - Mareo ()
 - Pérdida del conocimiento ()

12. Usted tiene:
 - ¿Un invernadero o huerto en su casa? Si () No ()
 - ¿Tiene campo propio? Si () No ()
 - ¿Si tiene campo propio, lo cultiva? Si () No ()
 - ¿Usa plaguicidas en su casa, jardín o huerto? Si () No ()
 - ¿Cuándo usted aplica Malathion, usa elementos de protección personal? Si () No ()
 - Uso de EPP cuerpo: Si () No ()
 - EPP respiratorio: Si () No ()
 - EPP cabeza: Si () No ()
 - EPP manos: Si () No ()
 - EPP pies: Si () No ()

CUESTIONARIO DE HÁBITOS Y PRÁCTICAS DE TRABAJO

13. Durante la aplicación ¿come, bebe o fuma?
 - Siempre () A veces () Nunca ()
14. ¿Se cambia de ropa de trabajo al finalizar la aplicación?
Siempre () A veces () Nunca ()

15. ¿Cuánto tiempo transcurre entre el término de la aplicación y que se duche o se bañe? __________

16. ¿Ha sufrido intoxicación por plaguicidas diagnosticada por médico?
Si () No ()

17. Ha estado hospitalizado por intoxicación por plaguicidas Si () No ()

18. ¿Se ha intoxicado por plaguicidas?
Si () No ()
Cuantas veces: _____ Cuando fue la última vez ________________
Con que plaguicida: __________________________

19. Actualmente ¿está en un programa de control de salud como aplicador de plaguicidas?
Si () No ()
¿Cuál?__

¡GRACIAS POR SU COLABORACIÓN!
ANEXO 3: Resultados análisis de laboratorio de muestras de cebolla por cromatografía de gases acoplada a espectrometría de masas.
Certificado de análisis
15/000286

Ana Milena Cañon Perez
Ana Milena Cañon Perez
Cll 179 NE 6 - 41 Interior 1 Apt 304
Bogotá
Colombia

Tipo de muestra: cebollitas
Referencia: Lote 2 Cebolla Larga, Vereda Quebradas, Aquitania

Información general:
Producto:
Origen:
Destino:
Número:
Orden de compra:
Marca:
Tratamiento:
Bruto/Factor de concentración:
Información destino:

Información de la muestra:
Fecha de muestreo:
Muestreo por:
Lugar de muestreo:
Identidad:
Estado de la muestra:
Peso (g):
Unidades:
Empaquetado:
Transportado por:

Reporte:
Fecha de recepción: 17/02/2016
Intrume 1er día: 24/02/2016
Revisión: 1 27/02/2016
Periodo de análisis: 17/02/2016 - 24/02/2016
Control:
Tolerancia: UE-LMR

Muestra homogeneizada

<table>
<thead>
<tr>
<th>Substancia</th>
<th>Analizado</th>
<th>Resultado</th>
<th>Tolerancia</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>chlorothalonil</td>
<td></td>
<td>Traces menores al límite de comunicación (LC)</td>
<td>mg/kg</td>
<td></td>
</tr>
</tbody>
</table>

Otros no detectables (< LC)

M.Sc. Diana Carolina Botía Gil
Laboratory Manager

WHEN EXCELLENCE IS YOUR STANDARD

Autop. Medellín Km 2,5 entrada parqueas, PB CIen Otros Oficina 301, 250017 Cota, Colombia - Tel/Fax: 67(1)8767228 - info@fytolab.co
Certificado de análisis
15/000287

Ana Milena Cañón Pérez
Ana Milena Cañón Pérez
Cll 179 N° 6 - 41 Interior 1 Apt 304
Bogotá
Colombia

Tipo de muestra: cebolletas
Lote 3 Cebolla Larga, Vereda Quebradas, Aquitania

Información general:
- Productor:
- Origen:
- Destino:
- Número:
- Orden de compra:
- Marca:
- Tratamiento:
- Brin/Factor de concentración:
- Información destino:

Información de la muestra:
- Fecha de muestreo:
- Muestreo por:
- Lugar de muestreo:
- Sellado:
- Estado de la muestra:
- Peso (g):
- Unidades:
- Empaquetado:
- Transportado por:

Reporta:
- Fecha de recepción: 17/02/2016
- Informe 1° día: 24/02/2016
- Revisión: 1 27/02/2016
- Período de análisis: 17/02/2016 - 24/02/2016
- Control:
- Tolerancia: UE-LMR

Muestra homogeneizada
- GMS_2_B - GC-MSMS - Fytolab accredited
- Anotado
- Sin compuestos TLC

M.Sc. Diana Carolina Botía Gil
Laboratory Manager

When Excellence is Your Standard

Autop. Medellín Km 2,5 entrada parcelas, Pl Ciem Ollas Oficina 301, 250017 Cote, Colombia - Tel/Fax +57(1)8767228 - info@fytolab.co
Certificado de análisis
15/000288

Ana Milena Cañon Perez
Cll 179 N° 6 - 41 Interior 1 Apt 304
Bogotá
Colombia

Tipo de muestra: cebollitas
Referencia: Lote 4 Cebolla Larga, Vereda Quebradas, Aquitania

Información general:
Producto:
Origen:
Destino:
Número:
Orden de compra:
Marca:
Tratamiento:
Bruto/Factor de concentración:
Información destino:

