Show simple item record

dc.contributor.authorAristizábal Tique, Víctor Hugospa
dc.contributor.authorFlórez Velásquez, Camilo Andrésspa
dc.contributor.authorRincón Fulla, Marlonspa
dc.contributor.authorPalacio Bedoya, Juan Luisspa
dc.contributor.authorPérez Echavarría, Santiagospa
dc.contributor.authorRamírez Velásquez, Ilianaspa
dc.contributor.authorVélez Hoyos, Franciscospa
dc.date.accessioned2018-10-19T16:12:14Zspa
dc.date.available2018-10-19T16:12:14Zspa
dc.date.issued2016-12-01spa
dc.identifier.citationAristizábal, V. H., Flórez, C. A., Pérez, S., Fulla, M. R., Palacio, J. L., Ramírez, I. M. & Vélez, F. J. Estudio del movimiento superficial de un suelo multi-capas poco profundo sometido a ondas P DYNA 83 (199) pp. 118-123, 2016spa
dc.identifier.issn0012-7353spa
dc.identifier.urihttp://hdl.handle.net/11634/13764
dc.descriptionEn este trabajo se diseñó e implementó un montaje experimental para estudiar la aceleración superficial de un suelo formado por capas y se contrastaron las mediciones experimentales con un modelo teórico unidimensional de trazado de rayos. Para tal fin se preparó un suelo donde fueron enterradas placas de poliestireno expandido (EPS: Expanded PolyStyrene) y baldosas. Dicho suelo fue perturbado por una onda acústica bajo incidencia normal proveniente de un parlante. En el experimento se obtuvieron frecuencias de resonancia que están de acuerdo con el modelo teórico estudiado.spa
dc.description.abstractIn this work it was designed and implemented an experimental setup to study the surface acceleration of a multilayered soil and the experimental measurements were contrasted with a one-dimensional theoretical model based on ray tracing. For this purpose, a soil was suited, where tiles and expanded polystyrene (EPS) slabs were buried. This soil was disturbed by a sound wave at normal incidence from a subwoofer. In experiment were obtained resonance frequencies which are according to the studied theoretical model.spa
dc.format.mimetypeapplication/pdfspa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.titleStudy of surface movement of a shallow-multilayered soil under P-wavesspa
dc.subject.keywordSoil exploration, surface soil movement, soil vibration, buried plates, seismic waves, elastic waves, multilayer soilspa
dc.coverage.campusCRAI-USTA Medellínspa
dc.contributor.orcidhttps://orcid.org/0000-0002-6357-9449spa
dc.contributor.googlescholarhttps://scholar.google.es/citations?user=_9fG4SoAAAAJ&hl=esspa
dc.contributor.cvlachttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000524085spa
dc.contributor.gruplachttps://scienti.colciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000008282spa
dc.description.domainhttp://www.ustamed.edu.co/index.php/dependencias/unidades/investigacionspa
dc.relation.references[1] Srdanovic, V., Aristizabal, V.H., Fulla, M.R. and Florez, C.A., Ondas sísmicas y sensores inalámbricos: herramientas potenciales para la prospección de subsuelos a baja profundidad. Cintex, 17, pp. 80-95, 2012. [2] Shu, S., Xiong, J., Ma, C. and Tang, Y., A small-scale wireless transmission network attached to largescale seismic acquisition and recording system. International Conference on Automatic Control and Artificial Intelligence (ACAI 2012), pp. 292-295, 2012. DOI: /10.1049/cp.2012.0976 [3] Savazzi, S., Spagnolini, U., Goratti, L., Molteni, D., Latva-Aho, M. and Nicoli, M., Ultra-wide band sensor networks in oil and gas explorations. IEEE Communication Magazine, 51(4), pp. 150-160, 2013. DOI: 10.1109/MCOM.2013.6495774 [4] Otálvaro, I. and Nanclares, F., Seismic site response evaluation for the Medellín aragón area. DYNA, 75(156), pp. 147-155, 2008. [5] Ryden, N. and Mooney, M.A., Analysis of surface waves from the light weight deflectometer. Soil Dynamics and Earthquake Engineering, 29(7), pp. 1134-spa
dc.relation.references[2] Shu, S., Xiong, J., Ma, C. and Tang, Y., A small-scale wireless transmission network attached to largescale seismic acquisition and recording system. International Conference on Automatic Control and Artificial Intelligence (ACAI 2012), pp. 292-295, 2012. DOI: /10.1049/cp.2012.0976spa
dc.relation.references[3] Savazzi, S., Spagnolini, U., Goratti, L., Molteni, D., Latva-Aho, M. and Nicoli, M., Ultra-wide band sensor networks in oil and gas explorations. IEEE Communication Magazine, 51(4), pp. 150-160, 2013. DOI: 10.1109/MCOM.2013.6495774spa
