Show simple item record

Optimization of coverage for georeferenced zones

dc.contributores-ES
dc.contributoren-US
dc.creatorRodríguez-Herrera, Edison Marcelo
dc.creatorAngamarca-Guamán, Marjorie Alexandra
dc.creatorInga-Ortega, Esteban Mauricio
dc.date2017-07-01
dc.identifierhttp://revistas.ustabuca.edu.co/index.php/ITECKNE/article/view/1768
dc.identifier10.15332/iteckne.v14i2.1768
dc.descriptionEn este artículo se presenta un análisis de las redes alámbricas e inalámbricas en los métodos tradicionalmente utilizados al aire libre, consideraremos la optimización en función de la capacidad, la cobertura e interferencia de un escenario georreferenciado; nos basaremos en el uso de algoritmos que nos ayudarán a la simulación de la conexión más óptima, el cual nos permitirá tener un nuevo análisis del escenario y ser capaz de ahorrar en los presupuestos de los equipos, conexiones y tiempo de instalación, así podemos garantizar la cobertura total para los usuarios. El cual el instalador tendrá la posibilidad de ver la conexión más adecuada para su escenario. El resultado del algoritmo presentado en una gráfica se podrá visualizar tanto la capacidad como la cobertura de la red de comunicación. Empezaremos con una cobertura mínima hasta llegar a la cobertura total de todos los usuarios.es-ES
dc.descriptionThis article presents an analysis of the wired and wireless networks in the methods traditionally used outdoors, we will consider the optimization based on the capacity, coverage and interference of a georeferenced scenario; we will be based on the use of algorithms that will help us to simulate the optimal connection, which will allow us to have a new analysis of the scenario and be able to save on equipment budgets, connections and installation time, so we can guarantee the total coverage for users. The installer will have the possibility to see the most suitable connection for your scenario. The result of the algorithm presented in a graph will be able to visualize both the capacity and the coverage of the communication network. We will begin with a minimum coverage until we reach the total coverage of all users.en-US
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Santo Tomás. Seccional Bucaramangaen-US
dc.relationhttp://revistas.ustabuca.edu.co/index.php/ITECKNE/article/view/1768/1356
dc.relation/*ref*/A. Peralta, E. Inga, and R. Hincapié, “FiWi Network Planning for Smart Metering Based on Multistage Stochastic Programming,” IEEE Lat. Am. Trans., vol. 13, no. 12, pp. 3838-3843, 2015.
dc.relation/*ref*/P. Sarigiannidis and C. Verikoukis, “A Metaheuristic Bandwidth Allocation Scheme for FiWi Networks Using Ant Colony Optimization,” Commun. Veh. Technol. Benelux (SCVT), 2015 IEEE Symp., 2015.
dc.relation/*ref*/S. Singh, R. Srivastava, V. Kumar, and S. Agarwal, “An approximate algorithm for degree constraint minimum spanning tree,” 2010 Int. Conf. Comput. Commun. Technol. ICCCT-2010, no. 3, pp. 687-92, 2010.
dc.relation/*ref*/B. Mondal and T. A. Thomas, “Optimization of Two Layer Macro-Pico Networks Using Lte,” 2012, pp. 837-841.
dc.relation/*ref*/D. Chattopadhyay, “Application of general algebraic modeling system to power system optimization,” IEEE Trans. Power Syst., vol. 14, no. 1, pp. 15-22, 1999.
dc.relation/*ref*/Y. Zhou, Z. Luo, and H. Zhuang, “Sensor-assisted coverage self-optimization for wireless local area network,” Proc. - 2013 Wirel. Opt. Commun. Conf. WOCC 2013, pp. 444-448, 2013.
dc.relation/*ref*/S. K. Udgata, K. P. Kumar, and S. L. Sabat, “Swarm intelligence based Resource Allocation Algorithm for cognitive radio network,” 2010 First Int. Conf. Parallel, Distrib. Grid Comput. (PDGC 2010), pp. 324-329, 2010.
dc.relation/*ref*/M. F. Munir, “Wireless sensor and sensor-actuator networks: Research trends, protocols, and applications,” Incc 2008 Ieee Int. Netw. Commun. Conf. Proc., p. 6, 2008.
dc.relation/*ref*/M. Kamenetsky and M. Unbehaun, “Coverage planning for outdoor wireless LAN systems,” 2002 Int. Zurich Semin. Broadband Commun. Access - Transm. - Netw. (Cat. No.02TH8599), pp. 1-6, 2002.
dc.relation/*ref*/E. Amaldi, A. Capone, M. Cesana, and F. Malucelli, “Optimizing WLAN radio coverage,” 2004 IEEE Int. Conf. Commun. (IEEE Cat. No.04CH37577), vol. 0, no. c, pp. 180-184, 2004.