Información de la muestra:
Fecha de muestreo:
Muestreo por:
Lugar de muestreo:
Sellado:
Estado de la muestra:
Peso (g):
Unidades:
Empaquetado:
Transportado por:

Reporte:
Fecha de recepción: 17/02/2016
Informe 1º día: 24/02/2016
Revisión: 1 27/02/2016
Periodo de análisis: 17/02/2016 - 24/02/2016
Control:
Tolerancia: UE-LMR

Muestra homogeneizada

<table>
<thead>
<tr>
<th>Substancia</th>
<th>Azt.</th>
<th>Resultado</th>
<th>Tolerancia</th>
<th>Unidad</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>chlorothalonil</td>
<td>A</td>
<td>límite de comunicación (LC)</td>
<td>* mg/kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>myclobutenil</td>
<td>A</td>
<td>límite de comunicación (LC)</td>
<td>* mg/kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>profenofos</td>
<td>A</td>
<td>límites menores al límite de comunicación (LC)</td>
<td>* mg/kg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Otros no detectables (< LC)

M.Sc. Diana Carolina Botía Gil
Laboratory Manager

WHEN EXCELLENCE IS YOUR STANDARD

Autop. Medellín Km 2,5 entrada parqueles, Pl Ciem Olivos Oficina 301, 250017 Cota, Colombia - Tel/Fax: +57(1)8767228 - info@fytolab.co

97
Certificado de análisis
15/000289

Tipo de muestra: cebollitas
Referencia: Lote 5 Cebolla Larga, Vereda Quebradas, Aguada

Información general:
Productor:
Origen:
Destino:
Número:
Orden de compra:
Marca:
Tratamiento:
Bruta/Factor de concentración:
información destino:

Fecha de recogida:
Informes: 1 día:
Revisión: 1 día: 27/02/2015
Periodo de análisis: 17/02/2016 - 24/02/2016
Tolerancia: UE-LMR

Información de la muestra:
Fecha de muestreo:
Muestreo por:
Lugar de muestreo:
Selada:
Estado de la muestra: en buen estado
Peso (g): 4880
Empaquetado:
Transportado por: Correo

Muestra homogeneizada
GMS_02 - GC-MSMS - FYTOLAB accredited

<table>
<thead>
<tr>
<th>Sustancia</th>
<th>Act.</th>
<th>Resultado</th>
<th>Tolerancia</th>
<th>Unidad</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>chlorobenzol</td>
<td></td>
<td>Traces menor al</td>
<td>A límite de comunicación (LC)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Otros no detectables (+ LC)

M.Sc. Diana Carolina Botas Gil
Laboratory Manager
Certificado de análisis
15/000290

Ana Milena Cañon Perez
Cll 179 N° 6 - 41 Interior 1 Apt 304
Bogotá
Colombia

Tipo de muestra: cebollitas
Referencia: Lote S Cebolla Larga, Vereda Quebradas, Aquitania

Información general:
Fecha de muestra:
Muestreo por:
Lugar de muestreo:
Selado:
Estado de la muestra:
Peso (g):
Unidad(s):
Empaquetado:
Transportado por:

Información de la muestra:
Fecha de muestreo: sin sello
Muestreo por: en buen estado
Lugar de muestreo: 6784,1
Selado: 6784,1
Estado de la muestra:
Peso (g):
Unidad(s):
Empaquetado:
Transportado por: Correo

Reporta:
Fecha de recepción: 17/02/2016
Informe 1° día: 24/02/2016
Revisión: 1 27/02/2016
Periodo de análisis: 17/02/2016 - 24/02/2016
Control:
Tolerancia: UE-LMR

Muestra homogeneizada

<table>
<thead>
<tr>
<th>Sustancia</th>
<th>Acro.</th>
<th>Resultado</th>
<th>Tolerancia</th>
<th>Unidad</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>chlorothalonil</td>
<td>A</td>
<td>Traces menores al límite de comunicación (LC)</td>
<td>mg/kg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Otros no detectables (< LC)

M.Sc. Diana Carolina Bota Gil
Laboratory Manager

WHEN EXCELLENCE IS YOUR STANDARD
Autop. Medellín Km 2,5 entrada parcelas, Pl Ciem Cilos Oficina 301, 250017 Cota, Colombia - Tel/Fax +57(1)6767228 - info@fytolab.co
ANEXO 4: Límites de residuos permisibles de Chlorothalonil en alimentos según la EPA