dc.relation.references[4] Otálvaro, I. and Nanclares, F., Seismic site response evaluation for the Medellín aragón area. DYNA, 75(156), pp. 147-155, 2008.spa
dc.relation.references[5] Ryden, N. and Mooney, M.A., Analysis of surface waves from the light weight deflectometer. Soil Dynamics and Earthquake Engineering, 29(7), pp. 1134-1142, 2009. DOI: 10.1016/j.soildyn.2009.01.002spa
dc.relation.references[6] Sun, J. and Wen, J., Target location method for pipeline pre-warning system based on HHT and time difference of arrival. Measurement, 46 (8), pp. 2716-2725, 2013. DOI: 10.1016/j.measurement.2013.04.059spa
dc.relation.references[7] Muggleton, J.M., Brennan, M.J. and Rogers, C.D.F., Point vibration measurements for the detection of shallow-buried objects. Tunnelling and Underground Space Technology, 39, pp. 27-33, 2014. DOI: 10.1016/j.tust.2012.02.006spa
dc.relation.references[8] Muggleton, J.M. and Papandreou, B., A shear wave ground surface vibration technique for the detection of buried pipes. Journal of Applied Geophysics, 106, pp. 164-172, 2014. DOI: 10.1016/j.jappgeo.2014.04.021spa
dc.relation.references[9] García-García, A., Levey, M.D. and Watson, E.B., High resolution seismic study of the Holocene infill of the Elkhorn Slough, central California. Continental Shelf Research, 55, pp. 108-118, 2013. DOI: 10.1016/j.csr.2013.01.012spa
dc.relation.references[10] Xiang, N. and Sabatier, J.M., An experimental study on antipersonnel landmine detection using acoustic-to-seismic coupling. Journal of the Acoustical Society of America, 113(3), pp. 1333-1341, 2003. DOI: 10.1121/1.1543554spa
dc.relation.references[11] Scott, W.R., Martin, J.S. and Larson, G.D., Experimental model for a seismic landmine detection system. IEEE Transaction on Geoscience and Remote Sensing, 39(6), pp. 1155-1164, 2001. DOI: 10.1109/36.927432spa
dc.relation.references[12] Bulletti, A., Valentini, S., Cioria, F., Borgioli, G., Calzolai, M., Capineri, L. and Masotti, L., Silicon micromachined accelerometers for the detection of compliant anti-personnel landmines. Proceedings of the seventh IEEE Sensors conference (IEEE Sensors 2008), pp. 1159-1162, 2008. DOI: 10.1109/ICSENS.2008.4716647spa
dc.relation.references[13] Cardona, L., Jiménez, J. and Vanegas, N., Landmine detection technologies to face the demining problem in antioquia. DYNA, 81 (183), pp. 115-125, 2014. DOI: 10.15446/dyna.v81n183.37441spa
dc.relation.references[14] Cardona, L., Jiménez, J. and Vanegas, N., Nuclear quadrupole resonance for explosive detection. Ingeniare, Revista Chilena de Ingeniería, 23(3), pp. 458-472, 2015spa
dc.relation.references[15] Albert, D.G., Taherzadeh, S., Attenborough, K., Boulanger, P. and Decato, S.N., Ground vibrations produced by surface and near-surface explosions. Applied Acoustics, 74(11), pp. 1279-1296, 2013. DOI: 10.1016/j.apacoust.2013.03.006spa
dc.relation.references[16] Middleton, G.V.G. and Wilcock, P.R., Mechanics in the Earth and Environmental Sciences. Cambridge: Cambridge University Press, 1994.spa
dc.relation.references[17] Aki, K. and Richards, P.G., Quantitative seismology. Sausalito: University Science Books, 2002.spa
dc.relation.references[18] Biot, M.A., General theory of three-dimensional consolidation. Journal of Applied of Physics, 12(2), pp. 155-164, 1941. DOI: 10.1063/1.1712886spa
dc.relation.references[19] McCowan, D.W., Dynamic finite element analysis with applications to seismological problems. PhD. Thesis, Pennsylvania State University, USA, 1975.spa
dc.relation.references[20] Buttkus, B., Spectral analysis and filter theory in applied geophysics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000.spa
dc.relation.references[21] Moczo, P., Kristek, J. and Gális, M., The finite-difference modelling of earthquake motions: Waves and ruptures. United Kingdom: Cambridge University Press, 2014.spa
dc.relation.references[22] Piedrahita-Escobar, C.C., Algunos problemas provenientes de la teoría de rayos aplicada a las ecuaciones de onda sísmica. Revista de Ingeniería de la Universidad Distrital Jose Francisco de Caldas, 18(2), pp. 97-113, 2013.spa
dc.subject.proposalExploración de suelo, movimiento superficial de suelo, vibración de suelo, placas enterradas, ondas sísmicas, ondas elásticas, suelo multicapasspa
dc.type.categoryGeneración de Nuevo Conocimiento: Artículos publicadosspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 2.5 Colombia
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 2.5 Colombia

Indexado por: