DISEÑO Y CONSTRUCCIÓN PARA EL SISTEMA DE MEDICIÓN EN EL DESPACHO DE CRUDO EN LA ESTACIÓN COVEÑAS HACIA PUERTO BAHÍA EN CARTAGENA, PERTENECIENTE AL OLEODUCTO DEL CARIBE.

BERNARDO EFRAÍN GARCÉS REALPE
JUAN ESTEBAN OSORIO MURILLO

DIRECTOR: ING. FERNANDO RIVERA

UNIVERSIDAD SANTO TOMÁS
FACULTAD DE INGENIERÍA
ESPECIALIZACIÓN EN INSTRUMENTACIÓN ELECTRÓNICA
BOGOTÁ, SEPTIEMBRE DE 2014
<table>
<thead>
<tr>
<th>CONTENIDO</th>
<th>Pág.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCCIÓN</td>
<td>7</td>
</tr>
<tr>
<td>2. OBJETIVO GENERAL</td>
<td>7</td>
</tr>
<tr>
<td>3. OBJETIVOS ESPECÍFICOS</td>
<td>7</td>
</tr>
<tr>
<td>4. ANTECEDENTES</td>
<td>7</td>
</tr>
<tr>
<td>5. DEFINICIÓN DEL PROBLEMA</td>
<td>8</td>
</tr>
<tr>
<td>6. PROPUESTA DE SOLUCIÓN</td>
<td>9</td>
</tr>
<tr>
<td>7. JUSTIFICACIÓN</td>
<td>9</td>
</tr>
<tr>
<td>8. INGENIERÍA CONCEPTUAL</td>
<td>10</td>
</tr>
<tr>
<td>8.1 MARCO TEÓRICO</td>
<td>10</td>
</tr>
<tr>
<td>8.2 ESTADO DEL ARTE</td>
<td>11</td>
</tr>
<tr>
<td>8.3 REQUERIMIENTOS O ESPECIFICACIONES DE LA SOLUCIÓN</td>
<td>12</td>
</tr>
<tr>
<td>8.3.1 ESPECIFICACIONES DE FUNCIONAMIENTO</td>
<td>12</td>
</tr>
<tr>
<td>8.3.2 ESPECIFICACIONES DE MONTAJE</td>
<td>12</td>
</tr>
<tr>
<td>8.3.3 AMBIENTE DE OPERACIÓN</td>
<td>13</td>
</tr>
<tr>
<td>8.3.4 REQUERIMIENTOS DE GESTIÓN</td>
<td>14</td>
</tr>
<tr>
<td>8.4 REQUERIMIENTOS DE NORMATIVIDAD</td>
<td>14</td>
</tr>
<tr>
<td>8.5 REQUERIMIENTOS LEGALES</td>
<td>15</td>
</tr>
<tr>
<td>9. LIMITANTES</td>
<td>15</td>
</tr>
<tr>
<td>9.1 EN LO ORGANIZACIONAL</td>
<td>15</td>
</tr>
<tr>
<td>9.2 EN LO LEGAL</td>
<td>16</td>
</tr>
<tr>
<td>9.3 EN INFRAESTRUCTURA</td>
<td>17</td>
</tr>
<tr>
<td>9.4 RIESGOS</td>
<td>17</td>
</tr>
<tr>
<td>9.5 REQUERIMIENTOS</td>
<td>18</td>
</tr>
<tr>
<td>9.5.1 ORGANIZACIONAL</td>
<td>18</td>
</tr>
<tr>
<td>9.5.2 LEGAL</td>
<td>19</td>
</tr>
<tr>
<td>9.5.3 FINANCIERO.</td>
<td>19</td>
</tr>
<tr>
<td>9.5.4 INFRAESTRUCTURA</td>
<td>19</td>
</tr>
</tbody>
</table>
10. INGENIERÍA BÁSICA ... 20
10.1 DIAGRAMA DE BLOQUES DE LA SOLUCIÓN 20
10.2 NARRATIVA DE LOS PROCESOS QUE GENERAN LA SOLUCIÓN 21
11. INGENIERÍA DETALLADA .. 23
11.1 DIAGRAMAS Y PLANOS DE LA SOLUCIÓN 23
11.2 LISTADO DETALLADO DE COMPONENTES 25
11.3 BIENES DE CAPITAL .. 29
11.3.1 MAQUINARIA Y EQUIPOS .. 29
11.3.2 HERRAMIENTAS .. 29
11.3.3 VEHÍCULOS .. 30
11.3.4 SOFTWARE Y LICENCIAS ... 30
11.3.5 ENTRENAMIENTO / CERTIFICACIONES 30
11.3.6 CONSTRUCCIONES MUEBLES Y ENSERES 31
12. FACTIBILIDAD DEL PROYECTO ... 31
13. PLAN DE TRABAJO (PDT) .. 32
14. ORGANIGRAMAS DE TRABAJO .. 36
14.1 ORGANIGRAMA ETAPA DISEÑO INGENIERÍA 36
14.2 ORGANIGRAMA ETAPA PROCURA - CONSTRUCCIÓN 37
15. COSTOS DEL PROYECTO ... 38
15.1 COSTOS VARIABLES INDIRECTOS (OVERHEAD ADMINISTRATIVO) 38
15.1.1 GASTOS ADMINISTRATIVOS ... 38
15.1.2 GASTOS GENERALES ... 38
15.1.3 GASTOS FINANCIEROS ... 39
15.1.4 PRORRATEO DEL OVERHEAD A CARGO DEL PROYECTO 39
15.2 COSTOS FIJOS ... 40
15.2.1 COSTOS POR ACTIVIDADES DE INGENIERÍA 40
15.2.1.1 INGENIERÍA CONCEPTUAL ... 40
15.2.1.2 INGENIERÍA BÁSICA .. 41
15.2.1.3 INGENIERÍA DETALLE ... 44
15.2.2 COSTOS POR PROCESO CONTRATACIÓN ...46
15.2.3 COSTOS POR PÓLIZAS ..46
15.2.4 TOTAL COSTOS FIJOS ..47
15.3 COSTOS VARIABLES DIRECTOS ..47
15.3.1 COSTOS POR ACTIVIDADES DE PROCURA47
15.3.1.1 COSTOS POR ACTIVIDADES DE SUMINISTRO DE EQUIPOS Y MATERIALES ..47
15.3.2 COSTOS POR CONSTRUCCIÓN Y MONTAJE DE EQUIPOS52
15.3.3 COSTOS POR CAPACITACIÓN DE PERSONAL EN CAMPO56
15.3.4 COSTOS POR GENERACIÓN DOSSIER DE INGENIERÍA - CONSTRUCCIÓN ..57
15.3.5 TOTAL COSTOS VARIABLES DIRECTOS57
15.4 TOTAL COSTO PROYECTO ..57
16. NEGOCIACIÓN DEL PROYECTO ...58
16.1 UTILIDAD DL PROYECTO Y PRECIO DE VENTA MÍNIMO58
16.2 PRECIO DE VENTA PÚBLICO ...58
17. CONCLUSIONES ..59
18. BIBLIOGRAFÍA ...59
LISTA DE TABLAS

Tabla 1 Condiciones de proceso.. 12
Tabla 2 Condiciones climáticas.. 14
Tabla 3 Cálculo de tamaños de tubería... 21
Tabla 4 Dimensionamiento brazos unidad LACT... 22
Tabla 5 Listado de componentes.. 25
Tabla 6 Maquinaria y equipos ... 29
Tabla 7 Herramientas ... 29
Tabla 8 Vehículos ... 30
Tabla 9 Software ... 30
Tabla 10 Entrenamiento / Certificaciones .. 30
Tabla 11 Construcciones, muebles y enseres ... 31
Tabla 12 Gastos administrativos .. 38
Tabla 13 Gastos generales ... 38
Tabla 14 Gastos financieros .. 39
Tabla 15 Prorrateo cargado al proyecto .. 39
Tabla 16 Costos Ingeniería Conceptual .. 40
Tabla 17 Documentos entregables Ingeniería Conceptual ... 41
Tabla 18 Recursos – Costos Ingeniería Básica .. 41
Tabla 19 Documentos entregables Ingeniería Básica ... 42
Tabla 20 Recursos – Costos Ingeniería Detalle ... 44
Tabla 21 Documentos entregables Ingeniería de detalle .. 45
Tabla 22 Costo total ingenierías .. 46
Tabla 23 Costos por contratación ... 46
Tabla 24 Costos por pólizas ... 46
Tabla 25 Costos Fijos .. 47
Tabla 27 Recursos - Costos Actividades Procura... 47
Tabla 28 Entregables Actividades de Procura ... 48
Tabla 29 Costos actividades construcción, montaje puesta en marcha 53
Tabla 30 Costos equipos / Herramientas construcción, montaje puesta en marcha 54
Tabla 31 Costos capacitación personal en sitio de montaje ... 56
Tabla 32 Costos capacitación personal en sitio de montaje ... 57
Tabla 33 Costos Variables Directos .. 57
Tabla 34 Costo Total del Proyecto ... 57
Tabla 35 Precio de venta del proyecto y rentabilidad .. 58
LISTA DE FIGURAS

Figura 1 Distribución de tanques de almacenamiento estación Coveñas............................... 10
Figura 2 Diagrama de bloques general de la solución .. 20
Figura 3 Diagrama de bloques de cada brazo de medición unidad LACT.............................. 23
Figura 4 Diagrama de procesos brazo unidad LACT ... 24
Figura 5 Diagrama de procesos sistema de calibración .. 24
Figura 6 Diagrama de procesos lazo de calidad ... 25
Figura 7 Organigrama Etapa diseño de Ingeniería... 36
Figura 8 Organigrama Etapa Procura y Construcción.. 37
1. INTRODUCCIÓN

El presente documento pretende describir la planificación de un proyecto para diseñar, construir una unidad de medición de hidrocarburos a implementarse en la terminal Coveñas, con el fin de fiscalizar la transferencia de crudo recibido hacia el terminal Puerto Bahía por el Oleoducto del Caribe OLECAR.

La solución propuesta en el diseño es la de pasar el crudo proveniente del sistema de bombeo por un “loop” en el que se midan los parámetros de calidad del crudo, incluyendo viscosidad, densidad y BS&W, pasando luego por tres brazos de medición de flujo que incluyen los elementos para realizar la compensación por presión y temperatura y por último se plantea la instalación de un sistema que permita realizar la calibración periódica del sistema de medición de flujo.

En este proyecto se emplean los conocimientos adquiridos en la especialización, aplicando conceptos técnicos en las tres fases de la ingeniería del proyecto: conceptual, básica y de detalle, y en los procesos de procura y construcción. Estas etapas permitieron desarrollar el análisis de tiempos, la asignación de recursos y el cálculo parcial de los costos para finalmente estimar el costo total del proyecto y el precio mínimo de venta del mismo.

2. OBJETIVO GENERAL

Diseñar un sistema de medición que cumpla con los requisitos de transferencia en custodia para el despacho de crudo desde la estación Coveñas hacia Puerto Bahía en como parte del Oleoducto del Caribe, OLECAR.

3. OBJETIVOS ESPECÍFICOS

- Revisar las condiciones y los requerimientos del proceso, con el fin de plantear una propuesta de solución que satisfaga las necesidades del cliente.
- Realizar el planteamiento del diseño de una unidad de medición de hidrocarburos líquidos, describiendo las actividades de ingeniería conceptual, básica y de detalle para un proyecto de ingeniería.
- Definir las actividades a realizar en cada etapa de la ingeniería, la procura y la construcción asignando responsables y los recursos necesarios para ejecutar cada tarea, para luego calcular el costo de cada actividad.
- Definir los costos indirectos del proyecto, incluyendo los gastos administrativo y locativos y realizar el prorrateo de los mismos para asignar un porcentaje al proyecto en desarrollo.
- Calcular el costo total, definir la utilidad esperada y calcular el precio mínimo de venta considerando los costos directos e indirectos del proyecto.

4. ANTECEDENTES

En los últimos años los hidrocarburos se han convertido en el tema de moda en Colombia, y todo por el incremento de la producción petrolera dado el hallazgo de pozos y las
operaciones en campos importantes por cuenta de empresas nacionales y extranjeras [1]. La meta propuesta para Colombia en el 2013 era la producción de 1 millón de barriles limpios cada día, sin embargo esta meta se ha visto truncada debido a la carencia de una mejor infraestructura de transporte por oleoductos y los constantes ataques ocasionados por grupos al margen de la ley.

Sin embargo, en la actualidad la segunda compañía petrolera más grande de Colombia, Pacific Rubiales, se encuentra desarrollando un proyecto de inversión en infraestructura para impulsar la cadena de producción de hidrocarburos y sus áreas estratégicas, principalmente en Colombia, para asegurar y controlar el ritmo de desarrollo de reservas contempladas en su plan de negocios. Pacific Infrastructure Ventures Inc., una compañía privada en la cual Pacific Rubiales posee una participación en el capital de 41,4%, está actualmente desarrollando el terminal de exportación de crudo de Puerto Bahía en la costa del Caribe de Cartagena, y el Oleoducto del Caribe (OLECAR) con una capacidad de 300.000 barriles diarios que conecta el puerto de Coveñas con la estación en Cartagena [2].

Hoy en día, el crudo proveniente del centro de producción Rubiales, es transportado hasta el puerto de Coveñas por medio del Oleoducto perteneciente al Oleoducto Central S.A. (OCENSA) para ser exportado desde allí. El Oleoducto del Caribe (Olecar) es contemplado en su diseño para que el transporte de crudo proveniente desde Rubiales hasta la estación Coveñas continúe hacia el Terminal Puerto Bahía (Isla Barú), con dos fines, el primero para ser exportado desde allí y el segundo para enviarlo a la refinería de Cartagena (REFICAR), esperando la optimización en costos del barril transportado, en ese sentido, el Oleoducto del Caribe se prevé aporte una mayor confiabilidad y rentabilidad al suministro de crudo hacia REFICAR y puerto bahía, logrando el aporte a la meta propuesta para el 2015 de 1450000 barriles diarios [3].

Construido entre el puerto de Coveñas y la refinería de Cartagena, existe una línea de 18 pulgadas con una capacidad de 113300 barriles por día, diseñada para el transporte de combustible; el proyecto del nuevo oleoducto del caribe contempla además la construcción de una estación de bombeo del producto hidrocarburo en Coveñas, en los predios de la estación de la Vicepresidencia de Transporte (VIT) de Ecopetrol S.A, aumentando la capacidad de despacho por el puerto en Cartagena. Como sistemas de fiscalización en la medición para los movimientos del hidrocarburo, se cuenta hoy en día en las estación de Coveñas con unidades completas de medición, pertenecientes a los actuales distribuidores presentes en el puerto, adecuadas según las normas vigentes para la transferencia de custodia entre los diferentes clientes en el puerto Coveñas o hacia el cargue a los buques cisternas.

5. DEFINICIÓN DEL PROBLEMA

En el diseño del Oleoducto del caribe que comunica el puerto de Coveñas con la estación de exportación en puerto Bahía (Cartagena), se contempla el transporte de 300.000 barriles diarios que serán entregados desde los predios de la Vicepresidencia de transporte (VIT) de Ecopetrol S.A, por la empresa Pacific Infrastructure hacia consignatarios o ésta misma empresa en el nuevo puerto de Cartagena. Los movimientos de los productos hidrocarburos en las salidas de las estaciones para la entrega a los oleoductos requieren sean fiscalizados o medidos con sistemas de alta confiabilidad con el fin de tener los valores más reales posibles y tener la certeza de la cantidad de producto hidrocarburo
que se está entregado, para generar los respectivos balances de planta y las facturas de venta en la entrega o recibo de producto, en la actualidad el oleoducto del caribe no cuenta con un sistema de medición para la transferencia de custodia del hidrocarburo transportado.

6. PROPUESTA DE SOLUCIÓN

Con el objeto de custodiar el proceso de entrega hacia el oleoducto del caribe desde la estación de bombeo de Pacific Infrastructure en el terminal Coveñas, se plantea la propuesta del diseño y construcción de una unidad de medición para las transferencia automática de producto (LACT), la cual este en capacidad de manejar 300000 barriles diarios de crudo, garantizando el cumplimiento de la normatividad, disponibilidad del sistema y seguridad en el proceso.

7. JUSTIFICACIÓN

El proyecto del oleoducto del caribe transportará crudo tipo Rubiales Blend (18 “API) desde Coveñas hasta Puerto bahía a través de un oleoducto de 30”, con una capacidad de 300 KBPDC barriles diarios. Su longitud será de 130 Km donde se instalarán válvulas y cheques para el seccionamiento caso de mantenimiento o emergencia.

La nueva infraestructura de transporte de hidrocarburos se convertirá en otra alternativa para las exportaciones de crudo por el Caribe colombiano, debido a la meta que tienen las operadoras petroleras para la producción de más de un millón de barriles diarios. Actualmente entre el terminal Coveñas y Cartagena existe un oleoducto de menor tamaño, 18 pulgadas de diámetro, que resulta insuficiente para los requerimientos de la industria de hidrocarburos nacional, surge entonces la necesidad de la ampliación a la infraestructura petrolífera del país.

Pero no solo las ampliaciones mencionadas requieren de kilómetros de tuberías tendidas por la geografía colombiana, también hacen parte diferentes sistemas que hacen el complemento al funcionamiento de los oleoductos, como son el caso de las estaciones de bombeo, sistemas de alivio, sistemas auxiliares y no menos importantes las llamadas chequeras de los productores, las unidades de medición automática o también llamadas a “Unidades LACT, (Lease Automatic Custody Transfer) por sus siglas en inglés).

Estas unidades de medición se encuentran diseñadas bajos las más exigentes estándares aplicables a la industria petrolera, pensando además en la operación segura para las personas y el medio ambiente y garantizando la disponibilidad en caso de alguna falla en algún componente de medición.

Con estas unidades de medición se tiene estricto control sobre el producto que sale o entra a las estaciones provenientes de los oleoductos que comunican las diferentes estaciones del país. En nuestro caso se pretende desarrollar una unidad de medición acorde a los datos del proceso, las características del fluido y demás condiciones ambientales, para garantizar que el despacho desde la terminal Coveñas de Pacific Infrastructure pueda entregar de manera confiable crudo de exportación hacia la terminal en puerto Bahía, logrando cuantificar de manera precisa los volúmenes entregados para la venta y exportación.
8. INGENIERÍA CONCEPTUAL

8.1 MARCO TEÓRICO

Las instalaciones del terminal Coveñas de la Vicepresidencia de Transporte de Ecopetrol VIT, consta de facilidades para el recibo, almacenamiento y despacho de diferentes tipos de crudo procedente del interior del país.

Los oleoductos que arriban al terminal son el Oleoducto Caño Limón Coveñas de tuberías de 18", 20" y 24" y una longitud aproximada de 780 km, que recoge la producción de los campos de Arauca, el Oleoducto Central (Ocensa) con tuberías de 36" y una longitud de 837 km proveniente de las estaciones Cusiana y Cupiagua localizadas en el departamento de Casanare y el Oleoducto de Colombia (ODC) que arriba a Coveñas desde la Estación Vasconia en Boyacá, y que además recibe la producción de tuberías provenientes de los llanos orientales y el alto Magdalena [4].

Para almacenar estos crudos, el terminal Coveñas cuenta con varios grupos de tanques de almacenamiento, incluyendo 2 tanques de almacenamiento del oleoducto Bicentenario con capacidad para 600 mil barriles de crudo cada uno, tanques de almacenamiento ODC, 7 tanques de OCENSA que permiten almacenar 1'275.000 barriles y 10 tanques de la VIT que también permiten almacenar la nafta procedente de Barrancabermeja. En la figura 1 se puede apreciar la distribución de los tanques en el terminal Coveñas.

![Figura 1 Distribución de tanques de almacenamiento estación Coveñas](image)

Utilizando múltiples o *manifolds* de tubería que permitan la interconexión de los diferentes tanques de almacenamiento en el terminal y un adecuado sistema de bombeo, el Oleoducto Olecar pretende transportar 300.000 barriles de crudo por día, hacia la refinería de Cartagena (REFICAR) y hacia el terminal marítimo Puerto Bahía, localizado en Isla Barú, donde Pacífic Infrastructure podrá exportar su producto en buques de hasta 80.000 PWT (toneladas de peso muerto) [6].

Debido a que el despacho del Oleoducto Olecar realiza transacciones a múltiples destinos y clientes, se requieren procesos de medición de alta confiabilidad que permitan realizar transacciones justas entre los diferentes usuarios, cuando se requieran facturas de venta en el caso del envío a la refinería o para balances de planta cuando el intercambio se realice hacia destinos de la misma empresa, como es el caso del envío a Puerto Bahía.
8.2 ESTADO DEL ARTE

Actualmente los procesos de medición de hidrocarburos por caudal, conocidos como procesos de medición dinámica, cuentan con una gran variedad de posibilidades en cuanto a tecnologías de medición de flujo.

Con el fin de regular o normalizar el diseño y operación de la medición, la industria petrolera de Colombia ha optado por seguir los lineamientos establecidos en los documentos del manual “Manual of Petroleum Measurements Standards” publicado por API “American Petroleum Institute“. Una muestra de su influencia es que la petrolera más importante del país ECOPETROL, ha publicado una adaptación del documento de API, conocida como el Manual de Medición de Hidrocarburos que establece las bases para todos sus procesos de medición.

En este manual solo se aceptan como tecnologías válidas para la medición de flujo de hidrocarburos líquidos en procesos de transferencia en custodia, 4 tecnologías de medición: desplazamiento positivo (API MPMS 5.2), turbina (API MPMS 5.3), Coriolis (API MPMS 5.6) y ultrasónico (API MPMS 5.8). Por esta razón se descarta el uso de cualquier tecnología distinta para tales procesos.