<table>
<thead>
<tr>
<th>Producto</th>
<th>Partes por millón</th>
<th>Producto</th>
<th>Partes por millón</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almendra</td>
<td>0.05</td>
<td>Cebolla, bulbo</td>
<td>0.5</td>
</tr>
<tr>
<td>Almendran, Cascos</td>
<td>1.0</td>
<td>Cebolla, verde</td>
<td>5</td>
</tr>
<tr>
<td>Albaricoque</td>
<td>0.5</td>
<td>Papaya</td>
<td>15</td>
</tr>
<tr>
<td>Espárragos</td>
<td>0.1</td>
<td>Pastinaca, raíces</td>
<td>1</td>
</tr>
<tr>
<td>Banana (NMT 0.05 ppm en la pulpa comestible)</td>
<td>0.5</td>
<td>Maracuyá</td>
<td>3</td>
</tr>
<tr>
<td>frijol, seco, semilla</td>
<td>0.1</td>
<td>Guisante, vainas comestibles</td>
<td>5</td>
</tr>
<tr>
<td>frijol, suculento</td>
<td>5</td>
<td>Melocotón</td>
<td>0.5</td>
</tr>
<tr>
<td>Arándano</td>
<td>1.0</td>
<td>Maní</td>
<td>0.3</td>
</tr>
<tr>
<td>Brassica, la cabeza y el tronco, subgrupo 5A</td>
<td>5.0</td>
<td>Pistacho</td>
<td>0.2</td>
</tr>
<tr>
<td>Zanahoria, raíces</td>
<td>1</td>
<td>Ciruela</td>
<td>0.2</td>
</tr>
<tr>
<td>Apio</td>
<td>15</td>
<td>Ciruela pasa</td>
<td>0.2</td>
</tr>
<tr>
<td>Cereza, dulce</td>
<td>0.5</td>
<td>Patata</td>
<td>0.1</td>
</tr>
<tr>
<td>Cereza, tarta</td>
<td>0.5</td>
<td>Ruibardo</td>
<td>4.0</td>
</tr>
<tr>
<td>Grano de cacao, frijol seco</td>
<td>0.05</td>
<td>Haba de soya</td>
<td>0.2</td>
</tr>
<tr>
<td>Café, frijol, verde</td>
<td>0.20</td>
<td>Carambola</td>
<td>3.0</td>
</tr>
<tr>
<td>Item</td>
<td>Score</td>
<td>Category</td>
<td>Score</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>El maíz, dulce, kernel más mazorca sin espigas</td>
<td>1</td>
<td>Tomate</td>
<td>5</td>
</tr>
<tr>
<td>Arándano</td>
<td>5.0</td>
<td>Vegetal, cucurbitáceas, grupo 9</td>
<td>5.0</td>
</tr>
<tr>
<td>Ginseng</td>
<td>4.0</td>
<td>Vegetal, fructificación, grupo 8, excepto el tomate</td>
<td>6.0</td>
</tr>
<tr>
<td>Rábano picante</td>
<td>4.0</td>
<td>Seta</td>
<td>1.0</td>
</tr>
<tr>
<td>Lenteja</td>
<td>0.10</td>
<td>Nectarina</td>
<td>0.5</td>
</tr>
<tr>
<td>Lychee</td>
<td>15</td>
<td>Okra</td>
<td>6.0</td>
</tr>
<tr>
<td>Mango</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: EPA [71]
ANEXO 5: Límites Máximos de Residuos de plaguicidas en la cebolla Junca (cebolleta, cebollín) establecidos por el INVIMA.

<table>
<thead>
<tr>
<th>PLAGUICIDA</th>
<th>LMR (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diazinon</td>
<td>1.0</td>
</tr>
<tr>
<td>Ditiocarbamatos</td>
<td>10.0</td>
</tr>
<tr>
<td>Fludioxonil</td>
<td>5.0</td>
</tr>
<tr>
<td>Malation</td>
<td>5.0</td>
</tr>
<tr>
<td>Permetrin</td>
<td>0.5</td>
</tr>
<tr>
<td>Triadimefon</td>
<td>0.05</td>
</tr>
<tr>
<td>Triadimenol</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Fuente: INVIMA [72]
ANEXO 6: Límites máximos de residuos de Chlorothalonil en alimentos establecidos por el CODEX Alimentarius.

<table>
<thead>
<tr>
<th>PRODUCTO</th>
<th>LMR</th>
<th>PRODUCTO</th>
<th>LMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banano</td>
<td>15 mg/Kg</td>
<td>Puerro</td>
<td>40 mg/Kg</td>
</tr>
<tr>
<td>Coles de bruselas</td>
<td>6 mg/Kg</td>
<td>Grasas de mamíferos (excepto grasas de la leche)</td>
<td>0.07 mg/Kg</td>
</tr>
<tr>
<td>Apio</td>
<td>20 mg/Kg</td>
<td>Carne (de mamíferos distintos de los mamíferos marinos)</td>
<td>0.02 mg/Kg</td>
</tr>
<tr>
<td>Acelga</td>
<td>50 mg/Kg</td>
<td>Melones, excepto sandías</td>
<td>2 mg/Kg</td>
</tr>
<tr>
<td>Cerezas</td>
<td>0.5 mg/Kg</td>
<td>Leche</td>
<td>0.07 mg/Kg</td>
</tr>
<tr>
<td>Frijoles comunes (vainas y/o semillas inmaduras)</td>
<td>5 mg/Kg</td>
<td>Cebolla, bulbo</td>
<td>0.5 mg/Kg</td>
</tr>
<tr>
<td>Arandano</td>
<td>5 mg/Kg</td>
<td>Cebolla larga</td>
<td>10 mg/Kg</td>
</tr>
<tr>
<td>Pepino</td>
<td>3 mg/Kg</td>
<td>Cebolla, gales</td>
<td>10 mg/Kg</td>
</tr>
<tr>
<td>Pasas (Negro, Rojo, Blanco)</td>
<td>20 mg/Kg</td>
<td>Papaya</td>
<td>20 mg/Kg</td>
</tr>
<tr>
<td>PRODUCTO</td>
<td>MRL</td>
<td>PRODUCTO</td>
<td>MRL</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---------</td>
<td>-----------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Despojos comestibles (mamíferos)</td>
<td>0.2 mg/Kg</td>
<td>Melocotón</td>
<td>0.2 mg/Kg</td>
</tr>
<tr>
<td>Brócoli, Coliflor</td>
<td>5 mg/Kg</td>
<td>Maní</td>
<td>0.1 mg/Kg</td>
</tr>
<tr>
<td>Pepinillo</td>
<td>3 mg/Kg</td>
<td>Peppers, Chili, seca</td>
<td>70 mg/Kg</td>
</tr>
<tr>
<td>Grosella</td>
<td>20 mg/Kg</td>
<td>Peppers, dulce (incluyendo pimiento o pimentón)</td>
<td>7 mg/Kg</td>
</tr>
<tr>
<td>Uvas</td>
<td>3 mg/Kg</td>
<td>Grasas de aves</td>
<td>0.01 mg/Kg</td>
</tr>
<tr>
<td>Carne de ave</td>
<td>0.01 mg/Kg</td>
<td>Cebolla de primavera</td>
<td>10 mg/Kg</td>
</tr>
<tr>
<td>Piel de ave</td>
<td>0.01 mg/Kg</td>
<td>Zumo, verano</td>
<td>3 mg/Kg</td>
</tr>
<tr>
<td>Aves, despojos comestibles</td>
<td>0.07 mg/Kg</td>
<td>Fresa</td>
<td>5 mg/Kg</td>
</tr>
<tr>
<td>Pulsos</td>
<td>1 mg/Kg</td>
<td>Tomate</td>
<td>5 mg/Kg</td>
</tr>
<tr>
<td>Hortalizas de raíz, tubérculos</td>
<td>0.3 mg/Kg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: CODEX Alimentarius [73]
ANEXO 7: Límites máximos permisibles de Myclobutanil en alimentos establecidos por la EPA.

<table>
<thead>
<tr>
<th>PRODUCTO</th>
<th>PARTES POR MILLÓN (PPM)</th>
<th>PRODUCTO</th>
<th>PARTES POR MILLÓN (PPM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almendra</td>
<td>0.1</td>
<td>Cereza, tarta</td>
<td>5.0</td>
</tr>
<tr>
<td>Almendra, cáscara</td>
<td>2.0</td>
<td>Cilantro, hojas</td>
<td>9.0</td>
</tr>
<tr>
<td>Manzana</td>
<td>0.5</td>
<td>Algodón</td>
<td>0.02</td>
</tr>
<tr>
<td>Manzana, orujo seco</td>
<td>5.0</td>
<td>Grosella</td>
<td>3.0</td>
</tr>
<tr>
<td>Manzana, orujo húmedo</td>
<td>5.0</td>
<td>Huevo</td>
<td>0.02</td>
</tr>
<tr>
<td>Alcachofas</td>
<td>0.90</td>
<td>Frutas, piedra, excepto cereza</td>
<td>2.0</td>
</tr>
<tr>
<td>Espárragos</td>
<td>0.02</td>
<td>Cabra, grasa</td>
<td>0.05</td>
</tr>
<tr>
<td>Plátano, poscosecha</td>
<td>4.0</td>
<td>Cabra, hígado</td>
<td>1.0</td>
</tr>
<tr>
<td>Habas</td>
<td>1.0</td>
<td>Cabra, carne</td>
<td>0.1</td>
</tr>
<tr>
<td>Caneberry</td>
<td>2.0</td>
<td>Cabra, subproductos de la carne, excepto hígado</td>
<td>0.2</td>
</tr>
<tr>
<td>Canistel</td>
<td>3.0</td>
<td>Grosella</td>
<td>2.0</td>
</tr>
<tr>
<td>Ganado, grasa</td>
<td>0.05</td>
<td>Cereales, fracciones espiradas</td>
<td>35</td>
</tr>
<tr>
<td>Ganado, hígado</td>
<td>1.0</td>
<td>Ganado, carne</td>
<td>0.1</td>
</tr>
<tr>
<td>PRODUCTO</td>
<td>PARTES POR MILLÓN (PPM)</td>
<td>PRODUCTO</td>
<td>PARTES POR MILLÓN (PPM)</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------</td>
<td>---</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Ganado, subproductos de la carne, excepto el hígado</td>
<td>0.2</td>
<td>Verduras de hoja verde , excepto las espinacas</td>
<td>9.0</td>
</tr>
<tr>
<td>Cereza, dulce</td>
<td>5.0</td>
<td>Mango</td>
<td>3.0</td>
</tr>
<tr>
<td>Uva</td>
<td>1.0</td>
<td>Mayhaw</td>
<td>0.70</td>
</tr>
<tr>
<td>Uva, orujo seco</td>
<td>10.0</td>
<td>Leche</td>
<td>0.2</td>
</tr>
<tr>
<td>Uva pasa</td>
<td>10.0</td>
<td>Okra</td>
<td>4.0</td>
</tr>
<tr>
<td>Uva pasa, residuos</td>
<td>25.0</td>
<td>Papaya</td>
<td>3.0</td>
</tr>
<tr>
<td>Uva, orujo húmedo</td>
<td>10.0</td>
<td>Menta</td>
<td>3.0</td>
</tr>
<tr>
<td>Cerdo, grasa</td>
<td>0.05</td>
<td>Ciruela pasa, seca</td>
<td>8.0</td>
</tr>
<tr>
<td>Cerdo, hígado</td>
<td>1.0</td>
<td>Aves de corral, grasa</td>
<td>0.02</td>
</tr>
<tr>
<td>Cerdo, carne</td>
<td>0.1</td>
<td>Aves de corral, carne</td>
<td>0.02</td>
</tr>
<tr>
<td>Cerdo, subproductos de la carne excepto hígado</td>
<td>0.2</td>
<td>Aves de corral, subproducto carne</td>
<td>0.02</td>
</tr>
<tr>
<td>Cerdo, conos secos</td>
<td>10</td>
<td>Zapote</td>
<td>3.0</td>
</tr>
<tr>
<td>Caballo, grasa</td>
<td>0.05</td>
<td>Zapote negro</td>
<td>3.0</td>
</tr>
<tr>
<td>Caballo, hígado</td>
<td>1.0</td>
<td>Zapote, mamey</td>
<td>3.0</td>
</tr>
<tr>
<td>PRODUCTO</td>
<td>PARTES POR MILLÓN (PPM)</td>
<td>PRODUCTO</td>
<td>PARTES POR MILLÓN (PPM)</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------</td>
<td>---------------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Caballo, carne</td>
<td>0.1</td>
<td>Oveja, grasa</td>
<td>0.05</td>
</tr>
<tr>
<td>Caballo, subproductos de la carne excepto hígado</td>
<td>0.2</td>
<td>Oveja, carne</td>
<td>0.1</td>
</tr>
<tr>
<td>Oveja, subproducto carne excepto hígado</td>
<td>0.2</td>
<td>Soja, semilla</td>
<td>0.25</td>
</tr>
<tr>
<td>Soja, forraje</td>
<td>3.5</td>
<td>Menta verde</td>
<td>3.0</td>
</tr>
<tr>
<td>Soja, heno</td>
<td>15</td>
<td>Caimito</td>
<td>3.0</td>
</tr>
<tr>
<td>Soja, aceite refinado</td>
<td>0.40</td>
<td>Fresa</td>
<td>0.50</td>
</tr>
<tr>
<td>Tomate</td>
<td>0.30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: EPA [74]
ANEXO 8: Límites máximos de residuos de Myclobutanil en varios productos establecido por el CODEX Alimentarius.

<table>
<thead>
<tr>
<th>Producto básico</th>
<th>LMR</th>
<th>Año de adopción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banano</td>
<td>2 mg/Kg</td>
<td>2001</td>
</tr>
<tr>
<td>Carne de vacuno</td>
<td>0.01 mg/Kg</td>
<td>1995</td>
</tr>
<tr>
<td>Carne de aves</td>
<td>0.01 mg/Kg</td>
<td>1995</td>
</tr>
<tr>
<td>Ciruelas</td>
<td>0.5 mg/Kg</td>
<td>1995</td>
</tr>
<tr>
<td>Ciruelas pasas</td>
<td>0.2 mg/Kg</td>
<td>1997</td>
</tr>
<tr>
<td>Despojos comestibles de aves de corral</td>
<td>0.01 mg/Kg</td>
<td>1995</td>
</tr>
<tr>
<td>Fresas</td>
<td>1 mg/Kg</td>
<td>2001</td>
</tr>
<tr>
<td>Frutas de hueso</td>
<td>2 mg/Kg</td>
<td>2001</td>
</tr>
<tr>
<td>Frutas pomáceas</td>
<td>0.5 mg/Kg</td>
<td>2001</td>
</tr>
<tr>
<td>Grosellas negras</td>
<td>0.5 mg/Kg</td>
<td>1999</td>
</tr>
<tr>
<td>Huevos</td>
<td>0.01 mg/Kg</td>
<td>1995</td>
</tr>
<tr>
<td>Leche de vaca</td>
<td>0.01 mg/Kg</td>
<td>1995</td>
</tr>
<tr>
<td>Lúpulo desecado</td>
<td>2 mg/Kg</td>
<td>2001</td>
</tr>
<tr>
<td>Tomate</td>
<td>0.3 mg/Kg</td>
<td>1999</td>
</tr>
<tr>
<td>Uvas</td>
<td>1 mg/Kg</td>
<td>1997</td>
</tr>
<tr>
<td>Vacuno, despojos comestibles</td>
<td>0.01 mg/Kg</td>
<td>1995</td>
</tr>
</tbody>
</table>

Fuente: CODEX Alimentarius [75]
ANEXO 9: Límites máximos permisibles del plaguicida Profenofos establecido por la EPA.

<table>
<thead>
<tr>
<th>Producto</th>
<th>Partes por millón</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grasa de ganado</td>
<td>0.05</td>
</tr>
<tr>
<td>Carne de ganado</td>
<td>0.05</td>
</tr>
<tr>
<td>Subproductos de carne de ganado</td>
<td>0.05</td>
</tr>
<tr>
<td>Algodón, subproductos desmotadora</td>
<td>55.0</td>
</tr>
<tr>
<td>Algodón, depepitado</td>
<td>2.0</td>
</tr>
<tr>
<td>Grasa de cabra</td>
<td>0.05</td>
</tr>
<tr>
<td>Carne de cabra</td>
<td>0.05</td>
</tr>
<tr>
<td>Subproductos de carne de cabra</td>
<td>0.05</td>
</tr>
<tr>
<td>Grasa de caballo</td>
<td>0.05</td>
</tr>
<tr>
<td>Carne de caballo</td>
<td>0.05</td>
</tr>
<tr>
<td>Subproductos carne de caballo</td>
<td>0.05</td>
</tr>
<tr>
<td>Leche</td>
<td>0.01</td>
</tr>
<tr>
<td>Grasa de oveja</td>
<td>0.05</td>
</tr>
<tr>
<td>Carne de oveja</td>
<td>0.05</td>
</tr>
<tr>
<td>Subproductos carne de oveja</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Fuente: EPA [76]
ANEXO 10: Límites máximos de residuos del plaguicida Profenofos asignado por el CODEX Alimentarius.

<table>
<thead>
<tr>
<th>PRODUCTO BÁSICO</th>
<th>LMR</th>
<th>AÑO DE ADOPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carne (de mamíferos distintos de los mamíferos marinos)</td>
<td>0.05 mg/Kg</td>
<td>2009</td>
</tr>
<tr>
<td>Carnes de aves</td>
<td>0.05 mg/Kg</td>
<td>2009</td>
</tr>
<tr>
<td>Despojos comestibles (mamíferos)</td>
<td>0.05 mg/Kg</td>
<td>2009</td>
</tr>
<tr>
<td>Despojos comestibles de aves de corral</td>
<td>0.05 mg/Kg</td>
<td>2009</td>
</tr>
<tr>
<td>Despojos comestibles de aves de corral</td>
<td>0.05 mg/Kg</td>
<td>2009</td>
</tr>
<tr>
<td>Huevos</td>
<td>0.02 mg/Kg</td>
<td>2009</td>
</tr>
<tr>
<td>Leches</td>
<td>0.01 mg/Kg</td>
<td>2009</td>
</tr>
<tr>
<td>Mango</td>
<td>0.2 mg/Kg</td>
<td>2009</td>
</tr>
<tr>
<td>Mangostán</td>
<td>10 mg/Kg</td>
<td>2009</td>
</tr>
<tr>
<td>Peppers Chili, seco</td>
<td>20 mg/Kg</td>
<td>2012</td>
</tr>
<tr>
<td>Pimientos picantes</td>
<td>3 mg/Kg</td>
<td>2012</td>
</tr>
<tr>
<td>Semilla de algodón</td>
<td>3 mg/Kg</td>
<td>2009</td>
</tr>
<tr>
<td>Especies, frutas y bayas</td>
<td>0.07 mg/Kg</td>
<td>2011</td>
</tr>
<tr>
<td>Especies, raíces y rizomas</td>
<td>0.05 mg/Kg</td>
<td>2011</td>
</tr>
<tr>
<td>Tomate</td>
<td>10 mg/Kg</td>
<td>2009</td>
</tr>
<tr>
<td>Tés (Té y tés de hierbas aromáticas)</td>
<td>0.5 mg/Kg</td>
<td>1997</td>
</tr>
</tbody>
</table>

Fuente: CODEX Alimentarius [77]
ANEXO 11: Porcentaje de consultas por posibles síntomas relacionados con el plaguicida Chlorothalonil en Aquitania por consulta externa.

<table>
<thead>
<tr>
<th>Consulta Externa</th>
<th>N° de consultas diagnosticadas</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cefalea</td>
<td>674</td>
<td>1,5819</td>
</tr>
<tr>
<td>Mareo y desvanecimiento</td>
<td>95</td>
<td>0,2230</td>
</tr>
<tr>
<td>Hemorragia vaginal y uterina anormal, no especificada</td>
<td>86</td>
<td>0,2018</td>
</tr>
<tr>
<td>Epistaxis</td>
<td>80</td>
<td>0,1878</td>
</tr>
<tr>
<td>Dermatitis alérgica de contacto, de causa no especificada</td>
<td>64</td>
<td>0,1502</td>
</tr>
<tr>
<td>Dermatitis de contacto, forma y causa no especificadas</td>
<td>64</td>
<td>0,1502</td>
</tr>
<tr>
<td>Dermatitis atópica, no especificada</td>
<td>59</td>
<td>0,1385</td>
</tr>
<tr>
<td>Dermatitis, no especificada</td>
<td>57</td>
<td>0,1338</td>
</tr>
<tr>
<td>Náusea y vómito</td>
<td>46</td>
<td>0,1080</td>
</tr>
<tr>
<td>Arritmia cardiaca, no especificada</td>
<td>35</td>
<td>0,0821</td>
</tr>
<tr>
<td>Cefalea debida a tensión</td>
<td>12</td>
<td>0,0282</td>
</tr>
<tr>
<td>Dermatitis de contacto por irritantes, de causa no especificada</td>
<td>9</td>
<td>0,0211</td>
</tr>
<tr>
<td>Otros síndromes de cefalea especificados</td>
<td>7</td>
<td>0,0164</td>
</tr>
<tr>
<td>Disfonía</td>
<td>6</td>
<td>0,0141</td>
</tr>
<tr>
<td>Tos</td>
<td>5</td>
<td>0,0117</td>
</tr>
<tr>
<td>Otras dermatitis especificadas</td>
<td>4</td>
<td>0,0094</td>
</tr>
<tr>
<td>Dermatitis alérgica de contacto debida a otros agentes</td>
<td>4</td>
<td>0,0094</td>
</tr>
<tr>
<td>Prurito, no especificado</td>
<td>3</td>
<td>0,0070</td>
</tr>
<tr>
<td>Dermatitis de contacto por irritantes, debida a otros productos qm.</td>
<td>2</td>
<td>0,0047</td>
</tr>
<tr>
<td>Otros pruritos</td>
<td>2</td>
<td>0,0047</td>
</tr>
<tr>
<td>Otras arritmias cardiacas especificadas</td>
<td>2</td>
<td>0,0047</td>
</tr>
<tr>
<td>Dermatitis debida a ingestión de alimentos</td>
<td>2</td>
<td>0,0047</td>
</tr>
<tr>
<td>Otras dermatitis atópicas</td>
<td>2</td>
<td>0,0047</td>
</tr>
<tr>
<td>Eritema nudoso</td>
<td>1</td>
<td>0,0023</td>
</tr>
<tr>
<td>Dolor de garganta</td>
<td>1</td>
<td>0,0023</td>
</tr>
<tr>
<td>Dermatitis debida a sustancias ingeridas no especificadas</td>
<td>1</td>
<td>0,0023</td>
</tr>
<tr>
<td>Dermatitis de contacto por irritantes, debida a otros agentes</td>
<td>1</td>
<td>0,0023</td>
</tr>
<tr>
<td>Dermatitis alérgica de contacto debida a otros productos químicos</td>
<td>1</td>
<td>0,0023</td>
</tr>
<tr>
<td>Otros trastornos especificados de la piel y del tejido subcutáneo</td>
<td>1</td>
<td>0,0023</td>
</tr>
<tr>
<td>Hematuria, no especificada</td>
<td>1</td>
<td>0,0023</td>
</tr>
<tr>
<td>Otras dermatitis seborreicas</td>
<td>1</td>
<td>0,0023</td>
</tr>
</tbody>
</table>

Fuente: Las autoras.
ANEXO 12: Porcentaje de consultas por posibles síntomas relacionados con el plaguicida Chlorothalonil en Aquitania por consulta urgencias.

<table>
<thead>
<tr>
<th>Consulta urgencias</th>
<th>Nº de consultas diagnosticadas</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cefalea</td>
<td>83</td>
<td>2,428</td>
</tr>
<tr>
<td>Epistaxis</td>
<td>31</td>
<td>0,907</td>
</tr>
<tr>
<td>Náusea y vómito</td>
<td>28</td>
<td>0,819</td>
</tr>
<tr>
<td>Mareo y desvanecimiento</td>
<td>13</td>
<td>0,380</td>
</tr>
<tr>
<td>Hemorragia vaginal y uterina anormal, no especificada</td>
<td>3</td>
<td>0,088</td>
</tr>
<tr>
<td>Dermatitis alérgica de contacto, de causa no especificada</td>
<td>2</td>
<td>0,058</td>
</tr>
<tr>
<td>Dermatitis infecciosa</td>
<td>1</td>
<td>0,029</td>
</tr>
<tr>
<td>Dermatitis, no especificada</td>
<td>1</td>
<td>0,029</td>
</tr>
<tr>
<td>Dermatitis debida a ingestión de alimentos</td>
<td>1</td>
<td>0,029</td>
</tr>
<tr>
<td>Cefalea debida a tensión</td>
<td>1</td>
<td>0,029</td>
</tr>
</tbody>
</table>

Fuente: Las autoras.

ANEXO 13: Porcentaje de consultas por posibles síntomas relacionados con el plaguicida Myclobutanil en Aquitania por consulta externa.

<table>
<thead>
<tr>
<th>Consulta Externa</th>
<th>Número de consultas diagnosticadas</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cefalea</td>
<td>674</td>
<td>1,58</td>
</tr>
<tr>
<td>Náuseas y vómito</td>
<td>46</td>
<td>0,11</td>
</tr>
<tr>
<td>Diarrea funcional</td>
<td>6</td>
<td>0,01</td>
</tr>
<tr>
<td>Tos</td>
<td>5</td>
<td>0,01</td>
</tr>
<tr>
<td>Otros trastornos especificados del ojo y sus anexos</td>
<td>3</td>
<td>0,01</td>
</tr>
<tr>
<td>Otros trastornos especificados de la nariz y de los senos paranasales</td>
<td>2</td>
<td>0,00</td>
</tr>
<tr>
<td>Dermatitis de contacto por irritantes, debida a otros productos químicos</td>
<td>2</td>
<td>0,00</td>
</tr>
<tr>
<td>Dermatitis alérgica de contacto debida a otros productos químicos</td>
<td>1</td>
<td>0,00</td>
</tr>
</tbody>
</table>

Fuente: Las autoras.
ANEXO 14: Porcentaje de consultas por posibles síntomas relacionados con el plaguicida Myclobutanil en Aquitania por consulta de urgencias.

