Show simple item record

dc.contributor.authorRincón Fulla, Marlonspa
dc.contributor.authorPalacio Bedoya, Juan Luisspa
dc.contributor.authorFlórez Velásquez, Camilo Andrésspa
dc.contributor.authorAristizábal Tique, Víctor Hugospa
dc.date.accessioned2018-10-23T12:58:21Zspa
dc.date.available2018-10-23T12:58:21Zspa
dc.date.issued2013-10-01spa
dc.identifier.citationFulla, Marlon R., Palacio-Bedoya, Juan L., Flórez-Velásquez, Camilo A., Aristizábal-Tique, Víctor H., Módulo Inalámbrico para el Sensado de Vibraciones Superficiales en Suelos. TecnoLógicas [en linea] 2013, (Octubre-Sin mes)spa
dc.identifier.issn0123-7799spa
dc.identifier.urihttp://hdl.handle.net/11634/13793
dc.descriptionEn el presente trabajo se evalúa la viabilidad de implementar la tecnología XBee en el desarrollo de sensores acelerométricos inalámbricos (SAI) para el registro en superfi-cie de las vibraciones que generan las ondas sísmicas que se propagan en el suelo. Se verificó experimentalmente la incidencia de la distancia y de la presencia de obstáculos en el radioenlace establecido entre un coordinador y un dispositivo final, mediante la determinación del número de paquetes recibidos exitosamente en diferentes condiciones de operación. Adicionalmente se determinó la influencia de la velocidad de transmisión sobre la frecuencia de muestreo de señales asociadas a vibraciones mecánicas provenien-tes de un terreno de prueba, a través de la medición de los periodos de muestreos efecti-vos del proceso “Conversión A/D – Transmisión”. Se concluye que los errores en la recepción de los paquetes de datos introducidos por la atenuación del canal y por la presencia de obstáculos, imponen serias restricciones sobre la distancia máxima permi-sible entre los módulos de comunicación. Las velocidades de transmisión características de la tecnología XBee en asocio con el tiempo de conversión A/D del microcontrolador, permiten llevar a cabo registros a una frecuencia máxima de muestreo de 1kHz; útil para aplicaciones en tiempo real de prospección sísmica donde las señales típicas están dentro un rango espectral de 0 a 500 Hz. Para incrementar la frecuencia de muestreo del sensor para aplicaciones de prospección con señales de anchos de banda superiores a los 500 Hz, se probó exitosamente un prototipo que emplea una memoria externa de rápida escritura para el almacenamiento de datos, mejorando significativamente el muestreo de la señal y que rescata la tecnología XBee debido a sus excelentes características de bajo consumo.spa
dc.description.abstractIn the present work, the feasibility of implementing the XBee technology in wireless accelerometric sensors (WAS) development for sensing of elastic waves on soils surface is analyzed. The incidence of distance and obstacles between a coordinator and end-device pair in their radio link by examining the number of packets received successfully was verified. Additionally, it was investigated the influence of the transmission rate over the sampling frequency of signals associated to mechanical vibrations from a testing ground by measuring the effective sampling periods of the "A / D Conversion - Transmission" process. The data reception errors introduced by the channel attenuation and the presence of obstacles, impose severe restrictions on the maximum allowable distance between the communication modules. The transmission rate features provided by XBee technology in association with the A / D time sampling of the microcontroller, allow to carry out recordings to a maximum sampling frequency of 1 kHz , useful for real-time applications where seismic signals are into the spectral range 0 to 500 Hz. In order to increase the sampling frequency of the sensor for prospection applications with signals with bandwidths greater than 500 Hz , it was successfully tested a prototype that uses a fast external memory for storing data, which significantly improves the sampling signal allowing to retake XBee technology due to its excellent low consumption features.spa