A nivel mundial se ha realizado innumerables desarrollos que potencian cada una de estas tecnologías.

Respecto a los procesos de transferencia en custodia, se ha incluido el concepto de compensación del caudal por presión y temperatura con el fin de lograr transacciones más justas. En el manual de medición de hidrocarburos se encuentran ecuaciones que permiten a equipos especializados como son los computadores de flujo, realizar los cálculos adecuados para que las variaciones en dichas variables no afecten el volumen transado.

Un aspecto adicional es la medida de la calidad del fluido despachado, por tal motivo se encuentran tecnologías para medición en línea de variables como densidad, contenido de agua y sedimentos BS&W, viscosidad, entre otros.

Todos estos avances han colaborado a unificar el concepto de la unidad de medición de transferencia en custodia conocida como unidad LACT (Lease automatic custody transfer system), que consta de un conjunto de equipos y elementos que permiten realizar la medición de forma automática. En un principio, era común que estos sistemas se construyeran como un patín que permitía transportarlo de un lado a otro, por eso el concepto de arrendamiento o Leasing en su nombre; sin embargo con el paso del tiempo, ese concepto ha cambiado debido a que las empresas que intervienen en los procesos de transferencia en custodia, prefieren construir sus propias y fijas unidades de medición LACT.

En Colombia son varias las empresas que presan el servicio de importación de las unidades LACT, otras empresas las construyen, no existe una patente del diseño de la unidad LACT, los lineamientos de construcción están dados por las características del proceso en el que se va a instalar y las recomendaciones de instalación de los fabricantes de los diferentes instrumentos que la componen, especialmente el medidor de flujo.
8.3 REQUERIMIENTOS O ESPECIFICACIONES DE LA SOLUCIÓN

8.3.1 ESPECIFICACIONES DE FUNCIONAMIENTO

La unidad de medición debe cumplir con todos los lineamientos establecidos en el API MPMS (*Manual of Petroleum Measurement Standards*) para transferencia en custodia. La unidad debe operar de forma automática, con monitoreo remoto.

Las condiciones de proceso se muestran en la tabla 1.

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>UNIDAD</th>
<th>MÍNIMO</th>
<th>NORMAL</th>
<th>MÁXIMO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flujo</td>
<td>KBPD</td>
<td>170</td>
<td>240</td>
<td>360</td>
</tr>
<tr>
<td>Presión</td>
<td>psig</td>
<td>170</td>
<td>320</td>
<td>380</td>
</tr>
<tr>
<td>Temperatura</td>
<td>°F</td>
<td>85</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Viscosidad @T normal</td>
<td>cP</td>
<td>40</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Gravedad específica</td>
<td>-</td>
<td>0.904</td>
<td>0.946</td>
<td>0.946</td>
</tr>
</tbody>
</table>

Para realizar los procesos de compensación, se deben instalar transmisores e indicadores locales de presión y temperatura. La unidad de medición debe contar con un *loop* de calidad, que incluya medición de densidad, toma muestras automático y medición de contenido de agua y sedimentos (BS&W).

Es necesario que la unidad de medición permita la calibración periódica de los medidores de flujo ahí instalados, por tal motivo debe incluirse en el suministro un probador, que puede ser de tipo bidireccional o de desplazamiento.

La unidad LACT debe contar con válvulas de alivio térmico, para evitar daños mecánicos debido a sobre presión por expansión del producto que pueda quedar confinado. La descarga de las válvulas de alivio se conectará al cabezal de alivios de la estación.

Todas las señales de los instrumentos de la unidad de medición y del probador, deben ser administradas por un computador de flujo con capacidades para corrección y cálculos de factor de medidor en procesos de calibración. El computador de flujo debe integrarse al sistema de control general de la estación a través de protocolo de comunicaciones abierto.

Las válvulas motorizadas serán de tipo cableado 7 hilos, y conectadas a un PLC suministrado de forma local, con el fin de tener el control de los brazos en cableado en duro, estando al mismo tiempo monitoreado por el computador de flujo.

8.3.2 ESPECIFICACIONES DE MONTAJE

Para el montaje de la unidad de medición en la terminal, se debe garantizar por parte del cliente los siguientes ítems:

El espacio mínimo requerido para instalar la unidad de medición y el probador bidireccional es de 10 metros de ancho por 20 metros de largo, 200 metros cuadrados.

Para la operación de la unidad, válvulas motorizadas, loop de calidad y el probador, se necesitan acometidas de 480 VAC y 120 VAC regulados.
Se requieren puntos de conexión al cabezal de aire de instrumentos, al cabezal de alivios y al sistema de drenajes cerrados del terminal.

La unidad LACT debe incluir facilidades para realizar calibraciones a los medidores de flujo y al probador por método de extracción de agua, por tal motivo debe considerarse espacio suficiente para tales maniobras.

Se requiere espacio suficiente para la extracción de los equipos dentro de la unidad de medición, en caso de requerirse labores de mantenimiento.

Las facilidades para expansión futura en otros brazos de medición no deberán ser obstruidas por tuberías, equipos eléctricos o civiles.

Se deben prever una tubería que permita el reprocesso del crudo fuera de especificaciones, hacia el tanque de relevo o contingencia.

Adecuación de las celdas del CCM para alimentación de los equipos eléctricos de la unidad de medición.

Adecuación de la malla puesta a tierra existente en la estación, para el aterrizaje de los equipos de la unidad.

La unidad LACT se debe instalar aguas arriba de la trampa de despacho de raspadores que conecta con la tubería del oleoducto Olecar que es de 30”.

8.3.3 AMBIENTE DE OPERACIÓN

La unidad LACT se va a instalar en un área de ambiente húmedo y con alta salinidad debido a los efectos de la brisa marina, todos los equipos deben tener encerramientos aptos para operar en este tipo de ambientes, aptos para intemperies y resistentes a la corrosión preferiblemente con certificado NEMA 4X.

Las tuberías deben contar con una pintura acorde a la zona donde va a ser instalada la unidad LACT.

Los instrumentos y elementos electrónicos o que puedan generar ignición por chispa o alta temperatura, deben suministrarse con certificado apto para operar en atmósferas explosivas de acuerdo al plano de clasificación de áreas. Este certificado debe ser emitido por un laboratorio acreditado.

Los equipos electrónicos deben contener tarjetas tropicalizadas que garanticen su correcta operación.

Los tableros y cajas de interconexión eléctrica y de instrumentación, deben instalarse en los límites de la unidad, de tal manera que queden por fuera del área clasificada y faciliten su acceso. Su encerramiento será a prueba de intemperie y corrosión, en caso de ser requerido deberán ser aprobadas para trabajos en áreas clasificadas.
Tabla 2 Condiciones climáticas

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura Promedio</td>
<td>27.4 °C</td>
</tr>
<tr>
<td>Temperatura Mínima</td>
<td>21.7 °C</td>
</tr>
<tr>
<td>Temperatura de bulbo seco</td>
<td>32.9 °C</td>
</tr>
<tr>
<td>Precipitación máxima en 24h</td>
<td>101 mm</td>
</tr>
<tr>
<td>Humedad relativa</td>
<td>77.6 %</td>
</tr>
<tr>
<td>Velocidad del viento promedio</td>
<td>1.5 m/s</td>
</tr>
<tr>
<td>Dirección prevalente del viento</td>
<td>NW</td>
</tr>
</tbody>
</table>

8.3.4 REQUERIMIENTOS DE GESTIÓN

La unidad LACT operará de manera automática, sin embargo requiere de monitoreo remoto desde la sala de control del terminal. Es necesario que el computador de flujo incluido en el suministro de la unidad, permita la integración con las redes de supervisión existentes para que pueda ser supervisada por el operador de la estación.

Se debe incluir en el suministro, todo el software y programación requeridos para lograr una completa interacción al sistema de control.

Se dispondrá de personal capacitado para atender cualquier eventualidad, atención telefónica para soporte 24/7.

8.4 REQUERIMIENTOS DE NORMATIVIDAD

Los siguientes códigos y estándares generales serán utilizados durante la ejecución del proyecto de diseño y construcción de la unidad de medición:

Generales

- API American Petroleum Institute
- ANSI American National Standards Institute
- ASME American Society of Mechanical Engineers
- IEEE Institute of Electrical and Electronics Engineers
- IEC International Electrotechnical Commission
- ISA International Society of Automation
- NEMA National Electrical Manufacturers Association
- NEC National Electric Code (NFPA 70)
- NIST National Institute of Standards and Technology
- NTC Normas Técnicas Colombianas
- RETIE Reglamento técnico de instalaciones eléctricas
- UL Underwriters Laboratory
Específicas

ASME B31.4 Pipeline Transportation Systems for Liquid Hydrocarbon and other liquids
API 2531 Mechanical displacement meter provers
API RP-500 Recommended Practice for Classification of Locations for Electrical Installations at Petroleum Facilities Classified as Class I, Division I and Division 2.
API RP-551 Process Measurement Instrumentation
API RP-552 Transmission Systems
ASME B1.20.1 Pipe Threads, General Purpose (Inch).
ASME B 16.5 Steel Pipe Flanges and Flanged Fitting.
IEEE 1100 Recommended Practice for Powering and Grounding Electronic Equipment.

8.5 REQUERIMIENTOS LEGALES

Toda transacción relacionada con el transporte o intercambio de crudos o sus derivados, debe estar de acuerdo a los lineamientos del Ministerio de Minas y Energía de Colombia, incluyendo pero sin limitarse a:

- Código de Petróleos emitido por el Decreto legislativo 1056.
- Decreto 1348 de 1961: Por el cual se establece que los hidrocarburos líquidos y gaseosos deberán separarse y medirse de acuerdo con los métodos que al efecto prescriba el Ministerio o, en su defecto, por los de uso corriente en la industria del petróleo.
- Resolución Min-minas 2021 (Diciembre 9 de 1986): Por la cual se establece el procedimiento de liquidación volumétrica de productos derivados del petróleo para las entregas a carro tanques, vagón tanques y botes en refinerías, terminales y plantas de abasto en el país.
- Manual y Estándares para la medición de petróleo y sus derivados API MPMS

9. LIMITANTES

9.1 EN LO ORGANIZACIONAL

Respecto al grupo de diseño, se cuenta con el personal adecuado para realizarlo, en fase de construcción se deberá sub contratar la cuadrilla y el personal de dirección del proyecto será el mismo que coordine las labores de diseño.

Se deben adquirir las licencias de software para el desarrollo de la ingeniería, Microsoft Office para los documentos y DWG para planos. Para los dimensionamientos de los instrumentos, especialmente los medidores de flujo y las válvulas de control se emplearán los programas de los proveedores que son de libre circulación.
9.2 EN LO LEGAL

Se plantea la constitución de una Sociedad de Responsabilidad Limitada SRL, en la que los socios son responsables sólo hasta el monto de sus aportes.

La normatividad legal que rige el desarrollo del proyecto:

- Normas Técnicas Colombianas (NTC) del Instituto Colombiano de Normas Técnicas (ICONTEC).
- ISO 14001:2004 Environmental management systems -- Requirements with guidance for use
- OHSAS 18001 Occupational Health and Safety Management
- Reglamento Técnico de Instalaciones Eléctricas (RETIE).
- Código Eléctrico Colombiano NTC 2050 (ICONTEC).

Adicional se cuentan con pólizas para respaldar el desarrollo del producto final como soporte al cliente:

- **PÓLIZA DE CUMPLIMIENTO**

 Ampara las obligaciones emanadas del Contrato y garantiza el cumplimiento de todas y cada una de las obligaciones a cargo de la empresa como CONTRATISTA, el pago de la cláusula penal de apremio y de la cláusula penal pecuniaria. Incluye un valor asegurado igual al 10% del valor estimado del Contrato, y una vigencia igual al término de ejecución, más el plazo de liquidación de mutuo acuerdo, más un mes.

- **PÓLIZA DE MANEJO DEL ANTICIPO**

 Ampara el buen manejo y correcta inversión del anticipo, y de restitución de las sumas entregadas a ese título que no fueren amortizadas totalmente. Incluye un valor asegurado igual al ciento por ciento (100%) del monto del anticipo y una vigencia igual al término de ejecución, más el plazo de liquidación de mutuo acuerdo, más un mes.

- **PÓLIZA DE PAGO DE SALARIOS Y PRESTACIONES**

 Ampara el pago de salarios, prestaciones sociales e indemnizaciones laborales al personal vinculado para la ejecución del Contrato. Incluye un valor asegurado igual al 5% del valor estimado del Contrato, y una vigencia igual al término de ejecución, más el plazo de liquidación de mutuo acuerdo, más un mes.

- **PÓLIZA DE CALIDAD DEL SERVICIO**

 Incluye un valor asegurado igual al 10% del valor final del Contrato y una vigencia igual al término de ejecución, más el plazo de liquidación de mutuo acuerdo, más un año.
- **PÓLIZA DE ESTABILIDAD DE LA OBRA**

Incluye un valor asegurado igual al 10% del valor final del Contrato y una vigencia de cinco años contados a partir de la fecha de terminación del plazo de ejecución del Contrato.

- **SEGURO DE RESPONSABILIDAD CIVIL EXTRACONTRACTUAL**

Se entregará un seguro de responsabilidad civil por un valor asegurado equivalente al diez por ciento (10%) del valor global estimado del presente Contrato, que proteja al cliente frente a daños que puedan generarse a terceros dentro del desarrollo del contrato y que incluya los amparos de patronal, contratistas y subcontractistas, cruzada, bienes bajo cuidado, tenencia y control, equipos mecánicos y vehículos propios y no propios, con una vigencia igual a la del Contrato (plazo de ejecución más plazo de liquidación de mutuo acuerdo).

9.3 EN INFRAESTRUCTURA

Para el proceso de diseño del proyecto, se emplearán equipos propios. En la fase de construcción se debe utilizar la figura de arrendamiento para la maquinaria requerida.

9.4 RIESGOS

Dentro del desarrollo del proyecto se tiene contemplados los siguientes riesgos que podrían afectar el desarrollo normal:

- Cambios de alcance firmado inicialmente en el KOM por parte del cliente durante el desarrollo del proyecto.
- Incumplimiento en los tiempos de entrega de los equipos por parte de proveedores. Extranjeros y nacionales.
- Afectación de los equipos durante el traslado debido a problemas por orden público en la zona de los trabajos.
- Incorrecta especificación de los equipos que se diseñaran e instalaran.
- Baja en el precio del barril de petróleo, lo cual afectaría la rentabilidad esperada para el desarrollo que se desean realizar.
- Cotización del dólar se incremente, afectando la compra de los equipos, que deben ser importados.

Se presentan acciones de mitigación y contingencia para los riesgos expuestos:

- El cliente estará en la autonomía de detener temporalmente el proyecto hasta que la cotización del barril de petróleo se estabilice según sus requerimientos, sin embargo deberá asumir las cláusulas de cumplimiento estipuladas y pactadas en el contrato.
- El proyecto contará con una reserva en dólares, para mitigar el impacto del alza en el momento de la compra de los equipos.
- El proveedor del equipo deberá asumir las cláusulas de entrega estipuladas y pactadas en el contrato con el cliente.
- Mantener una relación estrecha con la fuerza pública para garantizar la protección del personal que va a realizar las obras. Garantizar condiciones para que el personal de construcción y puesta en marcha pueda permanecer siempre dentro de las instalaciones de la estación.
- La compañía contratista asumirá los gastos que se generen ante errores de diseño.
- El cliente deberá asumir los gastos adicionales debido a los cambios de alcance de trabajos, acorde a la cotización presentada y aceptada por la empresa.

9.5 REQUERIMIENTOS

9.5.1 ORGANIZACIONAL

A la fecha la empresa se encuentra constituida por 30 personas, de las cuales el personal encargado del departamento de ingeniería lo componen 18 personas. Debido a las diferentes fases del proyecto, se cuenta con personal especializado tanto para la parte técnica como administrativa y legal:

En la fase de diseño del proyecto se requiere del siguiente personal:

- Director de proyecto
- Coordinador de Ingeniería
- Coordinador disciplina de Proceso
- Coordinador disciplina Eléctrica
- Coordinador disciplina Mecánica
- Coordinador disciplina Civil
- Coordinador disciplina Instrumentación y control
- Coordinador disciplina de Tubería
- Ingenieros diseñadores:
 - Ingeniero de procesos.
 - Ingenieros de instrumentación y control
 - Ingenieros electricistas
 - Ingeniero mecánico
 - Ingenieros de tubería
 - Dibujantes/proyectistas

Durante la etapa de procura se requiere:

- Coordinador de Procura
- Un administrador de compras

En la etapa de construcción se contempla de la ayuda del siguiente personal:

- Director de construcción
- Coordinador de Construcción y puesta en marcha
- Residente disciplina Eléctrica
- Residente disciplina Mecánica
- Residente disciplina Civil
- Residente disciplina Instrumentación y control
- Residente disciplina Tubería
- Adicional se tiene el apoyo de:
 - Técnico Instrumentista
 - Técnico Electricista,
 - Soldadores / armadores
- Técnicos en tubería
- Cuadrilla de obreros para las obras de tubería
- Cuadrilla de obreros para las obras civiles.
- Dibujante de mecánica / tubería
- Dibujante civil
- Dibujante de eléctrico e instrumentación y control

En la parte administrativa, se cuenta con el siguiente personal:

- Asistente de control proyecto
- Asistente control documental
- Coordinador calidad QA
- Coordinador HSE

9.5.2 LEGAL

La empresa BJ METERING SOLUTIONS LTDA, cuenta con los siguientes requerimientos legales:

- Requisitos Comerciales: Registro mercantil No 8DJ4012
- Requisitos Tributarios: Registro Único Tributario RUT / No de identificación Tributaria 817684537
- Requisitos de Funcionamiento
- Registro Industrial de comercio
- Registro del Uso del Suelo
- Requisitos de Seguridad Laboral: Reglamento de Higiene y Seguridad Industrial

9.5.3 FINANCIERO.

De acuerdo a las políticas de inversión establecidas por el Oleoducto del caribe para el año 2014, se incluyó un presupuesto aproximado de 1’350.000 USD para la compra del sistema de medición para la fiscalización y transferencia de producto hacia la terminal de puerto bahía en Cartagena. Dentro de las políticas para este proyecto, fue estipulada la forma de pago al contratista de la siguiente forma:

- Anticipo con orden de trabajo firmada: 40%.
- 40% del valor de la orden de compra a la aprobación de las pruebas en fabrica (FAT) y entrega de equipos en el sitio final en campo.
- 20% del valor de la orden de compra a la terminación de las pruebas de operación y recibo a satisfacción por parte de Olecar.

El proyecto puede ser desempeñado por la empresa BJ METERING SOLUTIONS LTDA, ya que se cuenta con desempeños financieros superiores a este monto y tiene dentro de su experiencia y trayectoria la realización de proyectos similares a este valor, cercanos a los 2 millones de dólares para clientes del mismo sector económico.

9.5.4 INFRAESTRUCTURA.

El domicilio de las oficinas de la empresa BJ METERING SOLUTIONS LTDA es en la ciudad de Bogotá D.C, capital del departamento de Cundinamarca, República de
Colombia, ubicada en el occidente de la ciudad en la Carrera 127 No 25A-15, zona franca Barrio Fontibón, con un área de 750 m².

Para la ejecución del proyecto se dispondrá de los siguientes recursos físicos en las oficinas administrativas y de ingeniería:

- 42 módulos de oficina
- Una oficina de gerencia
- Una oficina de directivos
- 2 salas de juntas
- 2 impresoras
- 1 plotter
- Un módulo de archivo documental

Dentro de las instalaciones se cuenta también con sitios para el almacenamiento y prueba de los instrumentos y equipos antes de ser llevados al sitio de instalación final en la terminal Coveñas.

Se cuenta con instalaciones suficientes y apropiadas para la ejecución de todas las etapas del proyecto, desde la fase de diseño de ingeniería, hasta la fase de pruebas en fábrica.

10. INGENIERÍA BÁSICA

10.1 DIAGRAMA DE BLOQUES DE LA SOLUCIÓN

Figura 2 Diagrama de bloques general de la solución
10.2 NARRATIVA DE LOS PROCESOS QUE GENERAN LA SOLUCIÓN

Como parte del proyecto de expansión de la infraestructura petrolera del país, dentro del terminal Coveñas se pretende construir unas líneas de tubería que permitan interconectar todos los tanques de almacenamiento del terminal, por medio de un múltiple de tubería que permiten al sistema de bombeo del oleoducto del caribe, despachar por medio de su oleoducto hacia el terminal puerto bahía en Cartagena, crudo desde cualquiera de los tanques mencionados.

El proceso de selección de tanques y filosofía de apertura y cierre de válvulas que garanticen la ruta de flujo hasta las bombas, no es del alcance de este proyecto.

Antes de pasar por la trampa de despacho que conecta la línea de salida del terminal de Coveñas con el oleoducto Olecar, se realiza el proceso de medición con la unidad LACT, es allí donde se custodia o fiscaliza el crudo o hidrocarburo que está siendo bombeado fuera de la terminal Coveñas. El alcance del presente documento es establecer las labores de ingeniería para el desarrollo solo del sistema de medición para la transferencia de custodia proveniente de los tanques de almacenamiento.

Tan pronto como el proceso de bombeo inicia, el crudo que es traído desde los tanques es recibido en la unidad LACT, por el loop (lazo) de calidad, conformado por un analizador de BS&W (Sedimentos y agua) y un medidor de densidad. Si el crudo no cumple las especificaciones de calidad acordadas, debe ser reprocesado y enviado nuevamente a tanques, por lo que se cuenta con la facilidad para enviarlo a un tanque de relevo.

En la siguiente tabla se muestra el dimensionamiento del tamaño estimado de las líneas de tubería y medidores de flujo, tomando como criterio una máxima velocidad del fluido dentro de la tubería de 15 pies/seg, y los volúmenes presentados en la tabla No 1.

<table>
<thead>
<tr>
<th>Tabla 3 Cálculo de tamaños de tubería</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALCULO VELOCIDADES EN TUBERÍAS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Descripción</th>
<th>UNIDADES A TRABAJAR (SOLO PARA FLUJO)</th>
<th>valor</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diámetro Tubería</td>
<td>-</td>
<td>12</td>
<td>In</td>
</tr>
<tr>
<td>Espesor Interno Tubería</td>
<td>-</td>
<td>0,03</td>
<td>In</td>
</tr>
<tr>
<td>Diámetro Interno Tubería</td>
<td>-</td>
<td>11,97</td>
<td>In</td>
</tr>
<tr>
<td>Radio total Tubería</td>
<td>-</td>
<td>0,49874801</td>
<td>ft</td>
</tr>
<tr>
<td>Área total tubería</td>
<td>-</td>
<td>0,78147166</td>
<td>ft²</td>
</tr>
<tr>
<td>Caudal Mínimo</td>
<td>BPD</td>
<td>170000</td>
<td>ft³/seg</td>
</tr>
<tr>
<td>Caudal Normal</td>
<td>BPD</td>
<td>170000</td>
<td>ft³/seg</td>
</tr>
<tr>
<td>Caudal Máximo</td>
<td>BPD</td>
<td>180000</td>
<td>ft³/seg</td>
</tr>
<tr>
<td>Velocidad en la tubería Min</td>
<td>-</td>
<td>14,1364206</td>
<td>ft/seg</td>
</tr>
<tr>
<td>Velocidad en la tubería Norm</td>
<td>-</td>
<td>14,1364206</td>
<td>ft/seg</td>
</tr>
<tr>
<td>Velocidad en la tubería Max</td>
<td>-</td>
<td>14,9679747</td>
<td>ft/seg</td>
</tr>
<tr>
<td>INSTRUMENTO</td>
<td>TAMANO</td>
<td>CAPACIDAD BPH</td>
<td>CAPACIDAD BPD</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Medidor desplazamiento positivo</td>
<td>12”</td>
<td>7200</td>
<td>172800</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Si el crudo cumple con los parámetros de calidad, pasa entonces por los brazos de medición de 12” (Ver tabla 3 y 4), alineados para la medición según cantidad volumétrica a ser recibida.

Como se observa en las tablas 3 y 4, los equipos son estimados según capacidad de medición requerida, en todo caso se expone la escogencia de una línea de 12” acorde a criterio establecido previamente, estando ajustado a lo estipulado por la norma API MPMS respectiva para el diseño de estos sistemas de medición dinámica.

El tipo de tecnología para el medidor (medidor de flujo tipo desplazamiento positivo) es seleccionada debido a la base instalada en el terminal por los diferentes clientes y los requerimientos del fluido a ser medido. Adicionalmente se cuenta con transmisores de presión y temperatura para compensación en la medición. Las señales de estos instrumentos son enviadas a un computador de flujo incluido en el suministro de la unidad de medición, quien se encarga de compensar y calcular el volumen entregado a condiciones estándar y de generar los tiquetes o facturas de la transacción.

Aguas abajo de cada brazo de medición, se cuenta con una válvula de doble bloqueo y purga con actuador eléctrico, la cual tiene como función el envío del fluido hacia el sistema de calibración de tipo probador bidireccional, incluido también en el diseño de la unidad de medición. El proceso de calibración por recomendación del manual de medición de hidrocarburos API MPMS, debe hacerse cada 3 meses con el fin de ajustar el factor del medidor, en otras palabras calibrarlo, buscando disminuir la incertidumbre en la medición.

Con el fin de garantizar que en cada brazo solo existe hidrocarburo en su fase liquida, y se encuentre balanceado en partes iguales el fluido pasante por la línea de tubería, se cuenta con una válvula de control de flujo en cada brazo, operada por el computador de flujo, el cual genera la lógica de control acorde a los parámetros leídos en el brazo de medición.

Se presenta a continuación el diseño estimado para cada brazo individual de medición presente en la unidad de medición LACT.
El sistema de medición LACT, debido a las presiones y temperaturas en las cuales va a operar, tiene una clasificación ANSI de 300#, con una presión máxima de operación de 740 PSI @ 100 °F.

De forma más detallada, cada brazo mostrado en la figura No 3, consta de: Tubería y accesorios para la medición de 12”, cada uno con tres válvulas de doble bloqueo y purga con actuador eléctrico de 12”, un filtro tipo canasta de 12” con indicador transmisor de presión diferencial, un medidor de desplazamiento positivo de 12”, indicador transmisor de presión, indicador local de presión, indicador transmisor de temperatura, indicadores locales de temperatura con sus termopozos, una válvula de control de flujo de 12”.

El sistema de calibración es de tipo probador bidireccional con capacidad de 172800 KBPD. Adicionalmente tiene un lazo (loop) de calidad, compuesto por una bomba de engranajes, un medidor de viscosidad, densímetro, % BS&W, instrumentos de presión / temperatura, un toma muestra automático y un toma muestra manual de ½”.

11. INGENIERÍA DETALLADA

11.1 DIAGRAMAS Y PLANOS DE LA SOLUCIÓN

Se presenta a continuación el diagrama de procesos propuesto para cada bloque que compone la unidad de medición; en la Figura 4 se muestran los tres brazos de medición, compuestos por filtros, válvulas de alivio, medidor de flujo de desplazamiento positivo, válvulas motorizadas, válvulas de control y transmisores e indicadores de presión y temperatura.

Para mantener la repetibilidad y precisión requerida en los medidores de flujo presentes en cada brazo, se cuenta con un sistema dedicado para la calibración de estos, mostrado en la figura 5.

En la figura 6 se muestra el diagrama de procesos para el lazo de calidad, el cual se encarga de tomar una muestra representativa del producto para que pueda ser analizada, adicionalmente cuenta con medidores de BS&W, viscosidad y densidad.
Figura 4 Diagrama de procesos brazo unidad LACT

Figura 5 Diagrama de procesos sistema de calibración
11.2 LISTADO DETALLADA DE COMPONENTES

En la tabla que se presenta seguidamente se observa el listado de equipos detallado que componen el total de la solución propuesta, abarca los 3 brazos de medición, el lazo de calidad y el sistema de calibración.

Tabla 5 Listado de componentes

<table>
<thead>
<tr>
<th>ÍTEM</th>
<th>DESCRIPCIÓN COMPONENTE</th>
<th>PROVEEDOR</th>
<th>UN</th>
<th>CANT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VÁLVULA MOTORIZADA DE DOBLE BLOQUEO Y PURGA, 12” x ANSI 300#</td>
<td>ROTORK</td>
<td>UN</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>FILTRO TIPO CANASTA, 12” x ANSI 300#</td>
<td>FMC</td>
<td>UN</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>TRANSMISOR DE PRESIÓN DIFERENCIAL, CONEXIÓN SELLOS REMOTOS 1 1/2” RF, RANGO 0 - 30 PSID, 24 VDC, CL I DIV II Gr C&D</td>
<td>ROSEMOUNT</td>
<td>UN</td>
<td>3</td>
</tr>
<tr>
<td>ÍTEM</td>
<td>DESCRIPCIÓN COMPONENTE</td>
<td>PROVEEDOR</td>
<td>UN</td>
<td>CANT.</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>-----------</td>
<td>----</td>
<td>-------</td>
</tr>
<tr>
<td>4</td>
<td>VÁLVULAS DE ALIVIO TÉRMICO, ACERO INOX, 3/4” x 1”, HxH NPT</td>
<td>TYCO</td>
<td>UN</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>MEDIDOR DESPLAZAMIENTO POSITIVO, 12” x ANSI 300#, RF, RANGO 0 - 172800 BPD, INCLUYE TRANSMISOR DE PULSOS CL I DIV II Gr C&D</td>
<td>FMC</td>
<td>UN</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>INDICADOR DE PRESIÓN TIPO BOURDON, CONEXIÓN 1/2”, INCLUYE SELLOR REMOTO 1 1/2” RF, RANGO 0 - 740 PSI, CAJA FENÓLICA</td>
<td>ASHCROFT</td>
<td>UN</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>TRANSMISOR DE PRESIÓN MANOMÉTRICA, CONEXIÓN SELLOS REMOTOS 1 1/2” RF, RANGO 0 - 740 PSIG, 24 VDC, CL I DIV II Gr C&D</td>
<td>ROEMOUNT</td>
<td>UN</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>TRANSMISOR DE TEMPERATURA, CONEXIÓN 1 1/2” RF, RANGO 0 - 200 °F, TERMOPOZO 10”, RTD 4 HILOS, 24 VDC, CL I DIV II Gr C&D</td>
<td>ROEMOUNT</td>
<td>UN</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>INDICADOR DE TEMPERATURA TIPO BIMETÁLICO, CONEXIÓN 1 1/2” RF, RANGO 0 - 200 °F, TERMOPOZO 10”</td>
<td>ASHCROFT</td>
<td>UN</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>TERMOPOZO DE PRUEBA, ACERO INOX 316, RF, 10” LONGITUD, CONEXIÓN 1 1/2” RF</td>
<td>ASHCROFT</td>
<td>UN</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>VÁLVULA DE CONTROL TIPO MARIPOSA, 12”, FALLA ABIERTA, POSICIONADOR ELECTRÓNICO, IGUAL PORCENTAJE, INCLUYE KIT DE MANTENIMIENTO</td>
<td>FISHER</td>
<td>UN</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>VÁLVULA DE RETENCIÓN TIPO CHEQUE, 12”</td>
<td>CAMERON</td>
<td>UN</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>TUBERÍA 12” SCH 40, SIN COSTURA</td>
<td>-</td>
<td>ML</td>
<td>90</td>
</tr>
<tr>
<td>14</td>
<td>VÁLVULAS DE BOLA, 2” ANSI 300#</td>
<td>CAMERON</td>
<td>UN</td>
<td>8</td>
</tr>
<tr>
<td>15</td>
<td>VÁLVULAS DE BOLA, 3/4” H-H NPT</td>
<td>SWAGELOCK</td>
<td>UN</td>
<td>18</td>
</tr>
</tbody>
</table>
LISTADO DE COMPONENTES - LOOP DE CALIDAD

<table>
<thead>
<tr>
<th>ÍTEM</th>
<th>DESCRIPCIÓN COMPONENTE</th>
<th>PROVEEDOR</th>
<th>UN</th>
<th>CANT</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>INTERRUPTOR DE FLUJO TIPO DISPERSIÓN TÉRMICA, 2" ANSI 300#, 24 VDC, CL I DIV II Gr C&D</td>
<td>MAGNETROL</td>
<td>UN</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>BOMBA ENGRANAJES, 2"ANSI 300#</td>
<td>SULZER</td>
<td>UN</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>DENSITÓMETRO TIPO TENEDOR VIBRANTE, 2" ANSI 300#, RANGO 0-30 ° API, 24 VDC, CL I, DIV II, Gr C&D</td>
<td>MICROMOTION</td>
<td>UN</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>VISCOSÍMETRO TIPO TENEDOR VIBRANTE, 2" ANSI 300#, RANGO 0-350 cP, 24 VDC, CL I, DIV II, Gr C&D</td>
<td>MICROMOTION</td>
<td>UN</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>ANALIZADOR %BSW, 1” ANSI 300#, RANGO 0-5%, 24 VDC, CL I, DIV II, Gr C&D</td>
<td>RED EYE</td>
<td>UN</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>TERMOPOZO DE PRUEBA, ACERO INOX 316, RF, 10” LONGITUD, CONEXIÓN 1 1/2” RF</td>
<td>ASHCROFT</td>
<td>UN</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>TRANSMISOR DE TEMPERATURA, CONEXIÓN 1 1/2” RF, RANGO 0 - 200 °F, TERMOPOZO 6”, RTD 3 HILOS, 24 VDC,CL I DIV II Gr C&D</td>
<td>ROSEMOUNT</td>
<td>UN</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>TRANSMISOR DE PRESIÓN MANOMÉTRICA, CONEXIÓN SELLOS REMOTOS 1 1/2” RF, RANGO 0 - 740 PSIG, 24 VDC,CL I DIV II Gr C&D</td>
<td>ROSEMOUNT</td>
<td>UN</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>TOMA MUESTRAS AUTOMÁTICO, 4” ANSI 300#</td>
<td>KIMMAN PROCESS</td>
<td>UN</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>CONTENEDORES DE MUESTRAS, 5 GALONES, ACERO INOX 304,</td>
<td>KIMMAN PROCESS</td>
<td>UN</td>
<td>2</td>
</tr>
<tr>
<td>26</td>
<td>SENSOR DE PESO PARA CONTENEDORES, RANGO 0 - 50 Kg, CL I DIV II, 24 VDC</td>
<td>KIMMAN PROCESS</td>
<td>UN</td>
<td>2</td>
</tr>
<tr>
<td>27</td>
<td>VÁLVULA SOLENOIDE 3 VÍAS, 24 VDC, 1” NPT</td>
<td>ASCO</td>
<td>UN</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>VÁLVULA ELECTRO NEUMATICA, TIPO BOLA, 1” NPT, 24 VDC</td>
<td>ASCO</td>
<td>UN</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>VÁLVULAS DE BOLA, 2” ANSI 300#</td>
<td>CAMERON</td>
<td>UN</td>
<td>4</td>
</tr>
<tr>
<td>ÍTEM</td>
<td>DESCRIPCIÓN componente</td>
<td>PROVEEDOR</td>
<td>UN</td>
<td>CANT</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>-----------------</td>
<td>----</td>
<td>------</td>
</tr>
<tr>
<td>30</td>
<td>TRANSMISOR DE PRESIÓN MANOMÉTRICA, CONEXIÓN SELLOS REMOTOS 1 1/2" RF, RANGO 0 - 740 PSIG, 24 VDC, CL I DIV II Gr C&D</td>
<td>ROEMOUNT</td>
<td>UN</td>
<td>2</td>
</tr>
<tr>
<td>31</td>
<td>TRANSMISOR DE TEMPERATURA, CONEXIÓN 1 1/2" RF, RANGO 0 - 200 °F, TERMOPOZO 10", RTD 4 HILOS, 24 VDC, CL I DIV II Gr C&D</td>
<td>ROEMOUNT</td>
<td>UN</td>
<td>2</td>
</tr>
<tr>
<td>32</td>
<td>INDICADOR DE TEMPERATURA TIPO BIMETÁLICO, CONEXIÓN 1 1/2" RF, RANGO 0 - 200 °F, TERMOPOZO 10"</td>
<td>ASHCROFT</td>
<td>UN</td>
<td>2</td>
</tr>
<tr>
<td>33</td>
<td>TERMOPOZO DE PRUEBA, ACERO INOX 316, RF, 10" LONGITUD, CONEXIÓN 1 1/2" RF</td>
<td>ASHCROFT</td>
<td>UN</td>
<td>2</td>
</tr>
<tr>
<td>34</td>
<td>INDICADOR DE PRESIÓN TIPO BOURDON, CONEXIÓN 1/2", INCLUYE SELLO REMOTO 1 1/2" RF, RANGO 0 - 740 PSI, CAJA FENOLICA</td>
<td>ASHCROFT</td>
<td>UN</td>
<td>2</td>
</tr>
<tr>
<td>35</td>
<td>VÁLVULA MOTORIZADA DE 4 VÍAS, 12" x ANSI 300#</td>
<td>ROTORK</td>
<td>UN</td>
<td>1</td>
</tr>
<tr>
<td>36</td>
<td>TRANSMISOR DE PRESIÓN DIFERENCIAL, CONEXIÓN SELLOS REMOTOS 1 1/2" RF, RANGO 0 - 30 PSID, 24 VDC, CL I DIV II Gr C&D</td>
<td>ROEMOUNT</td>
<td>UN</td>
<td>1</td>
</tr>
<tr>
<td>37</td>
<td>VÁLVULAS DE ALIVIO TÉRMICO, ACERO INOX, 3/4" x 1", HxH NPT</td>
<td>TYCO</td>
<td>UN</td>
<td>2</td>
</tr>
<tr>
<td>38</td>
<td>INTERRUPTORES DE Detección de PASO DE ESFERA, 24 VDC, CL I DIV II</td>
<td>GIRARD INDUSTRIES</td>
<td>UN</td>
<td>4</td>
</tr>
<tr>
<td>39</td>
<td>CÁMARAS DE LANZAMIENTO DE ESFERAS, 24" ANSI 300#</td>
<td>-</td>
<td>UN</td>
<td>2</td>
</tr>
<tr>
<td>40</td>
<td>TUBERÍA 12" SCH 40, SIN COSTURA</td>
<td>-</td>
<td>ML</td>
<td>45</td>
</tr>
<tr>
<td>41</td>
<td>VÁLVULAS DE BOLA, 2" ANSI 300#</td>
<td>CAMERON</td>
<td>UN</td>
<td>3</td>
</tr>
<tr>
<td>42</td>
<td>VÁLVULAS DE BOLA, 3/4" H-H NPT</td>
<td>SWAGELOCK</td>
<td>UN</td>
<td>12</td>
</tr>
</tbody>
</table>
11.3 BIENES DE CAPITAL

En las siguientes tablas se presentan la lista de la maquinaria y equipos, herramientas, vehículos, software, licencias, entrenamientos / certificaciones y construcciones, muebles y enseres, indicando las cantidades requeridas para cada ítem de la descripción.

11.3.1 MAQUINARIA Y EQUIPOS

<table>
<thead>
<tr>
<th>ÍTEM</th>
<th>DESCRIPCIÓN</th>
<th>UNIDAD</th>
<th>CANT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ELECTRO SOLDADOR 250 AMP</td>
<td>UN</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>GRÚA CAP 1 TON</td>
<td>UN</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>EQUIPO DE OXI CORTE (ACETILENO)</td>
<td>UN</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>ANDAMIOS</td>
<td>UN</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>DIFERENCIAL 1-3 TON</td>
<td>UN</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>DOBLADORA HIDRÁULICA</td>
<td>UN</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>ROSCADORA ELÉCTRICA</td>
<td>UN</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>ESCALERA</td>
<td>UN</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>PULIDORA</td>
<td>UN</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>PINZA PRENSA</td>
<td>UN</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>PINZA SOPORTE</td>
<td>UN</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>EQUIPO COMPLETO DE OXIACETILENO</td>
<td>UN</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>EQUIPO DE SANDBLASTING</td>
<td>UN</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>EQUIPO DE PINTURA</td>
<td>UN</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>PLANTA ELÉCTRICA DE 4 KW</td>
<td>UN</td>
<td>1</td>
</tr>
</tbody>
</table>

11.3.2 HERRAMIENTAS

<table>
<thead>
<tr>
<th>ÍTEM</th>
<th>DESCRIPCIÓN</th>
<th>UNIDAD</th>
<th>CANT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CONFIGURADOR HANDHELD</td>
<td>UN</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>SIMULADOR DE 4-20 MA</td>
<td>UN</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>MULTÍMETRO DIGITAL</td>
<td>UN</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>PINZA VOLTAAMPERIMETRICA</td>
<td>UN</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>TALADRO</td>
<td>UN</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>CORTATUBOS 1"-2"-3"-4"</td>
<td>UN</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>DOBLA TUBOS</td>
<td>UN</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>PERFORADORA DIRECCIONAL</td>
<td>UN</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>BOBCAT</td>
<td>UN</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>CORTADORA DE MESA</td>
<td>UN</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>ESMERILADORA</td>
<td>UN</td>
<td>1</td>
</tr>
</tbody>
</table>
Herramientas

<table>
<thead>
<tr>
<th>Ítem</th>
<th>Descripción</th>
<th>Unidad</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Sierra Eléctrica</td>
<td>UN</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>Prensadora</td>
<td>UN</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>Selladora</td>
<td>UN</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>Pistola de Calor</td>
<td>UN</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>Llaves de Impacto</td>
<td>UN</td>
<td>4</td>
</tr>
<tr>
<td>17</td>
<td>Llaves Convencionales</td>
<td>UN</td>
<td>4</td>
</tr>
<tr>
<td>18</td>
<td>Sellante</td>
<td>UN</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>Alicates</td>
<td>UN</td>
<td>4</td>
</tr>
<tr>
<td>20</td>
<td>Juego de Llave</td>
<td>UN</td>
<td>4</td>
</tr>
</tbody>
</table>

11.3.3 Vehículos

Tabla 8 Vehículos

<table>
<thead>
<tr>
<th>Ítem</th>
<th>Vehículos</th>
<th>Unidad</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Camión BT 50</td>
<td>UN</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Cama Baja 30 Ton</td>
<td>UN</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Camioneta 4x4 doble cabina con platón</td>
<td>UN</td>
<td>2</td>
</tr>
</tbody>
</table>

11.3.4 Software y Licencias

Tabla 9 Software

<table>
<thead>
<tr>
<th>Ítem</th>
<th>Descripción</th>
<th>Unidad</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Microsoft Office System Professional Edition 2010</td>
<td>UN</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Microsoft Project 2010 Professional Edition.</td>
<td>UN</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Microsoft Windows XP Business Edition.</td>
<td>UN</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Autodesk AutoCAD 2012</td>
<td>UN</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>Adobe Acrobat Writer 2008</td>
<td>UN</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>Instrucalc 7.1</td>
<td>UN</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>Hysys Versión 7</td>
<td>UN</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>Sap</td>
<td>UN</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Cardworxs</td>
<td>UN</td>
<td>1</td>
</tr>
</tbody>
</table>

11.3.5 Entrenamiento /Certificaciones

Tabla 10 Entrenamiento / Certificaciones

<table>
<thead>
<tr>
<th>Ítem</th>
<th>Descripción</th>
<th>Unidad</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Diseño P&ID's utilizando AutoCAD</td>
<td>UN</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Simulación Procesos de medición hidrocarburos</td>
<td>UN</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Manejo de Cardworxs para diseño de líneas de transporte</td>
<td>UN</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Certificación Inspector medición hidrocarburos</td>
<td>UN</td>
<td>1</td>
</tr>
</tbody>
</table>
11.3.6 CONSTRUCCIONES MUEBLES Y ENSERES

Tabla 11 Construcciones, muebles y enseres

<table>
<thead>
<tr>
<th>ÍTEM</th>
<th>DESCRIPCIÓN</th>
<th>UNIDAD</th>
<th>CANTIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BODEGA DE ALMACENAMIENTO</td>
<td>UN</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>BAÑOS PORTÁTILES</td>
<td>UN</td>
<td>2</td>
</tr>
</tbody>
</table>

12. FACTIBILIDAD DEL PROYECTO

Analizando las actividades y recursos requeridos para el diseño y la implementación de la unidad de medición de transferencia en custodia, se concluye que es factible el desarrollo del proyecto, basándose en los siguientes planteamientos y justificaciones:

Respecto a la empresa contratista BJ Metering Solutions:

- La empresa cuenta con los recursos, la experiencia y el personal calificado para desarrollar la ingeniería, la procura y la implementación de la unidad LACT.
- La empresa cuenta con un director de proyecto y un equipo multi disciplinario, con profesionales en las áreas de Proceso, Eléctrica, Mecánica, Civil, Tubería, Instrumentación y Control para el desarrollo de todas las actividades requeridas en la ingeniería conceptual, básica y detallada del proyecto.
- La empresa cuenta con el software y hardware para el diseño y presentación de los documentos.
- Se tienen los recursos necesarios para llevar a cabo la subcontratación de la maquinaria, herramientas, vehículos, mobiliario de oficina y demás elementos requeridos para la ejecución del proyecto en sitio.
- Junto con el proyecto, la empresa incluyen pólizas de cumplimiento, de manejo del anticipo, de calidad del servicio y de estabilidad de la obra que brindan confianza al cliente respecto a la labor a desarrollar por parte de BJ METERING SOLUTIONS

Respecto a Pacific Infrastructure Ventures:

- El costo del proyecto puede ser asumido por Pacific Infrastructure, teniendo en cuenta su músculo financiero.
- La planta dispone del espacio físico locativo para la instalación de la unidad de medición de transferencia en custodia, incluyendo los servicios de alimentación eléctrica, aire de instrumentos y sistemas de drenajes.
- Se cuenta con la disponibilidad para la integración de las señales de la unidad de medición a través de un computador de flujo, al sistema de supervisión de la estación, a través de protocolo Ethernet TCP/IP.
- Para la implementación de la unidad LACT, se pueden utilizar Tie-in de tubería existentes, que disminuirán las paradas de producción.

En conclusión, de acuerdo a las características de la empresa BJ Metering Solutions es viable la realización del proyecto, debido a que por la experiencia de la empresa y sus empleados se encuentra en capacidad de ejecutar las labores, lo que evidencia que los riesgos son bajos comparados con la utilidad esperada.
13. PLAN DE TRABAJO (PDT)

| Id | Modo | Nombre de tarea | Duración | Corriente | Fin | Predecesor | 11 may '14 | 27 jul '14 | 12 oct '14 | 28 dic '14 | 15 mar '15 | 31 may '15 | 16 ago '15 | 01 nov '15 |
|----|------|-----------------|----------|-----------|-----|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 1 | | 1 DISEÑO CONSTRUCCIÓN SISTEMA DE MEDICIÓN OLEODUCTO DEL CARIBE | 189 días | lun 28/07/14 | jue | 16/04/15 |
| 2 | | 1.1 INGENIERIA (DISEÑO) | 110 días | lun 28/07/14 | vie 26/12/14 |
| 3 | | 1.1.1 TRABAJOS PREVIOS | 4 días | lun 28/07/14 | jue 31/07/14 |
| 4 | | 1.1.1.1 Acta de inicio | 1 día | lun 28/07/14 | lun 28/07/14 |
| 5 | | 1.1.1.2 Preparación calendario del proyecto | 2 días | mar 29/07/14 | mié 4 |
| 6 | | 1.1.1.3 Reunión externo inicio KMS | 1 día | jue 31/07/14 | jue 31/07/14 5 |
| 7 | | 1.2 DISCIPLINA PROCESO | 37 días | vie 01/08/14 | lun 22/09/14 |
| 8 | | 1.2.1 Revisión especificación equipos paquete | 4 días | vie 01/08/14 | mié 06/08/14 6 |
| 9 | | 1.2.2 Preparación documentos ingeniería 1 revisión al cliente | 10 días | jue 07/08/14 | | |
| 10 | | 1.2.3 Control de calidad | 7 días | jue 21/08/14 | jue 21/08/14 9 |
| 11 | | 1.2.4 Envío al cliente 1 revisión | 1 día | jue 22/08/14 | vie 22/08/14 10 |
| 12 | | 1.2.5 Revisión del cliente y comentarios al diseño | 8 días | lun 25/08/14 | mié 09/09/11 |
| 13 | | 1.2.6 Inclusión Comentarios del cliente | 3 días | jue 04/09/14 | lun 08/09/14 12 |
| 14 | | 1.2.7 Control Calidad segunda revisión | 2 días | mar 09/09/14 | | mié 10/09/11 13 |
| 15 | | 1.2.8 Envío segunda revisión al cliente | 2 días | jue 11/09/14 | | mié 12/09/14 |
| 16 | | 1.2.9 Revisión y aprobación final por el cliente | 3 días | lun 15/09/14 | | mié 17/09/11 15 |
| 17 | | 1.2.10 Preparación documentos de construcción | 3 días | jue 26/09/14 | | lun 22/09/14 16 |
| 18 | | 1.3 DISCIPLINA MECÁNICA | 47 días | vie 01/08/14 | lun 06/10/14 |
| 19 | | 1.3.1 Revisión especificaciones equipos paquete | 8 días | vie 01/08/14 | mar 12/08/14 6 |
| 20 | | 1.3.2 Preparación documentos ingeniería 1 revisión al cliente | 12 días | jue 14/08/14 | vida 29/08/14 9 FC 5 |
| 21 | | 1.3.3 Control de calidad | 2 días | lun 01/09/14 | mar 02/09/14 20 |
| 22 | | 1.3.4 Envío al cliente 1 revisión | 2 días | mié 03/09/14 | jue 04/09/14 21 |
| 23 | | 1.3.5 Revisión del cliente y comentarios al diseño | 8 días | vie 05/09/14 | mar 16/09/14 22 |
| 24 | | 1.3.6 Inclusión Comentarios del cliente | 4 días | jue 17/09/14 | lun 22/09/14 23 |
| 25 | | 1.3.7 Control Calidad segunda revisión | 2 días | mar 23/09/14 | | mié 24/09/14 24 |
| 26 | | 1.3.8 Envío segunda revisión al cliente | 2 días | jue 25/09/14 | | mié 26/09/14 25 |
| 27 | | 1.3.9 Revisión y aprobación final por el cliente | 3 días | lun 29/09/14 | | mié 01/10/14 26 |
| 28 | | 1.3.10 Preparación documentos de construcción | 3 días | jue 02/10/14 | | lun 06/10/14 27 |
| 29 | | 1.4 DISCIPLINA ELÉCTRICA | 47 días | vie 01/08/14 | lun 06/10/14 |
| 30 | | 1.4.1 Revisión especificaciones equipos paquete | 8 días | vie 01/08/14 | mar 12/08/14 6 |
| 31 | | 1.4.2 Preparación documentos ingeniería 1 revisión al cliente | 12 días | jue 14/08/14 | vida 29/08/14 9 FC 5 |
| 32 | | 1.4.3 Control de calidad | 2 días | lun 01/09/14 | mar 02/09/14 31 |
| 33 | | 1.4.4 Envío al cliente 1 revisión | 2 días | mié 03/09/14 | jue 04/09/14 32 |
| 34 | | 1.4.5 Revisión del cliente y comentarios al diseño | 8 días | vie 05/09/14 | mar 16/09/14 33 |
| 35 | | 1.4.6 Inclusión Comentarios del cliente | 4 días | jue 17/09/14 | lun 22/09/14 34 |
| 36 | | 1.4.7 Control Calidad segunda revisión | 2 días | mar 23/09/14 | | mié 24/09/14 35 |
| 37 | | 1.4.8 Envío segunda revisión al cliente | 2 días | jue 25/09/14 | | mié 26/09/14 36 |
| 38 | | 1.4.9 Revisión y aprobación final por el cliente | 3 días | lun 29/09/14 | | mié 01/10/14 37 |
| 39 | | 1.4.10 Preparación documentos de construcción | 3 días | jue 02/10/14 | | lun 06/10/14 38 |
| 40 | | 1.5 DISCIPLINA INSTRUMENTACIÓN | 51 días | vie 01/08/14 | | mié 10/10/14 |
| 41 | | 1.5.1 Revisión especificaciones equipos paquete | 8 días | vie 01/08/14 | mar 12/08/14 6 |

Diagrama:

- Departamento: Control Calidad
- Control Documental
- Ingresos: Proceso cliente
- Líder Disciplina: Proceso - Ingeniero procesista
- Departamento: Control Calidad [50%]
- Control Documental
- Ingresos: Proceso cliente
- Líder Disciplina: Proceso - Ingeniero procesista
- Líder Disciplina: Mecánica - Ingeniero mecánico
- Departamento: Control Calidad [50%]
- Control Documental [50%]
- Ingreso: Mecánico cliente
- Líder Disciplina: Mecánico - Ingeniero mecánico
- Líder Disciplina: Eléctrica - Ingeniero electricista
- Departamento: Control Calidad [50%]
- Control Documental [50%]
- Ingreso: Electricista cliente
- Líder Disciplina: Electricista - Ingeniero electricista
- Líder Disciplina: Instrumentación & Control (B&C)
<table>
<thead>
<tr>
<th>#</th>
<th>Modo</th>
<th>Nombre de tarea</th>
<th>Duración</th>
<th>Comienzo</th>
<th>Fin</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>1.1.5.2</td>
<td>Preparación documentos ingeniería 1 revisión al cliente</td>
<td>12 días</td>
<td>jue 14/08/14</td>
<td>vie 29/08/14</td>
</tr>
<tr>
<td>43</td>
<td>1.1.5.3</td>
<td>Control de calidad</td>
<td>2 días</td>
<td>lun 01/09/14</td>
<td>mar 02/09/14</td>
</tr>
<tr>
<td>44</td>
<td>1.1.5.4</td>
<td>Envío al cliente 1 revisión</td>
<td>1 día</td>
<td>mie 03/09/14</td>
<td>14/09/14</td>
</tr>
<tr>
<td>45</td>
<td>1.1.5.5</td>
<td>Revisión del cliente y comentarios al diseño</td>
<td>8 días</td>
<td>jue 04/09/14</td>
<td>lun 15/09/14</td>
</tr>
<tr>
<td>46</td>
<td>1.1.5.6</td>
<td>Inclusión Comentarios del cliente</td>
<td>4 días</td>
<td>mar 16/09/14</td>
<td>vie 19/09/14</td>
</tr>
<tr>
<td>47</td>
<td>1.1.5.7</td>
<td>Control Calidad segunda revisión</td>
<td>8 días</td>
<td>mar 17/09/14</td>
<td>vie 22/09/14</td>
</tr>
<tr>
<td>48</td>
<td>1.1.5.8</td>
<td>Revisión 2a revisión al cliente</td>
<td>1 día</td>
<td>mar 17/09/14</td>
<td>01/10/14</td>
</tr>
<tr>
<td>49</td>
<td>1.1.5.9</td>
<td>Revisión y aprobación final por el cliente</td>
<td>3 días</td>
<td>mar 17/09/14</td>
<td>07/10/14</td>
</tr>
<tr>
<td>50</td>
<td>1.1.5.10</td>
<td>Preparación documentos de construcción</td>
<td>3 días</td>
<td>mar 17/09/14</td>
<td>10/10/14</td>
</tr>
<tr>
<td>51</td>
<td>1.1.6</td>
<td>DISCIPLINA CIVIL - ESTRUCTURAS</td>
<td>35 días</td>
<td>vie 01/08/14</td>
<td>vie 18/08/14</td>
</tr>
<tr>
<td>52</td>
<td>1.1.6.1</td>
<td>Revisión especificación equipos paquete</td>
<td>8 días</td>
<td>mar 12/08/14</td>
<td>mar 18/08/14</td>
</tr>
<tr>
<td>53</td>
<td>1.1.6.2</td>
<td>Preparación documentos ingeniería 1 revisión al cliente</td>
<td>8 días</td>
<td>mar 12/08/14</td>
<td>mar 18/08/14</td>
</tr>
<tr>
<td>54</td>
<td>1.1.6.3</td>
<td>CONTROL DE CALIDAD</td>
<td>1 día</td>
<td>mar 26/08/14</td>
<td>mar 26/08/14</td>
</tr>
<tr>
<td>55</td>
<td>1.1.6.4</td>
<td>Envío al cliente 1 revisión</td>
<td>1 día</td>
<td>mar 27/08/14</td>
<td>mar 28/08/14</td>
</tr>
<tr>
<td>56</td>
<td>1.1.6.5</td>
<td>Revisión del cliente y comentarios al diseño</td>
<td>5 días</td>
<td>mar 28/08/14</td>
<td>mar 09/09/14</td>
</tr>
<tr>
<td>57</td>
<td>1.1.6.6</td>
<td>Inclusión Comentarios del cliente</td>
<td>3 días</td>
<td>mar 04/09/14</td>
<td>mar 08/09/14</td>
</tr>
<tr>
<td>58</td>
<td>1.1.6.7</td>
<td>Control Calidad segunda revisión</td>
<td>1 día</td>
<td>mar 09/09/14</td>
<td>mar 10/09/14</td>
</tr>
<tr>
<td>59</td>
<td>1.1.6.8</td>
<td>Envío segunda revisión al cliente</td>
<td>1 día</td>
<td>mar 10/09/14</td>
<td>mar 10/09/14</td>
</tr>
<tr>
<td>60</td>
<td>1.1.6.9</td>
<td>Revisión aprobación final por el cliente</td>
<td>3 días</td>
<td>mar 11/09/14</td>
<td>mar 15/09/14</td>
</tr>
<tr>
<td>61</td>
<td>1.1.6.10</td>
<td>Preparación documentos de construcción</td>
<td>3 días</td>
<td>mar 16/09/14</td>
<td>mar 19/09/14</td>
</tr>
<tr>
<td>62</td>
<td>1.1.7</td>
<td>PROCURA</td>
<td>71 días</td>
<td>vie 09/09/14</td>
<td>vie 26/12/14</td>
</tr>
<tr>
<td>63</td>
<td>1.1.7.1</td>
<td>Preparación Requisición de Materiales Mecánicos</td>
<td>4 días</td>
<td>mar 07/10/14</td>
<td>mar 10/10/14</td>
</tr>
<tr>
<td>64</td>
<td>1.1.7.2</td>
<td>Preparación Requisición de Materiales Eléctricos</td>
<td>4 días</td>
<td>mar 07/10/14</td>
<td>mar 10/10/14</td>
</tr>
<tr>
<td>65</td>
<td>1.1.7.3</td>
<td>Preparación Requisición de Materiales Eléctricos</td>
<td>4 días</td>
<td>mar 07/10/14</td>
<td>mar 10/10/14</td>
</tr>
<tr>
<td>66</td>
<td>1.1.7.4</td>
<td>Preparación Requisición de Materiales Civiles</td>
<td>4 días</td>
<td>mar 13/10/14</td>
<td>mar 16/10/14</td>
</tr>
<tr>
<td>67</td>
<td>1.1.7.5</td>
<td>Recibo de ofertas</td>
<td>10 días</td>
<td>mar 10/10/14</td>
<td>mar 20/10/14</td>
</tr>
<tr>
<td>68</td>
<td>1.1.7.6</td>
<td>Evaluación ofertas y compras materiales Mecánicos</td>
<td>10 días</td>
<td>mar 10/10/14</td>
<td>mar 20/10/14</td>
</tr>
<tr>
<td>69</td>
<td>1.1.7.7</td>
<td>Evaluación ofertas y compras materiales eléctricos</td>
<td>10 días</td>
<td>mar 10/10/14</td>
<td>mar 20/10/14</td>
</tr>
<tr>
<td>70</td>
<td>1.1.7.8</td>
<td>Evaluación ofertas y compras materiales</td>
<td>10 días</td>
<td>mar 10/10/14</td>
<td>mar 20/10/14</td>
</tr>
<tr>
<td>71</td>
<td>1.1.7.9</td>
<td>Evaluación ofertas y compras materiales</td>
<td>10 días</td>
<td>mar 10/10/14</td>
<td>mar 20/10/14</td>
</tr>
<tr>
<td>72</td>
<td>1.1.7.10</td>
<td>Inicio trabajos construcción</td>
<td>1 día</td>
<td>mar 26/12/14</td>
<td>mar 26/12/14</td>
</tr>
<tr>
<td>73</td>
<td>1.2</td>
<td>CONSTRUCCIÓN SKID</td>
<td>79 días</td>
<td>mar 29/12/14</td>
<td>mar 16/01/15</td>
</tr>
<tr>
<td>74</td>
<td>1.2.1</td>
<td>Skid de Medición</td>
<td>59 días</td>
<td>mar 29/12/14</td>
<td>mar 19/03/15</td>
</tr>
<tr>
<td>75</td>
<td>1.2.1.1</td>
<td>Diseño civil - Estructural</td>
<td>24 días</td>
<td>mar 29/12/14</td>
<td>mar 29/03/15</td>
</tr>
<tr>
<td>76</td>
<td>1.2.1.1.1</td>
<td>Revisión materiales estructurales</td>
<td>1 día</td>
<td>mar 29/12/14</td>
<td>mar 30/12/14</td>
</tr>
<tr>
<td>77</td>
<td>1.2.1.1.2</td>
<td>Corte de partes, proceso de soldadura</td>
<td>20 días</td>
<td>mar 30/12/14</td>
<td>mar 26/01/15</td>
</tr>
<tr>
<td>78</td>
<td>1.2.1.1.3</td>
<td>Recepción exterior</td>
<td>3 días</td>
<td>mar 27/01/15</td>
<td>mar 29/01/15</td>
</tr>
<tr>
<td>79</td>
<td>1.2.1.2</td>
<td>Diseño Mecánico</td>
<td>50 días</td>
<td>mar 25/12/14</td>
<td>mar 06/03/15</td>
</tr>
<tr>
<td>80</td>
<td>1.2.1.2.1</td>
<td>Revisión materiales mecánicos - tubería</td>
<td>2 días</td>
<td>mar 29/12/14</td>
<td>mar 30/12/14</td>
</tr>
<tr>
<td>Id</td>
<td>Modo</td>
<td>Nombre de tarea</td>
<td>Duración</td>
<td>Comienzo</td>
<td>Fin</td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>-----------------</td>
<td>----------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>61</td>
<td>1.2.1.2.2</td>
<td>Corte de partes, proceso de soldadura, armado tubería</td>
<td>30 días</td>
<td>31/12/14</td>
<td>mar 80</td>
</tr>
<tr>
<td>62</td>
<td>1.2.1.2.3</td>
<td>Montaje válvulas, partes, materiales, tuberías</td>
<td>11 días</td>
<td>12/01/15</td>
<td>mar 71</td>
</tr>
<tr>
<td>63</td>
<td>1.2.1.2.4</td>
<td>Pruebas no destructivas</td>
<td>18 días</td>
<td>20/02/15</td>
<td>mar 72</td>
</tr>
<tr>
<td>64</td>
<td>1.2.1.2.5</td>
<td>Pruebas y montaje tuberías</td>
<td>20 días</td>
<td>20/02/15</td>
<td>mar 73</td>
</tr>
<tr>
<td>65</td>
<td>1.2.1.2.6</td>
<td>Recubrimiento interno tuberías</td>
<td>5 días</td>
<td>27/02/15</td>
<td>mar 74</td>
</tr>
<tr>
<td>66</td>
<td>1.2.1.3</td>
<td>Diseño Eléctrico</td>
<td>31 días</td>
<td>11/02/15</td>
<td>mar 75</td>
</tr>
<tr>
<td>67</td>
<td>1.2.1.3.1</td>
<td>Instalación cajas de distribución potencia p.3 días</td>
<td>3 días</td>
<td>12/02/15</td>
<td>mar 76</td>
</tr>
<tr>
<td>68</td>
<td>1.2.1.3.2</td>
<td>Tendido cables de potencia, tubería condal</td>
<td>5 días</td>
<td>16/02/15</td>
<td>mar 77</td>
</tr>
<tr>
<td>69</td>
<td>1.2.1.3.3</td>
<td>Conexión de cables, tubería</td>
<td>25 días</td>
<td>02/03/15</td>
<td>mar 78</td>
</tr>
<tr>
<td>70</td>
<td>1.2.1.4</td>
<td>Diseño Instrumentación</td>
<td>27 días</td>
<td>11/02/15</td>
<td>mar 79</td>
</tr>
<tr>
<td>71</td>
<td>1.2.1.4.1</td>
<td>Instalación cajas de distribución para área</td>
<td>3 días</td>
<td>12/02/15</td>
<td>mar 80</td>
</tr>
<tr>
<td>72</td>
<td>1.2.1.4.2</td>
<td>Instalación de equipos computacionales</td>
<td>15 días</td>
<td>16/02/15</td>
<td>mar 81</td>
</tr>
<tr>
<td>73</td>
<td>1.2.1.4.3</td>
<td>Instalación de equipos</td>
<td>15 días</td>
<td>18/02/15</td>
<td>mar 82</td>
</tr>
<tr>
<td>74</td>
<td>1.2.1.4.4</td>
<td>Tendido cables de instrumentación, tubería</td>
<td>15 días</td>
<td>03/03/15</td>
<td>mar 83</td>
</tr>
<tr>
<td>75</td>
<td>1.2.1.4.5</td>
<td>Conexión de instrumentos y válvulas</td>
<td>15 días</td>
<td>10/03/15</td>
<td>mar 84</td>
</tr>
<tr>
<td>76</td>
<td>1.2.1.4.6</td>
<td>Conexión de cables de instrumentación</td>
<td>15 días</td>
<td>15/03/15</td>
<td>mar 85</td>
</tr>
<tr>
<td>77</td>
<td>1.2.1.5</td>
<td>Diseño Sistema de Control</td>
<td>14 días</td>
<td>29/12/14</td>
<td>mar 86</td>
</tr>
<tr>
<td>78</td>
<td>1.2.1.5.1</td>
<td>Diseño sistema supervisores HMI</td>
<td>7 días</td>
<td>29/12/14</td>
<td>mar 87</td>
</tr>
<tr>
<td>79</td>
<td>1.2.1.5.2</td>
<td>Programación equipos controladores de flujo</td>
<td>5 días</td>
<td>29/12/14</td>
<td>mar 88</td>
</tr>
<tr>
<td>80</td>
<td>1.2.1.5.3</td>
<td>Programación PLC</td>
<td>5 días</td>
<td>07/01/15</td>
<td>mar 89</td>
</tr>
<tr>
<td>81</td>
<td>1.2.1.5.4</td>
<td>Programación válvulas motorizadas en HMI</td>
<td>10 días</td>
<td>15/01/15</td>
<td>mar 90</td>
</tr>
<tr>
<td>82</td>
<td>1.2.2</td>
<td>Skol de Sistema de Calibración (Probadura)</td>
<td>45 días</td>
<td>29/12/14</td>
<td>mar 91</td>
</tr>
<tr>
<td>83</td>
<td>1.2.2.1</td>
<td>Diseño Civil - Estructural</td>
<td>21 días</td>
<td>27/02/15</td>
<td>mar 92</td>
</tr>
<tr>
<td>84</td>
<td>1.2.2.1.1</td>
<td>Revisión de materiales estructurales</td>
<td>3 días</td>
<td>30/01/15</td>
<td>mar 93</td>
</tr>
<tr>
<td>85</td>
<td>1.2.2.1.2</td>
<td>Corte de partes, proceso de soldadura</td>
<td>15 días</td>
<td>04/02/15</td>
<td>mar 94</td>
</tr>
<tr>
<td>86</td>
<td>1.2.2.1.3</td>
<td>Recubrimiento exterior</td>
<td>3 días</td>
<td>25/02/15</td>
<td>mar 95</td>
</tr>
<tr>
<td>87</td>
<td>1.2.2.2</td>
<td>Diseño Mecánico</td>
<td>35 días</td>
<td>29/12/14</td>
<td>mar 96</td>
</tr>
<tr>
<td>88</td>
<td>1.2.2.2.1</td>
<td>Revisión de materiales mecánicos - tubería</td>
<td>4 días</td>
<td>29/12/14</td>
<td>mar 97</td>
</tr>
<tr>
<td>89</td>
<td>1.2.2.2.2</td>
<td>Corte de partes, proceso de soldadura</td>
<td>20 días</td>
<td>03/01/15</td>
<td>mar 98</td>
</tr>
<tr>
<td>90</td>
<td>1.2.2.2.3</td>
<td>Montaje, cárter de elevación</td>
<td>4 días</td>
<td>03/01/15</td>
<td>mar 99</td>
</tr>
<tr>
<td>91</td>
<td>1.2.2.2.4</td>
<td>Montaje válvulas, partes, materiales</td>
<td>3 días</td>
<td>05/01/15</td>
<td>mar 100</td>
</tr>
<tr>
<td>92</td>
<td>1.2.2.2.5</td>
<td>Pruebas no destructivas</td>
<td>2 días</td>
<td>10/02/15</td>
<td>mar 101</td>
</tr>
<tr>
<td>93</td>
<td>1.2.2.3</td>
<td>Diseño Eléctrico</td>
<td>3 días</td>
<td>12/02/15</td>
<td>mar 102</td>
</tr>
<tr>
<td>94</td>
<td>1.2.2.3.1</td>
<td>Instalación cajas de distribución potencia</td>
<td>8 días</td>
<td>30/01/15</td>
<td>mar 103</td>
</tr>
<tr>
<td>95</td>
<td>1.2.2.3.2</td>
<td>Tendido cables de potencia, tubería condal</td>
<td>3 días</td>
<td>04/02/15</td>
<td>mar 104</td>
</tr>
<tr>
<td>96</td>
<td>1.2.2.3.3</td>
<td>Conexión de cables, tubería</td>
<td>11 días</td>
<td>02/02/15</td>
<td>mar 105</td>
</tr>
<tr>
<td>97</td>
<td>1.2.2.4</td>
<td>Diseño Instrumentación</td>
<td>10 días</td>
<td>30/01/15</td>
<td>mar 106</td>
</tr>
<tr>
<td>98</td>
<td>1.2.2.4.1</td>
<td>Instalación cajas de distribución para área</td>
<td>3 días</td>
<td>30/01/15</td>
<td>mar 107</td>
</tr>
<tr>
<td>99</td>
<td>1.2.2.4.2</td>
<td>Instalación de equipos controladores de flujo</td>
<td>4 días</td>
<td>30/01/15</td>
<td>mar 108</td>
</tr>
<tr>
<td>100</td>
<td>1.2.2.4.3</td>
<td>Tendido cables de instrumentación, tubería</td>
<td>3 días</td>
<td>05/02/15</td>
<td>mar 109</td>
</tr>
<tr>
<td>101</td>
<td>1.2.2.4.4</td>
<td>Conexión de instrumentos y válvulas</td>
<td>3 días</td>
<td>10/02/15</td>
<td>mar 110</td>
</tr>
<tr>
<td>102</td>
<td>1.2.2.5</td>
<td>Diseño Sistema de Control</td>
<td>15 días</td>
<td>29/12/14</td>
<td>mar 111</td>
</tr>
<tr>
<td>103</td>
<td>1.2.2.5.1</td>
<td>Diseño sistema supervisores HMI</td>
<td>7 días</td>
<td>29/12/14</td>
<td>mar 112</td>
</tr>
<tr>
<td>id</td>
<td>Modo de</td>
<td>Nombre de tarea</td>
<td>Duración</td>
<td>Comienzo</td>
<td>Fin</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>----------------</td>
<td>----------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>126</td>
<td>1.2.2.3.2</td>
<td>Programación de flujos</td>
<td>5 días</td>
<td>lun 29/12/14</td>
<td>vie 02/01/15</td>
</tr>
<tr>
<td>127</td>
<td>1.2.2.3.3</td>
<td>Programación PLC</td>
<td>5 días</td>
<td>miér 07/01/15</td>
<td>mar 13/01/15</td>
</tr>
<tr>
<td>128</td>
<td>1.2.2.3.4</td>
<td>Programación válvulas motorizadas</td>
<td>7 días</td>
<td>miér 14/01/15</td>
<td>vie 16/01/15</td>
</tr>
<tr>
<td>129</td>
<td>1.2.3</td>
<td>Pruebas y calibración</td>
<td>27 días</td>
<td>lun 19/01/15</td>
<td>mar 26/02/15</td>
</tr>
<tr>
<td>130</td>
<td>1.2.3.1.1</td>
<td>Sistema de medición y sistema de calibración</td>
<td>27 días</td>
<td>lun 19/01/15</td>
<td>mar 26/02/15</td>
</tr>
<tr>
<td>131</td>
<td>1.2.3.1.2</td>
<td>Pruebas hidrostáticas</td>
<td>3 días</td>
<td>lun 19/01/15</td>
<td>miér 13/02/15</td>
</tr>
<tr>
<td>132</td>
<td>1.2.3.1.3</td>
<td>Pruebas de fugas</td>
<td>2 días</td>
<td>jue 23/01/15</td>
<td>vie 23/01/15</td>
</tr>
<tr>
<td>133</td>
<td>1.2.3.1.4</td>
<td>Pruebas de vibraciones</td>
<td>1 día</td>
<td>lun 26/01/15</td>
<td>lun 26/01/15</td>
</tr>
<tr>
<td>134</td>
<td>1.2.3.1.5</td>
<td>Pruebas de resistencia del circuito</td>
<td>1 día</td>
<td>mar 27/01/15</td>
<td>mar 27/01/15</td>
</tr>
<tr>
<td>135</td>
<td>1.2.3.1.6</td>
<td>Calibración y pruebas de instrumentos</td>
<td>4 días</td>
<td>mar 03/02/15</td>
<td>mar 06/02/15</td>
</tr>
<tr>
<td>136</td>
<td>1.2.3.1.7</td>
<td>Simulación de señales en instrumentos</td>
<td>4 días</td>
<td>mar 03/02/15</td>
<td>mar 06/02/15</td>
</tr>
<tr>
<td>137</td>
<td>1.2.3.1.8</td>
<td>Descarga y pruebas de software sistema</td>
<td>4 días</td>
<td>mar 09/02/15</td>
<td>jue 12/02/15</td>
</tr>
<tr>
<td>138</td>
<td>1.2.3.1.9</td>
<td>Pruebas de comunicación</td>
<td>2 días</td>
<td>mar 18/02/15</td>
<td>mar 19/02/15</td>
</tr>
<tr>
<td>139</td>
<td>1.2.3.1.10</td>
<td>Pruebas de software sistema</td>
<td>3 días</td>
<td>mar 20/02/15</td>
<td>mar 24/02/15</td>
</tr>
<tr>
<td>140</td>
<td>1.2.4</td>
<td>Envío sistema de medición</td>
<td>10 días</td>
<td>miér 25/02/15</td>
<td>mar 10/03/15</td>
</tr>
<tr>
<td>141</td>
<td>1.2.4.1</td>
<td>Inspección final sistema de medición</td>
<td>2 días</td>
<td>miér 25/02/15</td>
<td>jue 26/02/15</td>
</tr>
<tr>
<td>142</td>
<td>1.2.4.2</td>
<td>Embalaje</td>
<td>3 días</td>
<td>vie 27/02/15</td>
<td>mar 03/03/15</td>
</tr>
<tr>
<td>143</td>
<td>1.2.4.3</td>
<td>Despacho</td>
<td>5 días</td>
<td>miér 04/03/15</td>
<td>mar 10/03/15</td>
</tr>
<tr>
<td>144</td>
<td>1.2.5</td>
<td>Envío sistema de calibración (Prover)</td>
<td>18 días</td>
<td>mar 13/02/15</td>
<td>mar 10/03/15</td>
</tr>
<tr>
<td>145</td>
<td>1.2.5.1</td>
<td>Inspección final sistema de calibración (Prover)</td>
<td>2 días</td>
<td>mar 13/02/15</td>
<td>mar 16/02/15</td>
</tr>
<tr>
<td>146</td>
<td>1.2.5.2</td>
<td>Embalaje</td>
<td>3 días</td>
<td>mar 13/02/15</td>
<td>mar 03/03/15</td>
</tr>
<tr>
<td>147</td>
<td>1.2.5.3</td>
<td>Despacho</td>
<td>5 días</td>
<td>mar 04/03/15</td>
<td>mar 10/03/15</td>
</tr>
<tr>
<td>148</td>
<td>1.2.6</td>
<td>Documentos finales</td>
<td>27 días</td>
<td>mar 12/03/15</td>
<td>mar 17/03/15</td>
</tr>
<tr>
<td>149</td>
<td>1.2.6.1</td>
<td>Planos As-Built</td>
<td>10 días</td>
<td>mar 12/03/15</td>
<td>mar 31/03/15</td>
</tr>
<tr>
<td>150</td>
<td>1.2.6.2</td>
<td>Libros de ingeniería</td>
<td>10 días</td>
<td>mar 12/03/15</td>
<td>mar 31/03/15</td>
</tr>
<tr>
<td>151</td>
<td>1.2.6.2.1</td>
<td>Planos de diseño</td>
<td>10 días</td>
<td>mar 12/03/15</td>
<td>mar 31/03/15</td>
</tr>
<tr>
<td>152</td>
<td>1.2.6.2.2</td>
<td>Planos de construcción</td>
<td>10 días</td>
<td>mar 12/03/15</td>
<td>mar 31/03/15</td>
</tr>
<tr>
<td>153</td>
<td>1.2.6.2.3</td>
<td>Planos de operación</td>
<td>10 días</td>
<td>mar 12/03/15</td>
<td>mar 31/03/15</td>
</tr>
<tr>
<td>154</td>
<td>1.2.6.2.4</td>
<td>Planos de instalación</td>
<td>10 días</td>
<td>mar 12/03/15</td>
<td>mar 31/03/15</td>
</tr>
<tr>
<td>155</td>
<td>1.2.6.2.5</td>
<td>Planos de mantenimiento</td>
<td>10 días</td>
<td>mar 12/03/15</td>
<td>mar 31/03/15</td>
</tr>
<tr>
<td>156</td>
<td>1.2.6.2.6</td>
<td>Planos de seguridad</td>
<td>10 días</td>
<td>mar 12/03/15</td>
<td>mar 31/03/15</td>
</tr>
<tr>
<td>157</td>
<td>1.2.6.2.7</td>
<td>Planos de servicio</td>
<td>10 días</td>
<td>mar 12/03/15</td>
<td>mar 31/03/15</td>
</tr>
<tr>
<td>158</td>
<td>1.2.6.2.8</td>
<td>Planos de operación de los equipos</td>
<td>10 días</td>
<td>mar 12/03/15</td>
<td>mar 31/03/15</td>
</tr>
<tr>
<td>159</td>
<td>1.2.6.2.9</td>
<td>Planos de solución de problemas</td>
<td>10 días</td>
<td>mar 12/03/15</td>
<td>mar 31/03/15</td>
</tr>
<tr>
<td>160</td>
<td>1.2.6.3</td>
<td>Dossier de ingeniería y construcción</td>
<td>10 días</td>
<td>mar 14/04/15</td>
<td>mar 14/04/15</td>
</tr>
<tr>
<td>161</td>
<td>1.2.6.4</td>
<td>Entrega sistema de medición - Prover</td>
<td>27 días</td>
<td>mar 13/03/15</td>
<td>mar 16/04/15</td>
</tr>
<tr>
<td>162</td>
<td>1.2.6.4.1</td>
<td>Entrega de documentos</td>
<td>14 días</td>
<td>mar 12/03/15</td>
<td>mar 30/03/15</td>
</tr>
<tr>
<td>163</td>
<td>1.2.6.4.2</td>
<td>Asistencia técnica en campo y pruebas</td>
<td>10 días</td>
<td>mar 13/04/15</td>
<td>mar 13/04/15</td>
</tr>
<tr>
<td>164</td>
<td>1.2.6.4.3</td>
<td>Asistencia técnica en campo y pruebas</td>
<td>10 días</td>
<td>mar 15/04/15</td>
<td>mar 15/04/15</td>
</tr>
</tbody>
</table>
14. ORGANIGRAMAS DE TRABAJO

14.1 ORGANIGRAMA ETAPA DISEÑO INGENIERÍA

Figura 7 Organigrama Etapa diseño de Ingeniería
Figura 8 Organigrama Etapa Procura y Construcción
15. COSTOS DEL PROYECTO

15.1 COSTOS VARIABLES INDIRECTOS (OVERHEAD ADMINISTRATIVO)

15.1.1 GASTOS ADMINISTRATIVOS

Tabla 12 Gastos administrativos

<table>
<thead>
<tr>
<th>Concepto</th>
<th>Costo mes</th>
<th>Costo diario</th>
<th>Total proyecto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gerente general</td>
<td>$ 9,420,000</td>
<td>$ 314,000</td>
<td>$ 59,346,000.00</td>
</tr>
<tr>
<td>Gerente financiero</td>
<td>$ 7,500,000</td>
<td>$ 250,000</td>
<td>$ 47,250,000.00</td>
</tr>
<tr>
<td>Director de Proyecto</td>
<td>$ 8,000,000</td>
<td>$ 266,667</td>
<td>$ 50,400,000.00</td>
</tr>
<tr>
<td>Consultor jurídico</td>
<td>$ 4,500,000</td>
<td>$ 150,000</td>
<td>$ 28,350,000.00</td>
</tr>
<tr>
<td>Gerente de recursos humanos</td>
<td>$ 5,000,000</td>
<td>$ 166,667</td>
<td>$ 31,500,000.00</td>
</tr>
<tr>
<td>Contador</td>
<td>$ 4,000,000</td>
<td>$ 133,333</td>
<td>$ 25,200,000.00</td>
</tr>
<tr>
<td>Recepcionista</td>
<td>$ 800,000</td>
<td>$ 26,667</td>
<td>$ 5,040,000.00</td>
</tr>
<tr>
<td>Secretaria de gerencia</td>
<td>$ 1,000,000</td>
<td>$ 33,333</td>
<td>$ 6,300,000.00</td>
</tr>
<tr>
<td>TOTAL GASTOS ADMINISTRATIVOS</td>
<td></td>
<td></td>
<td>$ 253,386,000</td>
</tr>
</tbody>
</table>

15.1.2 GASTOS GENERALES

Tabla 13 Gastos generales

<table>
<thead>
<tr>
<th>Concepto</th>
<th>Costo mes</th>
<th>Costo diario</th>
<th>Total proyecto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrendamiento,</td>
<td>$ 2,500,000</td>
<td>$ 83,333</td>
<td>$ 15,750,000</td>
</tr>
<tr>
<td>Mantenimiento vehículos</td>
<td>$ 1,400,000</td>
<td>$ 46,667</td>
<td>$ 8,820,000</td>
</tr>
<tr>
<td>Pago de servicios públicos,</td>
<td>$ 870,000</td>
<td>$ 29,000</td>
<td>$ 5,481,000</td>
</tr>
</tbody>
</table>
GASTOS GENERALES

<table>
<thead>
<tr>
<th>Concepto</th>
<th>Costo mes</th>
<th>Costo diario</th>
<th>Total proyecto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastos de Publicidad</td>
<td>$ 350,000</td>
<td>$ 11,667</td>
<td>$ 2,205,000</td>
</tr>
<tr>
<td>Seguros</td>
<td>$ 3,250,000</td>
<td>$ 108,333</td>
<td>$ 20,475,000</td>
</tr>
<tr>
<td>Seguridad</td>
<td>$ 1,800,000</td>
<td>$ 60,000</td>
<td>$ 11,340,000</td>
</tr>
<tr>
<td>Papelería, tintas</td>
<td>$ 420,000</td>
<td>$ 14,000</td>
<td>$ 2,646,000</td>
</tr>
<tr>
<td>Cafetería</td>
<td>$ 150,000</td>
<td>$ 5,000</td>
<td>$ 945,000</td>
</tr>
<tr>
<td>Limpieza</td>
<td>$ 550,000</td>
<td>$ 18,333</td>
<td>$ 3,465,000</td>
</tr>
<tr>
<td>Dotaciones</td>
<td>$ 960,000</td>
<td>$ 32,000</td>
<td>$ 6,048,000</td>
</tr>
<tr>
<td>Caja menor</td>
<td>$ 2,000,000</td>
<td>$ 66,667</td>
<td>$ 12,600,000</td>
</tr>
</tbody>
</table>

TOTAL GASTOS GENERALES | $ 89,775,000

15.1.3 GASTOS FINANCIEROS

Tabla 14 Gastos financieros

<table>
<thead>
<tr>
<th>Concepto</th>
<th>Costo mes</th>
<th>Costo diario</th>
<th>Total proyecto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intereses de préstamo para compra de equipos de computo</td>
<td>$ 580,000</td>
<td>$ 19,333</td>
<td>$ 3,654,000</td>
</tr>
<tr>
<td>Intereses sobre préstamo para arranque proyecto</td>
<td>$ 3,780,000</td>
<td>$ 126,000</td>
<td>$ 23,814,000</td>
</tr>
<tr>
<td>Intereses sobre préstamo para compra materiales</td>
<td>$ 5,770,000</td>
<td>$ 192,333</td>
<td>$ 36,351,000</td>
</tr>
</tbody>
</table>

TOTAL GASTOS FINANCIEROS | $ 63,819,000

15.1.4 PRORRATEO DEL OVERHEAD A CARGO DEL PROYECTO

Durante la ejecución del actual proyecto, corren dentro de la compañía otros dos proyectos más casi del mismo alcance que el actual proyectado en este documento, por lo cual los gastos relacionados anteriormente deben ser divididos en igual monto para los proyectos:

Tabla 15 Prorratoe cargado al proyecto

<table>
<thead>
<tr>
<th>Concepto</th>
<th>Total gastos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastos administrativos</td>
<td>$ 253,386,000</td>
</tr>
<tr>
<td>Gastos Generales</td>
<td>$ 89,775,000</td>
</tr>
<tr>
<td>Gastos financieros</td>
<td>$ 63,819,000</td>
</tr>
<tr>
<td>Total Gastos</td>
<td>$ 406,980,000</td>
</tr>
<tr>
<td>33% correspondiente al proyecto</td>
<td>$ 134,303,400</td>
</tr>
</tbody>
</table>
15.2 COSTOS FIJOS

15.2.1 COSTOS POR ACTIVIDADES DE INGENIERÍA

15.2.1.1 INGENIERÍA CONCEPTUAL

Basados en los recursos presentados en el ítem 6.5.1 se establecen recursos y costos para los tipos de ingeniería a desarrollar en el proyecto:

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Duración Actividad</th>
<th>Concepto</th>
<th>Recurso</th>
<th>Desc./nombre</th>
<th>Cantidad</th>
<th>Duración (días)</th>
<th>Costo (Día)</th>
<th>Costo Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingeniería Conceptual</td>
<td>7 Días</td>
<td></td>
<td>Responsable</td>
<td>Director de Proyecto</td>
<td>1</td>
<td>7</td>
<td>$ 266.667</td>
<td>$ 1.866.667</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Coordinador de Ingeniería</td>
<td>1</td>
<td>7</td>
<td>$ 223.333</td>
<td>$ 1.563.333</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Líder disciplina tiempo completo (Instrumentación, Proceso, Mecánico, Tubería, Civil-estructuras, Eléctrico)</td>
<td>6</td>
<td>7</td>
<td>$ 186.667</td>
<td>$ 7.840.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Personal</td>
<td>Ingenieros diseñadores (Instrumentación, Proceso, Mecánico, Tubería, Civil, Eléctrico)</td>
<td>6</td>
<td>7</td>
<td>$ 143.333</td>
<td>$ 6.020.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dibujantes</td>
<td>1</td>
<td>7</td>
<td>$ 50.000</td>
<td>$ 350.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Control de documentos</td>
<td>1</td>
<td>5</td>
<td>$ 106.667</td>
<td>$ 533.333</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Programación Proyectos</td>
<td>1</td>
<td>7</td>
<td>$ 121.833</td>
<td>$ 852.833</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Control Calidad</td>
<td>1</td>
<td>5</td>
<td>$ 106.667</td>
<td>$ 533.333</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Coordinador HSE</td>
<td>1</td>
<td>5</td>
<td>$ 106.667</td>
<td>$ 533.333</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Equipos</td>
<td>Computadores</td>
<td>15</td>
<td>7</td>
<td>$ 15.000</td>
<td>$ 1.575.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Impresora</td>
<td>1</td>
<td>5</td>
<td>$ 20.000</td>
<td>$ 100.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Escritorios</td>
<td>15</td>
<td>7</td>
<td>$ 12.000</td>
<td>$ 1.260.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sillas giratorias</td>
<td>15</td>
<td>7</td>
<td>$ 10.000</td>
<td>$ 1.050.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Otros</td>
<td>Entregables</td>
<td>1</td>
<td>7</td>
<td>-</td>
<td>$ 11.615.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COSTO TOTAL ING. CONCEPTUAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$ 35.692.833</td>
</tr>
</tbody>
</table>
El costo de los entregables está establecido para esta ingeniería con base en la tabla siguiente:

Tabla 17 Documentos entregables Ingeniería Conceptual

<table>
<thead>
<tr>
<th>Entregable</th>
<th>Cantidad</th>
<th>Costo Entregable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bases y Criterios de Diseño</td>
<td>1</td>
<td>$3,726,000</td>
</tr>
<tr>
<td>Simulaciones hidráulicas</td>
<td>1</td>
<td>$3,979,000</td>
</tr>
<tr>
<td>Diagramas de procesos y balances de materia</td>
<td>1</td>
<td>$3,910,000</td>
</tr>
<tr>
<td>TOTAL</td>
<td>**</td>
<td>$11,615,000</td>
</tr>
</tbody>
</table>

15.2.1.2 INGENIERÍA BÁSICA

Tabla 18 Recursos – Costos Ingeniería Básica

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Duración Actividad</th>
<th>Concepto</th>
<th>Recurso</th>
<th>Desc./nombre</th>
<th>Cantidad</th>
<th>Duración (días)</th>
<th>Costo (Día)</th>
<th>Costo Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingeniería Básica</td>
<td>30 Días</td>
<td>Costo mano de obra</td>
<td>Responsable</td>
<td>Director de Proyecto</td>
<td>1</td>
<td>30</td>
<td>$266.667</td>
<td>$8,000,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Coordinador de Ingeniería</td>
<td>1</td>
<td>30</td>
<td>$223.333</td>
<td>$6,700,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Líder disciplina tiempo completo</td>
<td>6</td>
<td>30</td>
<td>$186.667</td>
<td>$33,600,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Instrumentación, Proceso, Mecánico, Tubería, Civil-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>estructuras, Eléctrico)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ingenieros diseñadores</td>
<td>6</td>
<td>30</td>
<td>$143.333</td>
<td>$25,800,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Instrumentación, Proceso, Mecánico, Tubería, Civil,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Eléctrico)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dibujantes</td>
<td>1</td>
<td>30</td>
<td>$50.000</td>
<td>$1,500,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Control de documentos</td>
<td>1</td>
<td>25</td>
<td>$106.667</td>
<td>$2,666.667</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Programación Proyectos</td>
<td>1</td>
<td>30</td>
<td>$121.833</td>
<td>$3,655,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Control Calidad</td>
<td>1</td>
<td>20</td>
<td>$106.667</td>
<td>$2,133,333</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Coordinador HSE</td>
<td>1</td>
<td>20</td>
<td>$106.667</td>
<td>$2,133,333</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Costo por uso de activos</td>
<td>Computadores</td>
<td>19</td>
<td>30</td>
<td>$15.000</td>
<td>$8,550,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Impresora</td>
<td>1</td>
<td>5</td>
<td>$20.000</td>
<td>$100,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Otros</td>
<td>19</td>
<td>30</td>
<td>$12.000</td>
<td>$6,840,000</td>
</tr>
</tbody>
</table>

41
El costo de los entregables está establecido para esta ingeniería con base en la tabla siguiente:

Tabla 19 Documentos entregables Ingeniería Básica

<table>
<thead>
<tr>
<th>Documento</th>
<th>Cantidad</th>
<th>Costo</th>
</tr>
</thead>
<tbody>
<tr>
<td>FILOSOFÍA DE OPERACIÓN</td>
<td>1</td>
<td>$800,000</td>
</tr>
<tr>
<td>DIAGRAMA DE SIMBOLOGÍA</td>
<td>1</td>
<td>$600,000</td>
</tr>
<tr>
<td>DIAGRAMA DE FLUJO DEL PROCESO PFD</td>
<td>1</td>
<td>$600,000</td>
</tr>
<tr>
<td>P&ID UNIDAD LACT</td>
<td>1</td>
<td>$600,000</td>
</tr>
<tr>
<td>P&ID INTERCONEXIÓN A MANIFOLD EXISTENTE</td>
<td>1</td>
<td>$400,000</td>
</tr>
<tr>
<td>P&ID INTERCONEXIÓN A SISTEMA DE AIRE EXISTENTE</td>
<td>1</td>
<td>$400,000</td>
</tr>
<tr>
<td>LISTADO DE LÍNEAS</td>
<td>1</td>
<td>$600,000</td>
</tr>
<tr>
<td>LISTADO DE TIE-INs</td>
<td>1</td>
<td>$600,000</td>
</tr>
</tbody>
</table>

TOTAL PROCESOS

$4,600,000

Entregables Ingeniería Básica Eléctrica

<table>
<thead>
<tr>
<th>Documento</th>
<th>Cantidad</th>
<th>Costo</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUADRO DE CARGAS</td>
<td>1</td>
<td>$600,000</td>
</tr>
<tr>
<td>DIAGRAMA UNIFILAR</td>
<td>2</td>
<td>$1,200,000</td>
</tr>
<tr>
<td>MC REGULACIÓN Y SELECCIÓN DE CONDUCTORES</td>
<td>1</td>
<td>$600,000</td>
</tr>
<tr>
<td>MC SISTEMA DE PUESTA A TIERRA</td>
<td>1</td>
<td>$600,000</td>
</tr>
<tr>
<td>MC SISTEMA DE ILUMINACIÓN EXTERIOR</td>
<td>1</td>
<td>$600,000</td>
</tr>
<tr>
<td>PLANIMETRÍA DE CLASIFICACIÓN DE ÁREAS</td>
<td>1</td>
<td>$600,000</td>
</tr>
<tr>
<td>PLANIMETRÍA SISTEMA DE PUESTA A TIERRA</td>
<td>1</td>
<td>$600,000</td>
</tr>
<tr>
<td>DS TABLEROS DE DISTRIBUCIÓN</td>
<td>1</td>
<td>$400,000</td>
</tr>
<tr>
<td>CANTIDADES DE OBRA</td>
<td>1</td>
<td>$400,000</td>
</tr>
<tr>
<td>PLANIMETRÍA PROTECCIÓN CONTRA RAYOS Y SOBRETENSIONES</td>
<td>1</td>
<td>$600,000</td>
</tr>
<tr>
<td>PLANIMETRÍA ILUMINACIÓN Y LOCALIZACIÓN DE POSTES</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL ELÉCTRICA

$6,200,000
<table>
<thead>
<tr>
<th>Entregables Ingeniería Básica Mecánica y Tubería</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Documento</td>
<td>Cantidad</td>
<td>Costo</td>
</tr>
<tr>
<td>PLOT PLAN</td>
<td>1</td>
<td>$800,000</td>
</tr>
<tr>
<td>CORREDORES TÉCNICOS</td>
<td>1</td>
<td>$800,000</td>
</tr>
<tr>
<td>ANÁLISIS DE FLEXIBILIDAD TUBERÍAS</td>
<td>1</td>
<td>$800,000</td>
</tr>
<tr>
<td>HOJA DE DATOS FILTROS CON CABEZA DESAIREADORA</td>
<td>1</td>
<td>$400,000</td>
</tr>
<tr>
<td>HOJA DE DATOS VÁLVULA DOBLE BLOQUEO Y PURGA</td>
<td>1</td>
<td>$400,000</td>
</tr>
<tr>
<td>HOJA DE DATOS VÁLVULAS BOLA, COMPUERTA Y MARIPOSA</td>
<td>1</td>
<td>$400,000</td>
</tr>
<tr>
<td>ESPECIFICACIONES DE TUBERÍA PIPING CLASS</td>
<td>1</td>
<td>$600,000</td>
</tr>
<tr>
<td>CANTIDADES DE OBRA MECÁNICA</td>
<td>1</td>
<td>$800,000</td>
</tr>
<tr>
<td>TOTAL MECÁNICA Y TUBERÍA</td>
<td></td>
<td>$5,000,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Entregables Ingeniería Básica Instrumentación</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Documento</td>
<td>Cantidad</td>
<td>Costo</td>
</tr>
<tr>
<td>LISTADO DE INSTRUMENTOS</td>
<td>1</td>
<td>$400,000</td>
</tr>
<tr>
<td>LISTADO DE SEÑALES</td>
<td>1</td>
<td>$400,000</td>
</tr>
<tr>
<td>HOJAS DE DATOS</td>
<td>10</td>
<td>$3,200,000</td>
</tr>
<tr>
<td>ARQUITECTURA DE CONTROL</td>
<td>1</td>
<td>$400,000</td>
</tr>
<tr>
<td>FILOSOFÍA DE CONTROL</td>
<td>1</td>
<td>$800,000</td>
</tr>
<tr>
<td>ESPECIFICACIÓN COMPUTADOR DE FLUJO</td>
<td>1</td>
<td>$400,000</td>
</tr>
<tr>
<td>ESPECIFICACIÓN TÉCNICA DE INSTRUMENTOS</td>
<td>1</td>
<td>$800,000</td>
</tr>
<tr>
<td>ESPECIFICACIÓN PROBADOR BIDIRECCIONAL</td>
<td>1</td>
<td>$800,000</td>
</tr>
<tr>
<td>ESPECIFICACIÓN PLC</td>
<td>1</td>
<td>$800,000</td>
</tr>
<tr>
<td>MATRIZ CAUSA EFECTO</td>
<td>1</td>
<td>$400,000</td>
</tr>
<tr>
<td>CANTIDADES DE OBRA</td>
<td>1</td>
<td>$400,000</td>
</tr>
<tr>
<td>TOTAL INSTRUMENTACIÓN</td>
<td></td>
<td>$8,800,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Entregables Ingeniería Básica Civil</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Documento</td>
<td>Cantidad</td>
<td>Costo</td>
</tr>
<tr>
<td>MC ESTRUCTURAL FUNDACIÓN</td>
<td>1</td>
<td>$1,000,000</td>
</tr>
<tr>
<td>MC ESTRUCTURAL RACK DE TUBERÍAS</td>
<td>1</td>
<td>$1,000,000</td>
</tr>
<tr>
<td>MC HIDRÁULICO RED DE DRENAJES DE AGUAS LLUVIAS Y ACEITOSAS</td>
<td>1</td>
<td>$1,000,000</td>
</tr>
<tr>
<td>MC MOVIMIENTOS DE TIERRAS</td>
<td>1</td>
<td>$800,000</td>
</tr>
<tr>
<td>PLANOS SLEEPERS Y MARCOS H PARA RACK DE TUBERÍAS</td>
<td>1</td>
<td>$800,000</td>
</tr>
<tr>
<td>PLANOS FUNDACIÓN RACK TUBERÍAS</td>
<td>1</td>
<td>$800,000</td>
</tr>
<tr>
<td>PLANOS FUNDACIÓN BRAZOS DE MEDICIÓN</td>
<td>1</td>
<td>$800,000</td>
</tr>
<tr>
<td>PLANOS FUNDACIÓN PROBADOR</td>
<td>1</td>
<td>$800,000</td>
</tr>
<tr>
<td>CANTIDADES DE OBRA</td>
<td>1</td>
<td>$400,000</td>
</tr>
<tr>
<td>TOTAL CIVIL</td>
<td></td>
<td>$7,400,000</td>
</tr>
</tbody>
</table>
15.2.1.3 INGENIERÍA DETALLE

Tabla 20 Recursos – Costos Ingeniería Detalle

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Duración (días)</th>
<th>Concepto</th>
<th>Recurso</th>
<th>Desc./nombre</th>
<th>Cantidad</th>
<th>Duración (días)</th>
<th>Costo (Día)</th>
<th>Costo Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingeniería Detalle</td>
<td>40</td>
<td>Responsable</td>
<td>Director de Proyecto</td>
<td>1</td>
<td>40</td>
<td>$ 266.667</td>
<td>$ 10.666.667</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Coordinador de Ingeniería</td>
<td>1</td>
<td>40</td>
<td>$ 223.333</td>
<td></td>
<td>$ 8.933.333</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Líder disciplina tiempo completo (Instrumentación, Proceso, Mecánico, Tubería, Civil-estructuras, Eléctrico)</td>
<td>6</td>
<td>40</td>
<td>$ 186.667</td>
<td>$ 44.800.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Personal</td>
<td>Ingenieros diseñadores (Instrumentación, Proceso, Mecánico, Tubería, Civil, Eléctrico)</td>
<td>6</td>
<td>40</td>
<td>$ 143.333</td>
<td>$ 34.400.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dibujantes</td>
<td>1</td>
<td>40</td>
<td>$ 50.000</td>
<td></td>
<td>$ 2.000.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control de documentos</td>
<td>1</td>
<td>40</td>
<td>$ 106.667</td>
<td>$ 4.266.667</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Programación Proyectos</td>
<td>1</td>
<td>40</td>
<td>$ 121.833</td>
<td>$ 4.873.333</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control Calidad</td>
<td>1</td>
<td>30</td>
<td>$ 106.667</td>
<td></td>
<td>$ 3.200.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Coordinador HSE</td>
<td>1</td>
<td>30</td>
<td>$ 106.667</td>
<td></td>
<td>$ 3.200.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Equipos</td>
<td>Computadores</td>
<td>19</td>
<td>7</td>
<td>$ 15.000</td>
<td>$ 1.995.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Impresora</td>
<td>1</td>
<td>5</td>
<td>$ 20.000</td>
<td></td>
<td>$ 100.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Otros</td>
<td>Escritorios</td>
<td>19</td>
<td>30</td>
<td>$ 12.000</td>
<td></td>
<td>$ 6.840.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sillas giratorias</td>
<td>19</td>
<td>30</td>
<td>$ 10.000</td>
<td></td>
<td>$ 5.700.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Entregables</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>$ 31.560.000</td>
</tr>
</tbody>
</table>

COSTO TOTAL ING. DETALLE $162.535.000

El costo de los entregables para ingeniería de detalle se basa en los producibles listados en la siguiente tabla:
Tabla 21 Documentos entregables Ingeniería de detalle

Entregables Ingeniería Detalle Procesos

<table>
<thead>
<tr>
<th>Documento</th>
<th>Cantidad</th>
<th>Costo</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC HIDRÁULICO DE LÍNEAS DE PROCESO</td>
<td>1</td>
<td>$800,000</td>
</tr>
<tr>
<td>MC DIMENSIONAMIENTO DE VÁLVULAS</td>
<td>1</td>
<td>$800,000</td>
</tr>
<tr>
<td>MANUAL DE OPERACIÓN</td>
<td>1</td>
<td>$1,000,000</td>
</tr>
<tr>
<td>TOTAL PROCESOS</td>
<td></td>
<td>$2,600,000</td>
</tr>
</tbody>
</table>

Entregables Ingeniería Detalle Eléctrica

<table>
<thead>
<tr>
<th>Documento</th>
<th>Cantidad</th>
<th>Costo</th>
</tr>
</thead>
<tbody>
<tr>
<td>LISTADO DE MATERIALES ELÉCTRICOS</td>
<td>1</td>
<td>$400,000</td>
</tr>
<tr>
<td>PLANIMETRÍA DE TRAZADO DUCTOS Y CANALIZACIONES ELÉCTRICAS</td>
<td>1</td>
<td>$800,000</td>
</tr>
<tr>
<td>TÍPICOS DE MONTAJE ELÉCTRICO</td>
<td>8</td>
<td>$1,920,000</td>
</tr>
<tr>
<td>DIAGRAMA TABLERO DE DISTRIBUCIÓN ELÉCTRICO</td>
<td>1</td>
<td>$600,000</td>
</tr>
<tr>
<td>TABLAS DE CABLEADO</td>
<td>1</td>
<td>$600,000</td>
</tr>
<tr>
<td>TOTAL ELÉCTRICA</td>
<td></td>
<td>$4,320,000</td>
</tr>
</tbody>
</table>

Entregables Ingeniería Detalle Mecánica y Tubería

<table>
<thead>
<tr>
<th>Documento</th>
<th>Cantidad</th>
<th>Costo</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAQUETA</td>
<td>1</td>
<td>$800,000</td>
</tr>
<tr>
<td>CARTILLA TÍPICOS DE SOPORTERÍA</td>
<td>1</td>
<td>$600,000</td>
</tr>
<tr>
<td>LAYOUT DE TUBERÍA ÁREA MEDICIÓN</td>
<td>1</td>
<td>$800,000</td>
</tr>
<tr>
<td>LAYOUT DE TUBERÍA ÁREA PROBADOR</td>
<td>1</td>
<td>$800,000</td>
</tr>
<tr>
<td>ISOMÉTRICOS</td>
<td>12</td>
<td>$2,880,000</td>
</tr>
<tr>
<td>CANTIDADES DE OBRA TUBERÍA (TAKE OFF)</td>
<td>1</td>
<td>$800,000</td>
</tr>
<tr>
<td>TOTAL MECÁNICA</td>
<td></td>
<td>$6,680,000</td>
</tr>
</tbody>
</table>

Entregables Ingeniería Detalle Instrumentación

<table>
<thead>
<tr>
<th>Documento</th>
<th>Cantidad</th>
<th>Costo</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARSHALLING PLC</td>
<td>1</td>
<td>$400,000</td>
</tr>
<tr>
<td>MARSHALLING COMPUTADOR DE FLUJO</td>
<td>1</td>
<td>$400,000</td>
</tr>
<tr>
<td>LAZOS DE CONTROL</td>
<td>14</td>
<td>$5,600,000</td>
</tr>
<tr>
<td>TÍPICOS DE MONTAJE</td>
<td>14</td>
<td>$3,360,000</td>
</tr>
<tr>
<td>LISTADO DE MATERIALES PARA MONTAJE</td>
<td>1</td>
<td>$400,000</td>
</tr>
<tr>
<td>LISTADO DE MATERIALES PARA CONEXIÓN ELÉCTRICA</td>
<td>1</td>
<td>$400,000</td>
</tr>
<tr>
<td>PLANIMETRÍA DE LOCALIZACIÓN Y/O BANCO DE DUCTOS</td>
<td>1</td>
<td>$800,000</td>
</tr>
<tr>
<td>CORTES BANDEJAS Y/O BANCOS DE DUCTOS</td>
<td>1</td>
<td>$800,000</td>
</tr>
<tr>
<td>LISTADO DE CONDUCTORES</td>
<td>1</td>
<td>$400,000</td>
</tr>
<tr>
<td>LISTADO DE CONDUIT</td>
<td>1</td>
<td>$400,000</td>
</tr>
<tr>
<td>TOTAL INSTRUMENTACIÓN</td>
<td></td>
<td>$12,960,000</td>
</tr>
</tbody>
</table>
Entregables Ingeniería Detalle Civil

<table>
<thead>
<tr>
<th>Documento</th>
<th>Cantidad</th>
<th>Costo</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLANOS RED DE DRENAJES DE AGUAS ACEITOSAS</td>
<td>1</td>
<td>$800,000</td>
</tr>
<tr>
<td>PLANOS RED DE DRENAJES DE AGUAS LLUVIAS</td>
<td>1</td>
<td>$800,000</td>
</tr>
<tr>
<td>PLANOS PASARELAS</td>
<td>1</td>
<td>$800,000</td>
</tr>
<tr>
<td>PLANOS DETALLES ESTRUCTURALES CIMENTACIÓN</td>
<td>1</td>
<td>$800,000</td>
</tr>
<tr>
<td>PLANOS DE ESTRUCTURA METÁLICA</td>
<td>1</td>
<td>$600,000</td>
</tr>
<tr>
<td>SHELTER COMPUTADOR DE FLUJO</td>
<td>1</td>
<td>$600,000</td>
</tr>
<tr>
<td>SHELTER PLC</td>
<td>1</td>
<td>$600,000</td>
</tr>
<tr>
<td>TOTAL CIVIL</td>
<td></td>
<td>$5,000,000</td>
</tr>
</tbody>
</table>

La tabla siguiente muestra la totalidad del costo de las ingenierías establecidas para el proyecto:

Tabla 22 Costo total ingenierías

<table>
<thead>
<tr>
<th>ACTIVIDAD</th>
<th>COSTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>INGENIERÍA CONCEPTUAL</td>
<td>$ 35.692.833</td>
</tr>
<tr>
<td>INGENIERÍA BÁSICA</td>
<td>$ 139.378.333</td>
</tr>
<tr>
<td>INGENIERÍA DE DETALLE</td>
<td>$ 162.535.000</td>
</tr>
<tr>
<td>COSTOS DE LA INGENIERÍA</td>
<td>$ 337.606.167</td>
</tr>
</tbody>
</table>

15.2.2 COSTOS POR PROCESO CONTRATACIÓN

Tabla 23 Costos por contratación

<table>
<thead>
<tr>
<th>ÍTEM</th>
<th>DESCRIPCIÓN</th>
<th>COSTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Proceso de Contratación personal Administrativo</td>
<td>$3,245,000</td>
</tr>
<tr>
<td>2</td>
<td>Proceso de Contratación personal Ingeniería</td>
<td>$3,245,000</td>
</tr>
<tr>
<td>3</td>
<td>Proceso Contratación personal técnico</td>
<td>$3,850,400</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>$10,340,400</td>
</tr>
</tbody>
</table>

15.2.3 COSTOS POR PÓLIZAS

Tabla 24 Costos por pólizas

<table>
<thead>
<tr>
<th>Ítem</th>
<th>Descripción</th>
<th>% del Contrato</th>
<th>Valor Asegurado</th>
<th>Costo Póliza</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Póliza de Cumplimiento</td>
<td>10</td>
<td>$ 187,067,800</td>
<td>$ 9.353.390</td>
</tr>
<tr>
<td>2</td>
<td>Póliza Manejo Anticipo</td>
<td>40</td>
<td>$ 748,271,200</td>
<td>$ 37,413.560</td>
</tr>
<tr>
<td>3</td>
<td>Póliza de pagos salarios y prestaciones</td>
<td>5</td>
<td>$ 93,533,900</td>
<td>$ 4.676.695</td>
</tr>
<tr>
<td>4</td>
<td>Póliza de calidad de servicio</td>
<td>10</td>
<td>$ 187,067,800</td>
<td>$ 9.353.390</td>
</tr>
<tr>
<td>5</td>
<td>Póliza estabilidad de obra</td>
<td>10</td>
<td>$ 187,067,800</td>
<td>$ 9.353.390</td>
</tr>
<tr>
<td>6</td>
<td>Póliza de responsabilidad Contractual</td>
<td>10</td>
<td>$ 187,067,800</td>
<td>$ 9.353.390</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>$ 79.503.815</td>
</tr>
</tbody>
</table>
15.2.4 TOTAL COSTOS FIJOS

Tabla 25 Costos Fijos

<table>
<thead>
<tr>
<th>ACTIVIDAD</th>
<th>COSTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>COSTO ACTIVOS POR PÓLIZAS</td>
<td>$ 79.503.815</td>
</tr>
<tr>
<td>COSTO DEL PROCESO DE CONTRATACIÓN</td>
<td>$ 10.340.400</td>
</tr>
<tr>
<td>COSTO DEL PERFECCIONAMIENTO</td>
<td>$ 8.755.000</td>
</tr>
<tr>
<td>COSTO DE LA INGENIERÍA</td>
<td>$ 337.606.167</td>
</tr>
<tr>
<td>COSTOS FIJOS</td>
<td>$ 436.205.382</td>
</tr>
</tbody>
</table>

15.3 COSTOS VARIABLES DIRECTOS

15.3.1 COSTOS POR ACTIVIDADES DE PROCURA

15.3.1.1 COSTOS POR ACTIVIDADES DE SUMINISTRO DE EQUIPOS Y MATERIALES

Tabla 26 Recursos - Costos Actividades Procura

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Duración Actividad</th>
<th>Concepto</th>
<th>Recurso</th>
<th>Desc./nombre</th>
<th>Cantidad</th>
<th>Duración (días)</th>
<th>Costo (Día)</th>
<th>Costo Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingeniería</td>
<td>33 Días</td>
<td>Costo variable directo</td>
<td>Responsable</td>
<td>Director de Proyecto</td>
<td>1</td>
<td>40</td>
<td>$ 266.667</td>
<td>$ 10.666.667</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Coordinador Procura</td>
<td>1</td>
<td>40</td>
<td>$ 223.333</td>
<td>$ 8.933.333</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Asistentes Procura</td>
<td>4</td>
<td>40</td>
<td>$ 79.000</td>
<td>$ 12.640.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Líder disciplina (Instrumentación, Proceso, Mecánico, Tubería, Civil-estructuras, Eléctrico)</td>
<td>6</td>
<td>20</td>
<td>$ 186.667</td>
<td>$ 22.400.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ingenieros diseñadores (Instrumentación, Proceso, Mecánico, Tubería, Civil, Eléctrico)</td>
<td>6</td>
<td>20</td>
<td>$ 143.333</td>
<td>$ 17.200.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Computadores</td>
<td>19</td>
<td>40</td>
<td>$ 15.000</td>
<td>$ 11.400.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Impresora</td>
<td>1</td>
<td>35</td>
<td>$ 20.000</td>
<td>$ 700.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Escritorios</td>
<td>19</td>
<td>40</td>
<td>$ 12.000</td>
<td>$ 9.120.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sillas giratorias</td>
<td>19</td>
<td>40</td>
<td>$ 10.000</td>
<td>$ 7.600.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Entregables</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>$ 791.370.444</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>COSTO TOTAL ACTIVIDADES PROCURA $ 892.030.444</td>
</tr>
</tbody>
</table>
El costo de los entregables está establecido para esta actividad con base en la tabla siguiente:

Tabla 27 Entregables Actividades de Procura

<table>
<thead>
<tr>
<th>ÍTEM</th>
<th>DESCRIPCIÓN COMPONENTE</th>
<th>PROVEEDOR</th>
<th>UN</th>
<th>CANT</th>
<th>VALOR UNITARIO</th>
<th>VALOR TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VÁLVULA MOTORIZADA DE DOBLE BLOQUEO Y PURGA, 12” x ANSI 300#</td>
<td>ROTORK</td>
<td>UN</td>
<td>10</td>
<td>$ 18,450,536</td>
<td>$ 184,505,360</td>
</tr>
<tr>
<td>2</td>
<td>FILTRO TIPO CANASTA, 12” x ANSI 300#</td>
<td>FMC</td>
<td>UN</td>
<td>3</td>
<td>$ 23,756,000</td>
<td>$ 71,268,000</td>
</tr>
<tr>
<td>3</td>
<td>TRANSMISOR DE PRESIÓN DIFERENCIAL, CONEXIÓN SELLOS REMOTOS 1 1/2" RF, RANGO 0 - 30 PSID, 24 VDC, CL I DIV II Gr C&D</td>
<td>ROSEMOUNT</td>
<td>UN</td>
<td>3</td>
<td>$ 5,340,230</td>
<td>$ 16,020,690</td>
</tr>
<tr>
<td>4</td>
<td>VÁLVULAS DE ALIVIO TÉRMICO, ACERO INOX, 3/4" x 1”, HxH NPT</td>
<td>TYCO</td>
<td>UN</td>
<td>3</td>
<td>$ 1,450,000</td>
<td>$ 4,350,000</td>
</tr>
<tr>
<td>5</td>
<td>MEDIDOR DESPLAZAMIENTO POSITIVO, 12” x ANSI 300#, RF, RANGO 0 - 172800 BPD, INCLUYE TRANSMISOR DE PULSOS CL I DIV II Gr C&D</td>
<td>FMC</td>
<td>UN</td>
<td>3</td>
<td>$ 24,832,000</td>
<td>$ 74,496,000</td>
</tr>
<tr>
<td>6</td>
<td>INDICADOR DE PRESIÓN TIPO BOURDON, CONEXIÓN 1/2", INCLUYE SELLO REMOTO 1 1/2" RF, RANGO 0 - 740 PSI, CAJA FENÓLICA</td>
<td>ASHCROFT</td>
<td>UN</td>
<td>3</td>
<td>$ 650,000</td>
<td>$ 1,950,000</td>
</tr>
<tr>
<td>7</td>
<td>TRANSMISOR DE PRESIÓN MANOMÉTRICA, CONEXIÓN SELLOS REMOTOS 1 1/2" RF, RANGO 0 - 740 PSIG, 24 VDC, CL I DIV II Gr C&D</td>
<td>ROSEMOUNT</td>
<td>UN</td>
<td>3</td>
<td>$ 5,340,230</td>
<td>$ 16,020,690</td>
</tr>
<tr>
<td>8</td>
<td>TRANSMISOR DE TEMPERATURA, CONEXIÓN 1 1/2" RF, RANGO 0 - 200 °F, TERMOPOZO 10", RTD 4 HILOS, 24 VDC, CL I DIV II Gr C&D</td>
<td>ROSEMOUNT</td>
<td>UN</td>
<td>3</td>
<td>$ 5,340,230</td>
<td>$ 16,020,690</td>
</tr>
</tbody>
</table>
UNIDAD DE MEDICIÓN

<table>
<thead>
<tr>
<th>ÍTEM</th>
<th>DESCRIPCIÓN COMPONENTE</th>
<th>PROVEEDOR</th>
<th>UN</th>
<th>CANT</th>
<th>VALOR UNITARIO</th>
<th>VALOR TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>INDICADOR DE TEMPERATURA TIPO BIMETÁLICO, CONEXIÓN 1 1/2" RF, RANGO 0 - 200 °F, TERMOPozo 10"</td>
<td>ASHCROFT</td>
<td>UN</td>
<td>3</td>
<td>$757,000</td>
<td>$2,271,000</td>
</tr>
<tr>
<td>10</td>
<td>TERMOPOZO DE PRUEBA, ACERO INOX 316, RF, 10" LONGITUD, CONEXIÓN 1 1/2" RF</td>
<td>ASHCROFT</td>
<td>UN</td>
<td>3</td>
<td>$350,000</td>
<td>$1,050,000</td>
</tr>
<tr>
<td>11</td>
<td>VÁLVULA DE CONTROL TIPO MARIPOSA, 12", FALLA ABIERTA, POSICIONADOR ELECTRÓNICO, IGUAL PORCENTAJE, INCLUYE KIT DE MANTENIMIENTO</td>
<td>FISHER</td>
<td>UN</td>
<td>4</td>
<td>$15,450,536</td>
<td>$61,802,144</td>
</tr>
<tr>
<td>12</td>
<td>VÁLVULA DE RETENCIÓN TIPO CHEQUE, 12"</td>
<td>CAMERON</td>
<td>UN</td>
<td>3</td>
<td>$2,830,000</td>
<td>$8,490,000</td>
</tr>
<tr>
<td>13</td>
<td>TUBERÍA 12" SCH 40, SIN COSTURA</td>
<td>-</td>
<td>ML</td>
<td>90</td>
<td>$258,000</td>
<td>$23,220,000</td>
</tr>
<tr>
<td>14</td>
<td>VÁLVULAS DE BOLA, 2" ANSI 300#</td>
<td>CAMERON</td>
<td>UN</td>
<td>8</td>
<td>$832,000</td>
<td>$6,656,000</td>
</tr>
<tr>
<td>15</td>
<td>VÁLVULAS DE BOLA, 3/4" H-H NPT</td>
<td>SWAGELOCK</td>
<td>UN</td>
<td>18</td>
<td>$322,000</td>
<td>$5,796,000</td>
</tr>
</tbody>
</table>

TOTAL SUMINISTROS UNIDAD DE MEDICIÓN

$493,916,574

LOOP DE CALIDAD

<table>
<thead>
<tr>
<th>ÍTEM</th>
<th>DESCRIPCIÓN COMPONENTE</th>
<th>PROVEEDOR</th>
<th>UN</th>
<th>CANT</th>
<th>VALOR UNITARIO</th>
<th>VALOR TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>INTERRUPTOR DE FLUJO TIPO DISPERSIÓN TÉRMICA, 2" ANSI 300#, 24 VDC, CL I DIV II Gr C&D</td>
<td>MAGNETROL</td>
<td>UN</td>
<td>1</td>
<td>$4,780,000</td>
<td>$4,780,000</td>
</tr>
<tr>
<td>17</td>
<td>BOMBA ENGRANAJES, 2" ANSI 300#</td>
<td>SULZER</td>
<td>UN</td>
<td>1</td>
<td>$8,432,724</td>
<td>$8,432,724</td>
</tr>
<tr>
<td>18</td>
<td>DENSITÓMETRO TIPO TENEDOR VIBRANTE, 2" ANSI 300#, RANGO 0- 30 ° API, 24 VDC, CL I, DIV II, Gr C&D</td>
<td>MICROMOTION</td>
<td>UN</td>
<td>1</td>
<td>$11,945,000</td>
<td>$11,945,000</td>
</tr>
<tr>
<td>19</td>
<td>VISCOSÍMETRO TIPO TENEDOR VIBRANTE, 2" ANSI 300#, RANGO 0- 350 cP, 24 VDC, CL I, DIV II, Gr C&D</td>
<td>MICROMOTION</td>
<td>UN</td>
<td>1</td>
<td>$11,945,000</td>
<td>$11,945,000</td>
</tr>
<tr>
<td>ÍTEM</td>
<td>DESCRIPCIÓN COMPONENTE</td>
<td>PROVEEDOR</td>
<td>UN</td>
<td>CANT</td>
<td>VALOR UNITARIO</td>
<td>VALOR TOTAL</td>
</tr>
<tr>
<td>------</td>
<td>------------------------</td>
<td>-----------</td>
<td>----</td>
<td>------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>20</td>
<td>ANALIZADOR %BSW, 1” ANSI 300#, RANGO 0- 5%, 24 VDC, CL I, DIV II, Gr C&D</td>
<td>RED EYE</td>
<td>UN</td>
<td>1</td>
<td>$ 14,945,000</td>
<td>$ 14,945,000</td>
</tr>
<tr>
<td>21</td>
<td>TÉRMOMÓDULO DE PRUEBA, ACERO INOX 316, RF, 10” LONGITUD, CONEXIÓN 1 1/2” RF</td>
<td>ASHCROFT</td>
<td>UN</td>
<td>1</td>
<td>$ 350,000</td>
<td>$ 350,000</td>
</tr>
<tr>
<td>22</td>
<td>TRANSMISOR DE TEMPERATURA, CONEXIÓN 1 1/2” RF, RANGO 0 - 200 °F, TÉRMOMÓDULO 6”, RTD 3 HILOS, 24 VDC, CL I DIV II Gr C&D</td>
<td>ROSEMOUNT</td>
<td>UN</td>
<td>1</td>
<td>$ 5,340,230</td>
<td>$ 5,340,230</td>
</tr>
<tr>
<td>23</td>
<td>TRANSMISOR DE PRESIÓN MANOMÉTRICA, CONEXIÓN SELLOS REMOTOS 1 1/2” RF, RANGO 0 - 740 PSIG, 24 VDC, CL I DIV II Gr C&D</td>
<td>ROSEMOUNT</td>
<td>UN</td>
<td>1</td>
<td>$ 5,340,230</td>
<td>$ 5,340,230</td>
</tr>
<tr>
<td>24</td>
<td>TOMA MUESTRAS AUTOMÁTICO, 4” ANSI 300#</td>
<td>KIMMAN PROCESS</td>
<td>UN</td>
<td>1</td>
<td>$ 9,237,000</td>
<td>$ 9,237,000</td>
</tr>
<tr>
<td>25</td>
<td>CONTENEDORES DE MUESTRAS, 5 GALONES, ACERO INOX 304,</td>
<td>KIMMAN PROCESS</td>
<td>UN</td>
<td>2</td>
<td>$ 1,932,000</td>
<td>$ 3,864,000</td>
</tr>
<tr>
<td>26</td>
<td>SENSOR DE PESO PARA CONTENEDORES, RANGO 0 - 50 Kg, CL I DIV II, 24 VDC</td>
<td>KIMMAN PROCESS</td>
<td>UN</td>
<td>2</td>
<td>$ 8,765,000</td>
<td>$ 17,530,000</td>
</tr>
<tr>
<td>27</td>
<td>VÁLVULA SOLENOIDE 3 VÍAS, 24 VDC, 1” NPT</td>
<td>ASCO</td>
<td>UN</td>
<td>1</td>
<td>$ 540,000</td>
<td>$ 540,000</td>
</tr>
<tr>
<td>28</td>
<td>VÁLVULA ELECTRO NEUMÁTICA, TIPO BOLA, 1” NPT, 24 VDC</td>
<td>ASCO</td>
<td>UN</td>
<td>1</td>
<td>$ 947,000</td>
<td>$ 947,000</td>
</tr>
<tr>
<td>29</td>
<td>VÁLVULAS DE BOLA, 2” ANSI 300#</td>
<td>CAMERON</td>
<td>UN</td>
<td>4</td>
<td>$ 832,000</td>
<td>$ 3,328,000</td>
</tr>
<tr>
<td></td>
<td>TOTAL SUMINISTROS LOOP DE CALIDAD</td>
<td></td>
<td></td>
<td></td>
<td>$ 98,524,184</td>
<td></td>
</tr>
<tr>
<td>ÍTEM</td>
<td>DESCRIPCIÓN COMPLEMENTO</td>
<td>PROVEEDOR</td>
<td>UN</td>
<td>CANT</td>
<td>VALOR UNITARIO</td>
<td>VALOR TOTAL</td>
</tr>
<tr>
<td>-------</td>
<td>------------------------</td>
<td>-----------</td>
<td>----</td>
<td>------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>30</td>
<td>TRANSMISOR DE PRESIÓN MANOMÉTRICA, CONEXIÓN SELLOS REMOTOS 1 1/2" RF, RANGO 0 - 740 PSIG, 24 VDC, CL I DIV II Gr C&D</td>
<td>ROSEMOUNT</td>
<td>UN</td>
<td>2</td>
<td>$5,340,230</td>
<td>$10,680,460</td>
</tr>
<tr>
<td>31</td>
<td>TRANSMISOR DE TEMPERATURA, CONEXIÓN 1 1/2" RF, RANGO 0 - 200 °F, TERMOPOZO 10", RTD 4 HILOS, 24 VDC, CL I DIV II Gr C&D</td>
<td>ROSEMOUNT</td>
<td>UN</td>
<td>2</td>
<td>$5,340,230</td>
<td>$10,680,460</td>
</tr>
<tr>
<td>32</td>
<td>INDICADOR DE TEMPERATURA TIPO Bimetálico, CONEXIÓN 1 1/2" RF, RANGO 0 - 200 °F, TERMOPOZO 10"</td>
<td>ASHCROFT</td>
<td>UN</td>
<td>2</td>
<td>$757,000</td>
<td>$1,514,000</td>
</tr>
<tr>
<td>33</td>
<td>TERMOPOZO DE PRUEBA, ACERO INOX 316, RF, 10" LONGITUD, CONEXIÓN 1 1/2" RF</td>
<td>ASHCROFT</td>
<td>UN</td>
<td>2</td>
<td>$350,000</td>
<td>$700,000</td>
</tr>
<tr>
<td>34</td>
<td>INDICADOR DE PRESIÓN TIPO BOURDON, CONEXIÓN 1/2", INCLUYE SELLO REMOTO 1 1/2" RF, RANGO 0 - 740 PSI, CAJA FENÓLICA</td>
<td>ASHCROFT</td>
<td>UN</td>
<td>2</td>
<td>$650,000</td>
<td>$1,300,000</td>
</tr>
<tr>
<td>35</td>
<td>VÁLVULA MOTORIZADA DE 4 VIAS, 12" x ANSI 300#</td>
<td>ROTORK</td>
<td>UN</td>
<td>1</td>
<td>$18,450,536</td>
<td>$18,450,536</td>
</tr>
<tr>
<td>36</td>
<td>TRANSMISOR DE PRESIÓN DIFERENCIAL, CONEXIÓN SELLOS REMOTOS 1 1/2" RF, RANGO 0 - 30 PSID, 24 VDC, CL I DIV II Gr C&D</td>
<td>ROSEMOUNT</td>
<td>UN</td>
<td>1</td>
<td>$5,340,230</td>
<td>$5,340,230</td>
</tr>
<tr>
<td>37</td>
<td>VÁLVULAS DE ALIVIO TÉRMICO, ACERO INOX, 3/4" x 1", HxH NPT</td>
<td>TYCO</td>
<td>UN</td>
<td>2</td>
<td>$1,450,000</td>
<td>$2,900,000</td>
</tr>
</tbody>
</table>
SISTEMA DE CALIBRACIÓN TIPO PROBADOR BIDIRECCIONAL

<table>
<thead>
<tr>
<th>ÍTEM</th>
<th>DESCRIPCIÓN COMPONENTE</th>
<th>PROVEEDOR</th>
<th>UN</th>
<th>CANT</th>
<th>VALOR UNITARIO</th>
<th>VALOR TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>INTERRUPTORES DE DETECCIÓN DE PASO DE ESFERA, 24 VDC, CL I DIV II</td>
<td>GIRARD INDUSTRIES</td>
<td>UN</td>
<td>4</td>
<td>$ 3,870,000</td>
<td>$ 15,480,000</td>
</tr>
<tr>
<td>39</td>
<td>CÁMARAS DE LANZAMIENTO DE ESFERAS, 24" ANSI 300#</td>
<td>-</td>
<td>UN</td>
<td>2</td>
<td>$ 22,732,000</td>
<td>$ 45,464,000</td>
</tr>
<tr>
<td>40</td>
<td>TUBERÍA 12" SCH 40, SIN COSTURA</td>
<td>-</td>
<td>ML</td>
<td>45</td>
<td>$ 258,000</td>
<td>$ 11,610,000</td>
</tr>
<tr>
<td>41</td>
<td>VÁLVULAS DE BOLA, 2" ANSI 300#</td>
<td>CAMERON</td>
<td>UN</td>
<td>3</td>
<td>$ 832,000</td>
<td>$ 2,496,000</td>
</tr>
<tr>
<td>42</td>
<td>VÁLVULAS DE BOLA, 3/4" H-H NPT</td>
<td>SWAGELOCK</td>
<td>UN</td>
<td>12</td>
<td>$ 322,000</td>
<td>$ 3,864,000</td>
</tr>
</tbody>
</table>

TOTAL SUMINISTROS SISTEMA DE CALIBRACIÓN $ 130,479,686

GABINETE DE CONTROL

<table>
<thead>
<tr>
<th>ÍTEM</th>
<th>DESCRIPCIÓN COMPONENTE</th>
<th>PROVEEDOR</th>
<th>UN</th>
<th>CANT</th>
<th>VALOR UNITARIO</th>
<th>VALOR TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>GABINETE DE CONTROL NEMA 4, INCLUYE COMPUTADOR DE FLUJO EN CONFIGURACIÓN REDUNDANTE</td>
<td>FMC</td>
<td>UN</td>
<td>1</td>
<td>$ 68,450,000</td>
<td>$ 68,450,000</td>
</tr>
</tbody>
</table>

TOTAL SUMINISTROS GABINETE DE CONTROL $ 68,450,000

TOTAL COSTOS TODOS LOS SUMINISTROS $ 791,370,444

15.3.2 COSTOS POR CONSTRUCCIÓN Y MONTAJE DE EQUIPOS

Los costos de las actividades de construcción, montaje y puesta en marcha de la unidad de medición, se muestran en la tabla 29:
<table>
<thead>
<tr>
<th>Actividad</th>
<th>Duración Actividad</th>
<th>Concepto</th>
<th>Recurso</th>
<th>Desc./nombre</th>
<th>Cantidad</th>
<th>Duración (días)</th>
<th>Costo (Día)</th>
<th>Costo Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingeniería Construcción</td>
<td>70 Días</td>
<td>Costo variable directo</td>
<td>Responsable</td>
<td>Director de Proyecto</td>
<td>1</td>
<td>70</td>
<td>$266.667</td>
<td>$18.666.667</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Coordinador de Construcción - Puesta en marcha</td>
<td>1</td>
<td>70</td>
<td>$223.333</td>
<td>$15.633.333</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Líder disciplina (Instrumentación, Proceso, Mecánico, Tubería, Civil-estructuras, Eléctrico)</td>
<td>6</td>
<td>20</td>
<td>$186.667</td>
<td>$22.400.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ingenieros diseñadores (Instrumentos, Proceso, Mecánico, Tubería, Civil, Eléctrico)</td>
<td>6</td>
<td>30</td>
<td>$143.333</td>
<td>$25.800.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Soldadores</td>
<td>2</td>
<td>30</td>
<td>$100.000</td>
<td>$6.000.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Armadores</td>
<td>3</td>
<td>30</td>
<td>$100.000</td>
<td>$9.000.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pintores</td>
<td>2</td>
<td>20</td>
<td>$100.000</td>
<td>$4.000.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Técnicos Mecánicos</td>
<td>2</td>
<td>40</td>
<td>$83.333</td>
<td>$6.666.667</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Técnicos Eléctricos</td>
<td>2</td>
<td>40</td>
<td>$83.333</td>
<td>$6.666.667</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Técnicos Instrumentos</td>
<td>2</td>
<td>40</td>
<td>$83.333</td>
<td>$6.666.667</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Obreros</td>
<td>4</td>
<td>30</td>
<td>$33.333</td>
<td>$4.000.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dibujantes</td>
<td>2</td>
<td>40</td>
<td>$50.000</td>
<td>$4.000.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control de documentos</td>
<td>1</td>
<td>20</td>
<td>$106.667</td>
<td>$2.133.333</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Programación Proyectos Obra</td>
<td>1</td>
<td>70</td>
<td>$121.833</td>
<td>$8.528.333</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Control Calidad</td>
<td>1</td>
<td>70</td>
<td>$106.667</td>
<td>$7.466.667</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Coordinador HSE</td>
<td>1</td>
<td>70</td>
<td>$106.667</td>
<td>$7.466.667</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Equipos</td>
<td>Computador</td>
<td>6</td>
<td>70</td>
<td>$15.000</td>
<td>$6.300.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Impresora</td>
<td>1</td>
<td>70</td>
<td>$20.000</td>
<td>$1.400.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ver Tabla Máquinas y herramientas</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>$74.261.300</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Otros</td>
<td>Escritorios</td>
<td>6</td>
<td>70</td>
<td>$12.000</td>
<td>$5.040.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sillas giratorias</td>
<td>6</td>
<td>70</td>
<td>$10.000</td>
<td>$4.200.000</td>
</tr>
</tbody>
</table>
Actividad | Duración | Concepto | Recurso | Desc./nombre | Cantidad | Duración (días) | Costo (Día) | Costo Total
---|---|---|---|---|---|---|---|---
Costos fijos | Asociado al WBS | Materiales (a entregar al cliente) | - | - | - | - | $ 74.261.300

COSTO TOTAL CONSTRUCCIÓN - PUESTA EN MARCHA $ 246.296.300

Los costos de los equipos, herramientas, vehículos, software y demás incluidos en la etapa de construcción y puesta en marcha están relacionados en las tablas siguientes:

Tabla 29 Costos equipos / Herramientas construcción, montaje puesta en marcha

<table>
<thead>
<tr>
<th>ALQUILER MAQUINARIA Y EQUIPOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ÍTEM</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
</tbody>
</table>

TOTAL MAQUINARIA Y EQUIPOS $ 27.520.300

<table>
<thead>
<tr>
<th>HERRAMIENTAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ÍTEM</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
</tbody>
</table>
Herramientas

<table>
<thead>
<tr>
<th>ÍTEM</th>
<th>Descripción</th>
<th>UN</th>
<th>CANT.</th>
<th>Valor Unitario</th>
<th>Valor Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Montacargas</td>
<td>UN</td>
<td>1</td>
<td>$3.875.000</td>
<td>$3.875.000</td>
</tr>
<tr>
<td>10</td>
<td>Cortadora de Mesa</td>
<td>UN</td>
<td>1</td>
<td>$200.000</td>
<td>$200.000</td>
</tr>
<tr>
<td>11</td>
<td>Esmeriladora</td>
<td>UN</td>
<td>1</td>
<td>$200.000</td>
<td>$200.000</td>
</tr>
<tr>
<td>12</td>
<td>Sierra Eléctrica</td>
<td>UN</td>
<td>2</td>
<td>$200.000</td>
<td>$400.000</td>
</tr>
<tr>
<td>13</td>
<td>Prensadora</td>
<td>UN</td>
<td>1</td>
<td>$200.000</td>
<td>$200.000</td>
</tr>
<tr>
<td>14</td>
<td>Selladora</td>
<td>UN</td>
<td>1</td>
<td>$200.000</td>
<td>$200.000</td>
</tr>
<tr>
<td>15</td>
<td>Pistola de Calor</td>
<td>UN</td>
<td>2</td>
<td>$450.000</td>
<td>$900.000</td>
</tr>
<tr>
<td>16</td>
<td>Llaves de Impacto</td>
<td>UN</td>
<td>1</td>
<td>$220.000</td>
<td>$880.000</td>
</tr>
<tr>
<td>17</td>
<td>Llaves Convencionales</td>
<td>UN</td>
<td>4</td>
<td>$350.000</td>
<td>$1.400.000</td>
</tr>
<tr>
<td>18</td>
<td>Sellante</td>
<td>UN</td>
<td>1</td>
<td>$160.000</td>
<td>$160.000</td>
</tr>
<tr>
<td>19</td>
<td>Llaves Convencionales</td>
<td>UN</td>
<td>4</td>
<td>$90.000</td>
<td>$360.000</td>
</tr>
<tr>
<td>20</td>
<td>Juego de Llave</td>
<td>UN</td>
<td>4</td>
<td>$90.000</td>
<td>$360.000</td>
</tr>
</tbody>
</table>

Total Herramientas: $13.700.000

Se estima una vida útil de 1 año para las herramientas, duración proyecto 189 días $7.192.500

Vehículos

<table>
<thead>
<tr>
<th>ÍTEM</th>
<th>Vehículos</th>
<th>UN</th>
<th>CANT.</th>
<th>Valor Unitario</th>
<th>Valor Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Camión NPR</td>
<td>UN</td>
<td>1</td>
<td>$2.400.000</td>
<td>$2.400.000</td>
</tr>
<tr>
<td>2</td>
<td>Cama Baja 30 Ton</td>
<td>UN</td>
<td>3</td>
<td>$5.550.000</td>
<td>$16.650.000</td>
</tr>
<tr>
<td>3</td>
<td>Camioneta 4x4 Doble Cabina con Plató</td>
<td>UN</td>
<td>2</td>
<td>$2.750.000</td>
<td>$5.500.000</td>
</tr>
</tbody>
</table>

Total Vehículos: $24.550.000

Software

<table>
<thead>
<tr>
<th>ÍTEM</th>
<th>Descripción</th>
<th>UN</th>
<th>CANT.</th>
<th>Valor Unitario</th>
<th>Valor Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Microsoft Office System Proffesional Edition 2010</td>
<td>UN</td>
<td>5</td>
<td>$900.000</td>
<td>$4.500.000</td>
</tr>
<tr>
<td>2</td>
<td>Microsoft Project 2010 Proffesional Edition.</td>
<td>UN</td>
<td>1</td>
<td>$600.000</td>
<td>$600.000</td>
</tr>
<tr>
<td>3</td>
<td>Microsoft Windows XP BUSSINES Edition.</td>
<td>UN</td>
<td>2</td>
<td>$800.000</td>
<td>$1.600.000</td>
</tr>
<tr>
<td>4</td>
<td>Autodesk Autocad 2012</td>
<td>UN</td>
<td>5</td>
<td>$1.800.000</td>
<td>$9.000.000</td>
</tr>
<tr>
<td>5</td>
<td>Adobe Acrobat Writer 2008</td>
<td>UN</td>
<td>5</td>
<td>$180.000</td>
<td>$900.000</td>
</tr>
<tr>
<td>6</td>
<td>Instrucalc 7.1</td>
<td>UN</td>
<td>2</td>
<td>$450.000</td>
<td>$900.000</td>
</tr>
<tr>
<td>7</td>
<td>Hysys Versión 7</td>
<td>UN</td>
<td>2</td>
<td>$2.500.000</td>
<td>$5.000.000</td>
</tr>
<tr>
<td>8</td>
<td>SAP</td>
<td>UN</td>
<td>1</td>
<td>$1.800.000</td>
<td>$1.800.000</td>
</tr>
<tr>
<td>9</td>
<td>Cadworxs</td>
<td>UN</td>
<td>1</td>
<td>$1.800.000</td>
<td>$1.800.000</td>
</tr>
</tbody>
</table>

Total Software: $26.100.000

Prorrateo por 3 proyectos simultáneos, 33% $8.613.000
ENTRENAMIENTOS / CERTIFICACIONES

<table>
<thead>
<tr>
<th>ÍTEM</th>
<th>DESCRIPCIÓN</th>
<th>UN</th>
<th>CANT.</th>
<th>VALOR UNITARIO</th>
<th>VALOR TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DISEÑO P&ID'S UTILIZANDO AUTOCAD</td>
<td>UN</td>
<td>1</td>
<td>$ 1.200.000</td>
<td>$ 1.200.000</td>
</tr>
<tr>
<td>2</td>
<td>SIMULACION PROCESOS DE MEDICION HIDROCARBUROS</td>
<td>UN</td>
<td>1</td>
<td>$ 2.350.000</td>
<td>$ 2.350.000</td>
</tr>
<tr>
<td>3</td>
<td>MANEJO DE CARDWORXS PARA DISEÑO DE LÍNEAS DE TRANSPORTE</td>
<td>UN</td>
<td>1</td>
<td>$ 2.800.000</td>
<td>$ 2.800.000</td>
</tr>
<tr>
<td>4</td>
<td>CERTIFICACIÓN INSPECTOR MEDICIÓN HIDROCARBUROS</td>
<td>UN</td>
<td>1</td>
<td>$ 3.000.000</td>
<td>$ 3.000.000</td>
</tr>
</tbody>
</table>

TOTAL ENTRENAMIENTOS / CERTIFICACIONES $ 9.350.000

Prorrato por 3 proyectos simultáneos, 33% $ 3.085.500

CONSTRUCCIONES, MUEBLES Y ENSERES

<table>
<thead>
<tr>
<th>ÍTEM</th>
<th>DESCRIPCIÓN</th>
<th>UN</th>
<th>CANT.</th>
<th>VALOR UNITARIO</th>
<th>VALOR TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BODEGA DE ALMACENAMIENTO</td>
<td>UN</td>
<td>1</td>
<td>$ 600.000</td>
<td>$ 600.000</td>
</tr>
<tr>
<td>2</td>
<td>BAÑOS PORTÁTILES</td>
<td>UN</td>
<td>2</td>
<td>$ 1.350.000</td>
<td>$ 2.700.000</td>
</tr>
</tbody>
</table>

TOTAL CONSTRUCCIONES / MUEBLES $ 3.300.000

TOTAL COSTOS ACTIVIDADES CONSTRUCCIÓN MONTAJE DE EQUIPOS $ 74.261.300

15.3.3 COSTOS POR CAPACITACIÓN DE PERSONAL EN CAMPO

Tabla 30 Costos capacitación personal en sitio de montaje

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Duración Actividad</th>
<th>Concepto</th>
<th>Recurso</th>
<th>Desc./nombre</th>
<th>Cantidad</th>
<th>Duración (días)</th>
<th>Costo (Día)</th>
<th>Costo Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitación</td>
<td>5 días</td>
<td>Personal</td>
<td>Coordinador de Construcción - Puesta en marcha</td>
<td>1</td>
<td>5</td>
<td>$ 223.333</td>
<td>$ 1.116.667</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Costo variable directo</td>
<td>Líder disciplina tiempo completo (Instrumentación, Proceso, Mecánico, Tubería, Civilestructuras, Eléctrico)</td>
<td>6</td>
<td>5</td>
<td>$ 186.667</td>
<td>$ 5.600.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tec. Mecánicos</td>
<td>2</td>
<td>5</td>
<td>$ 83.333</td>
<td>$ 833.333</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tec. Electricos</td>
<td>2</td>
<td>5</td>
<td>$ 83.333</td>
<td>$ 833.333</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tec. Instrumentsitas</td>
<td>2</td>
<td>5</td>
<td>$ 83.333</td>
<td>$ 833.333</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Coordinador HSE</td>
<td>1</td>
<td>5</td>
<td>$ 106.667</td>
<td>$ 533.333</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Equipos</td>
<td>Computadores</td>
<td>6</td>
<td>5</td>
<td>$ 15.000</td>
<td>$ 450.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Impresora</td>
<td>1</td>
<td>5</td>
<td>$ 20.000</td>
<td>$ 100.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Otros</td>
<td>Escritorios</td>
<td>5</td>
<td>5</td>
<td>$ 12.000</td>
<td>$ 300.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sillas giratorias</td>
<td>5</td>
<td>5</td>
<td>$ 10.000</td>
<td>$ 250.000</td>
<td></td>
</tr>
</tbody>
</table>

CAPACITACIÓN $ 10.850.000
15.3.4 COSTOS POR GENERACIÓN DOSSIER DE INGENIERÍA - CONSTRUCCIÓN

Tabla 31 Costos Dossier de Ingeniería y Construcción

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Duración Actividad</th>
<th>Concepto</th>
<th>Recurso</th>
<th>Desc./nombre</th>
<th>Cantidad</th>
<th>Duración (días)</th>
<th>Costo (Día)</th>
<th>Costo Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dossier de Ingeniería - Construcción</td>
<td>4 días</td>
<td>Costo variable directo</td>
<td>Responsable</td>
<td>Coordinador - Puesta en marcha</td>
<td>1</td>
<td>4</td>
<td>$223.333</td>
<td>$893.333</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Personal</td>
<td>Coordinador Calidad</td>
<td>1</td>
<td>4</td>
<td>$106.667</td>
<td>$426.667</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Control Documentos</td>
<td>1</td>
<td>4</td>
<td>$106.667</td>
<td>$426.667</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Auxiliar documental</td>
<td>4</td>
<td>4</td>
<td>$26.667</td>
<td>$426.667</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Equipos</td>
<td>Computadores</td>
<td>5</td>
<td>4</td>
<td>$15.000</td>
<td>$300.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Impresora</td>
<td>1</td>
<td>4</td>
<td>$20.000</td>
<td>$80.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Otros</td>
<td>Escritorios</td>
<td>5</td>
<td>4</td>
<td>$12.000</td>
<td>$240.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sillas giratorias</td>
<td>5</td>
<td>4</td>
<td>$10.000</td>
<td>$200.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Costos fijos</td>
<td>Asociado al WBS</td>
<td>Materiales (a entregar al cliente)</td>
<td>Dossier final</td>
<td>3</td>
<td>4</td>
<td>-</td>
<td>$8.350.000</td>
</tr>
</tbody>
</table>

DOSSIER FINAL $11.343.333

15.3.5 TOTAL COSTOS VARIABLES DIRECTOS

Tabla 32 Costos Variables Directos

<table>
<thead>
<tr>
<th>ACTIVIDAD</th>
<th>COSTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>COSTO PROCURA / SUMINISTRO</td>
<td>$892.030.444</td>
</tr>
<tr>
<td>COSTO MONTAJE - ARRANQUE - PUESTA EN SERVICIO</td>
<td>$246.296.300</td>
</tr>
<tr>
<td>COSTO USO DE BIENES DE CAPITAL</td>
<td>$74.261.300</td>
</tr>
<tr>
<td>COSTO CAPACITACIÓN</td>
<td>$10.850.000</td>
</tr>
<tr>
<td>COSTO DOCUMENTACIÓN</td>
<td>$11.343.333</td>
</tr>
<tr>
<td>TOTAL DE LOS COSTOS VARIABLES DIRECTOS</td>
<td>$1.234.781.377</td>
</tr>
</tbody>
</table>

15.4 TOTAL COSTO PROYECTO

Tabla 33 Costo Total del Proyecto

<table>
<thead>
<tr>
<th>CONCEPTO</th>
<th>TOTALES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costos Fijos</td>
<td>$436.205.382</td>
</tr>
<tr>
<td>Costos variables directos</td>
<td>$1.234.781.377</td>
</tr>
<tr>
<td>Costos variables indirectos</td>
<td>$134.303.400</td>
</tr>
<tr>
<td>Costo total del proyecto</td>
<td>$1.805.290.159</td>
</tr>
</tbody>
</table>
16. NEGOCIACIÓN DEL PROYECTO

16.1 UTILIDAD DEL PROYECTO Y PRECIO DE VENTA MÍNIMO

Se estima una utilidad del 30% anual, considerando que la duración del proyecto es de 189 días, la utilidad para el periodo de tiempo en que se desarrollan las actividades de ingeniería, procura e implementación es del 15,75%.

De acuerdo a la tabla 33, el costo total del proyecto es de $1.869.808.159, el precio de venta mínimo se obtiene aplicando la siguiente ecuación:

\[
\text{Precio de venta mínimo} = \frac{\text{Costo del proyecto}}{1 - \text{Utilidad}}
\]

\[
\text{Precio de venta mínimo} = \frac{1.805.290.159}{1 - 0.1575}
\]

\[
\text{Precio de venta mínimo} = $2.142.777.637
\]

16.2 PRECIO DE VENTA PÚBLICO

Para definir el precio de venta al público, se debe incluir un valor de descuento que permita un margen de negociación, para este caso se considera un 10% del precio de venta mínimo, obteniendo:

\[
\text{Precio de venta público} = \frac{\text{Precio de venta mínimo}}{1 - \text{Descuento}}
\]

\[
\text{Precio de venta público} = \frac{2.142.777.637}{1 - 0.1}
\]

\[
\text{Precio de venta público} = $2.380.864.041
\]

La tabla 35, resume los costos y la rentabilidad esperada del proyecto:

<table>
<thead>
<tr>
<th>Tabla 34 Precio de venta del proyecto y rentabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONCEPTO</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>Costo del proyecto</td>
</tr>
<tr>
<td>Precio de mercado</td>
</tr>
<tr>
<td>Precio de venta mínimo</td>
</tr>
<tr>
<td>Precio de venta público</td>
</tr>
</tbody>
</table>
17. CONCLUSIONES

• La solución propuesta cumple con los requerimientos técnicos del proyecto, cuenta con tres brazos con medidores de flujo que permiten realizar mediciones confiables y brinda la flexibilidad a las variaciones de flujo estimadas para la operación del oleoducto.

• La adecuada planificación de un proyecto de ingeniería permite la mejor aproximación de recursos, tiempo y estimación de costos, para que estén dentro de los márgenes que permitan la generación de utilidades.

• El desglose del proyecto en un árbol de tareas, permite entender mejor la estructura de cada actividad y así poder cuantificar de mejor manera todos los recursos necesarios.

• El precio de venta mínimo calculado es inferior al precio de mercado, lo que brinda una ventaja competitiva al momento de enfrentar el proyecto a una licitación, incluso en una subasta inversa.

18. BIBLIOGRAFÍA