<table>
<thead>
<tr>
<th>Consulta Urgencias</th>
<th>Nº de consultas diagnosticadas</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cefalea</td>
<td>83</td>
<td>2,43</td>
</tr>
<tr>
<td>Náusea y vómito</td>
<td>28</td>
<td>0,819</td>
</tr>
<tr>
<td>Dermatitis alérgica de contacto, de causa no especificada</td>
<td>2</td>
<td>0,058</td>
</tr>
<tr>
<td>Dermatitis infecciosa</td>
<td>1</td>
<td>0,029</td>
</tr>
<tr>
<td>Dermatitis, no especificada</td>
<td>1</td>
<td>0,029</td>
</tr>
<tr>
<td>Dermatitis debida a ingesta de alimentos</td>
<td>1</td>
<td>0,029</td>
</tr>
<tr>
<td>Cefalea debida a tensión</td>
<td>1</td>
<td>0,029</td>
</tr>
</tbody>
</table>

Fuente: Las autoras.

ANEXO 15: Porcentaje de consultas por posibles síntomas relacionados por contacto con Profenofos en Aquitania por consulta externa

<table>
<thead>
<tr>
<th>Consulta Externa</th>
<th>Número de consultas diagnosticadas</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cefalea</td>
<td>674</td>
<td>1.58%</td>
</tr>
<tr>
<td>Dolor abdominal localizado en parte superior</td>
<td>259</td>
<td>0,61%</td>
</tr>
<tr>
<td>Náusea y vómito</td>
<td>46</td>
<td>0,11%</td>
</tr>
<tr>
<td>Mialgia</td>
<td>40</td>
<td>0,09%</td>
</tr>
<tr>
<td>Trastorno de ansiedad, no especificado</td>
<td>28</td>
<td>0,07%</td>
</tr>
<tr>
<td>Bradicardia, no especificada</td>
<td>27</td>
<td>0,06%</td>
</tr>
<tr>
<td>Hiperglicemia, no especificada</td>
<td>23</td>
<td>0,05%</td>
</tr>
<tr>
<td>Otras convulsiones y las no especificadas</td>
<td>17</td>
<td>0,04%</td>
</tr>
<tr>
<td>Cefalea debida a tensión</td>
<td>12</td>
<td>0,03%</td>
</tr>
<tr>
<td>Calambres y espasmos</td>
<td>11</td>
<td>0,03%</td>
</tr>
<tr>
<td>Otros síndromes de cefalea especificados</td>
<td>7</td>
<td>0,02%</td>
</tr>
<tr>
<td>Trastorno mixto de ansiedad y depresión</td>
<td>10</td>
<td>0,02%</td>
</tr>
<tr>
<td>Diarrea funcional</td>
<td>6</td>
<td>0,01%</td>
</tr>
<tr>
<td>Otros trastornos de ansiedad especificados</td>
<td>6</td>
<td>0,01%</td>
</tr>
<tr>
<td>Insuficiencia respiratoria aguda</td>
<td>2</td>
<td>0,01%</td>
</tr>
<tr>
<td>Cianosis</td>
<td>2</td>
<td>0,01%</td>
</tr>
<tr>
<td>Otros tipos de bloqueo fascicular y los no especific</td>
<td>1</td>
<td>0,002%</td>
</tr>
<tr>
<td>Trastorno de ansiedad generalizada</td>
<td>1</td>
<td>0,002%</td>
</tr>
<tr>
<td>Infección aguda no especificada de las vías respiratorias inferiores</td>
<td>1</td>
<td>0,002%</td>
</tr>
<tr>
<td>Incontinencia fecal</td>
<td>1</td>
<td>0,002%</td>
</tr>
</tbody>
</table>

Fuente: Las autoras.
ANEXO 16: Porcentaje de consultas por posibles síntomas generados por contacto con Profenofos en Aquitania por consulta Urgencias.

<table>
<thead>
<tr>
<th>Consulta urgencias</th>
<th>Número de consultas diagnosticadas</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Otros dolores abdominales y los no especificados</td>
<td>287</td>
<td>8,39%</td>
</tr>
<tr>
<td>Dolor abdominal localizado en parte superior</td>
<td>142</td>
<td>4,15%</td>
</tr>
<tr>
<td>Cefalea</td>
<td>83</td>
<td>2,43%</td>
</tr>
<tr>
<td>Náusea y vómito</td>
<td>28</td>
<td>0,82%</td>
</tr>
<tr>
<td>Calambres y espasmos</td>
<td>3</td>
<td>0,10%</td>
</tr>
<tr>
<td>Mialgia</td>
<td>2</td>
<td>0,06%</td>
</tr>
<tr>
<td>Cianosis</td>
<td>1</td>
<td>0,03%</td>
</tr>
<tr>
<td>Otros tipos de bloqueo fascicular y los no especificados</td>
<td>1</td>
<td>0,03%</td>
</tr>
<tr>
<td>Trastorno de ansiedad, no especificado</td>
<td>1</td>
<td>0,03%</td>
</tr>
<tr>
<td>Infección aguda no especificada de las vías respiratorias inferiores</td>
<td>1</td>
<td>0,03%</td>
</tr>
<tr>
<td>Insuficiencia respiratoria aguda</td>
<td>1</td>
<td>0,03%</td>
</tr>
</tbody>
</table>

Fuente: Las autoras.
ANEXO 17: Certificación laboratorio.