dc.relation/*ref*/E. Amaldi, A. Capone, M. Cesana, F. Malucelli, and F. Palazzo, “WLAN coverage planning: optimization models and algorithms,” 2004 IEEE 59th Veh. Technol. Conf., vol. 4, pp. 2219-2223, 2004.
dc.relation/*ref*/W. Mesh, “Coverage and Capacity of A Wireless Mesh Network,” 2005 Int. Conf. Wirel. Networks, Commun. Mob. Comput., pp. 458-463, 2005.
dc.relation/*ref*/J. Huang, L. Wang, and C. Chang, “QoS Provisioning in Multihop Outdoor Public Access Networks with Asymmetric User Traffic,” pp. 5254-5259, 2007.
dc.relation/*ref*/Q. Dai, G. Shou, Y. Hu, and Z. Guo, “A general model for hybrid fiber-wireless (FiWi) access network virtualization,” 2013 IEEE Int. Conf. Commun. Work., pp. 858-862, 2013.
dc.relation/*ref*/N. Ghazisaidi, M. Maier, and C. M. Assi, “Fiber-wireless (FiWi) access networks: A survey,” IEEE Commun. Mag., vol. 47, no. 2, pp. 160-167, 2009.
dc.relation/*ref*/M. Maier, “FiWi access networks: Future research challenges and moonshot perspectives,” 2014 IEEE Int. Conf. Commun. Work., pp. 371-375, 2014.
dc.relation/*ref*/Y. Yu, C. Ranaweera, C. Lim, E. Wong, L. Guo, and Y. Liu, “Optimization and Deployment of Survivable Fiber-Wireless ( FiWi ) Access Networks with Integrated Small Cell and WiFi,” 2015 IEEE Int. Conf. Ubiquitous Wirel. Broadband, no. c, 2015.
dc.relation/*ref*/C. Ganán, E. Inga, R. Hincapié, C. Ganán, E. Inga, and R. Hincapié, “Óptimo despliegue y enrutamiento de UDAP para infraestructura de medición avanzada basada en el algoritmo MST,” Ingeniare. Rev. Chil. Ing., vol. 25, no. 1, pp. 106-115, Jan. 2017.
dc.relation/*ref*/D. A. Pérez Cruz, E. M. Inga Ortega, and R. Hincapié, “Optimal sizing of a network for smart metering,” IEEE Lat. Am. Trans., vol. 14, no. 5, pp. 2114-2119, May. 2016.
dc.relation/*ref*/A. Peralta-Sevilla, E. Inga, R. Cumbal, and R. Hincapié, “Optimum deployment of FiWi Networks using wireless sensors based on Universal Data Aggregation Points,” in IEEE Colombian Conference on Communication and Computing (IEEE COLCOM 2015), 2015, pp. 1-6.
dc.relation/*ref*/R. M. Camacho Vera and E. Inga-Ortega, “State of Art, Cognitive Radio for Virtual Network Operator on Advanced Metering Infrastructure,” IEEE Lat. Am. Trans., vol. 13, no. 8, pp. 2574-2579, Aug. 2015.
dc.relation/*ref*/E. Inga-Ortega, A. Peralta-Sevilla, R. C. Hincapié, F. Amaya, and I. Tafur Monroy, “Optimal dimensioning of FiWi networks over advanced metering infrastructure for the smart grid,” in 2015 IEEE PES Innovative Smart Grid Technologies Latin America (ISGT LATAM), pp. 30-35, 2015.
dc.relation/*ref*/E. Inga, S. Céspedes, R. Hincapié, and C. A. Cárdenas, “Scalable Route Map for Advanced Metering Infrastructure Based on Optimal Routing of Wireless Heterogeneous Networks,” IEEE Wirel. Commun., vol. 24, no. 2, pp. 26-33, Apr. 2017.
dc.relation/*ref*/J. Inga, E. Inga, A. Ortega, R. Hincapié, and C. Gómez, “Optimal Planning for Deployment of FiWi Networks based on Hybrid Heuristic Process,” IEEE Lat. Am. Trans., vol. 15, no. 9, pp. 1684-1690, 2017.
dc.rightsCopyright (c) 2018 ITECKNEen-US
dc.sourceITECKNE; Vol 14, No 2 (2017); 140-147es-ES
dc.sourceITECKNE; Vol 14, No 2 (2017); 140-147en-US
dc.source2339-3483
dc.source1692-1798
dc.subjectes-ES
dc.subjectCapacidad; cobertura; kruskal; optimización; Outdoor; Primes-ES
dc.subjecten-US
dc.subjectCapacity; coverage; kruskal; optimization; Outdoor; Primen-US
dc.titleOptimización de cobertura para lugares georreferenciadoses-ES
dc.titleOptimization of coverage for georeferenced zonesen-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typees-ES
dc.typeen-US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record