dc.format.mimetypeapplication/pdfspa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.titleMódulo inalámbrico para el sensado de vibraciones superficiales en suelosspa
dc.subject.keywordSuperficial vibrations; XBee; point to point; Freescale Freedom; accelerometer.spa
dc.coverage.campusCRAI-USTA Medellínspa
dc.contributor.orcidhttps://orcid.org/0000-0002-6357-9449spa
dc.contributor.googlescholarhttps://scholar.google.es/citations?user=_9fG4SoAAAAJ&hl=esspa
dc.contributor.cvlachttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000524085spa
dc.contributor.gruplachttps://scienti.colciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000008282spa
dc.description.domainhttp://www.ustamed.edu.co/index.php/dependencias/unidades/investigacionspa
dc.relation.referencesAshok, N., Patel,Y. (2012). Zigbee: A Low Power Wireless Technology For Industrial Applications. International Journal of Control Theory and Computer Modelling (IJCTCM), 2 (3), 27-33spa
dc.relation.referencesChebrolu, K., Raman, B., Mishra, N., Valiveti, P. K., Kumar, R., (2008). BriMon: A Sensor Network System for Railway Bridge Monitoring. Proc. 6th International Conference on Mobile Systems, Applications, and Services (MobiSys), 2-16.spa
dc.relation.referencesElagib, I., Artoli, A.M., Habbani, F., Badawi, M., (2013).Monte Carlo simulation of pu-be, am-be and cf-252 neutrons backscattering from buried explosives in dry soil. IEEE 2013 International Conference on Computer Applications Technology (ICCAT), 1–4.spa
dc.relation.referencesGarcía-García, A., Levey, M. D., Watsond, E. B., (2013). High resolution seismic study of the Holocene infill of the Elkhorn Slough, central California. Continental Shelf Research, 55, 108-118.spa
dc.relation.referencesGhariani, N., Chaoui, M., Ghariani, H., Lahiani, M., (2011). Design of a Digital Communication System Based on a XBee Module for Biomedical Applications. 8th International Multi-Conference on Systems, Signals & Devices,11, 1-5.spa
dc.relation.referencesHuang H., Carande, B., Tang, R., Oiler, J., Dmitriy, Z., Vadim, A., Yu, H., (2013). Development of a micro seismometer based on molecular elec-tronic transducer technology for planetary exploration. IEEE 26th In-ternational Conference on Micro Electro Mechanical Systems (ICMEMS), 629-632.spa
dc.relation.referencesKarpat, E., (2013). Subsurface Imaging Analysis for Multiple Ob-jects.IEEE 2013 4th International Conference on Intelligent Systems, Modelling and Simulation (ICISMS), 195-198.spa
dc.relation.referencesKeenan, J.M, Motley, A.J, (1990). Radio coverage in buildings. British Telecom, Technology journal, vol. 8.spa
dc.relation.referencesKim, S., Pakzad, S., Culler, D., Demmel, J., Fenves, G., Glaser, S., Turon, M., (2007). Health Monitoring of Civil Infrastructures using Wireless Sensor Networks. IPSN '07 Proceedings of the 6th international con-ference on Information processing in sensor networks, 254–263.spa
dc.relation.referencesLou J., Jin T., Liang, F.,Zhou Z., (2013). A Novel Prescreening Method for Land-Mine Detection in UWB SAR Based on Feature Point Matching. IEEE Communications Magazine, IEEE Transactions on Geoscience and Remote Sensing, 51(6), 3706-3714.spa
dc.relation.referencesOwojaiye, G., Sun, Y., (2013). Focal design issues affecting the deploy-ment of wireless sensor networks for pipeline monitoring. Ad Hoc Networks, 11(3), 1237–1253.spa
dc.relation.referencesPérez-Gracia, V., Caselles, J. O., Clapés, J., Martinez, G., Osorio, R., (2013). Non-destructive analysis in cultural heritage buildings: Eval-uating the Mallorca cathedral supporting structures. NDT & E Inter-national, 59, 40-47.spa
dc.relation.referencesPicozzi, M., Milkereit, C., Parolai, S., Jaeckel, K.-H., Veit, I., Fischer, J., Zschau, J., (2010). GFZ Wireless Seismic Array (GFZ-WISE), a Wire-less Mesh Network of Seismic Sensors: New Perspectives for Seismic Noise Array Investigations and Site Monitoring. IEEE Sensors, 10(4), 3280–3304.spa
dc.relation.referencesRyden, N., Mooney, M. A., (2009). Analysis of surface waves from the lightweight deflectometer. Soil Dynamics and Earthquake Engineer-ing, 29, 1134-1142.spa
dc.relation.referencesSavazzi, S., Spagnolini, U., Goratti, L., Molteni, D. (2013). Ultra-wide band sensor networks in oil and gas explorations. IEEE Communica-tions Magazine, 51(4), 150-160.spa
dc.relation.referencesSchröder, C. T., Scott, W. R., (2000). A Finite-Difference Model to Study the Elastic-Wave Interactions with Buried Land Mines. IEEE Tran-sactions on Geoscience and Remote Sensing, 38(4), 1505-1512.spa
dc.relation.referencesScott, W. R., Martin, J. S., Larson, G. D., (2001). Experimental Model for a Seismic Landmine Detection System. IEEE Transactions on Geosci-ence and Remote Sensing, 39(6), 1155-1164.spa
dc.relation.referencesShu, S., Xiong, J., Ma, C., Tang, Y., (2012). A small-scale wireless trans-mission network attached to large-scale seismic acquisition and re-cording system. IEEE International Conference on Automatic Control and Artificial Intelligence (ACAI 2012), 292-295.spa
dc.relation.referencesSteeples, D., (2005). Near-surface geophysics: 75 years of progress in the Leading Edge. Society of Exploration Geophysics, 24, 582-585.spa
dc.relation.referencesSun, J., Wenb, J., (2013). Target location method for pipeline pre-warning system based on HHT and time difference of arrival. Measurement, 46(8), 2716–2725.spa
dc.relation.referencesTrebi-Ollennu, A., Rankin, A.L., Yang C., Tso, K.S., Deen, R.G., Aghaza-rian, H., Kulczycki, E.A., Bonitz, R.G., Alkalai, L., (2013). Instrument deployment testbed: For planetary surface geophysical exploration. IEEE 2013 Aerospace Conference, 1-14.spa
dc.relation.referencesVilla D., Moya F., López J., (2009). Infraestructura para la integración de redes de sensores y actuadores en entornos inteligentes. Disertación Doctoral, Universidad de Castilla-La Mancha, España.spa
dc.relation.referencesVirieux, J., (1986). P-SV wave propagation in heterogenous media: Veloci-ty stress finite-difference method. Geophysics, 51, 889–901.spa
dc.relation.referencesWatts, P.E., (2013). System reliability for seismic sensing. IEEE 2013 Proceedings-Annual Reliability and Maintainability Symposium (RAMS), 1-4.spa
dc.relation.referencesXiang, N., Sabatier, J. M., (2000). Land mine detection measurements using acoustic-to-seismic coupling. Proceedings of SPIE, 4038, 645-655.spa
dc.relation.referencesXu, N., Rangwala, S., Chintalapudi, K. K., Ganesan, D., Broad, A., Go-vindan, R., Estrin, D., (2004). A Wireless Sensor Network for Struc-tural Monitoring. Proc. 2nd International Conference on Embedded Networked Sensor Systems (SenSys), 13–24.spa
dc.relation.referencesZhao, W., Forte, E., Pipan, M., Tian, G., (2013). Ground Penetrating Radar (GPR) attribute analysis for archaeological prospection. Jour-nal of Applied Geophysics, 97, 107-117.spa
dc.subject.proposalVibraciones superficiales; XBee; punto a punto; Freescale Freedom; Acelerómetrospa
dc.type.categoryGeneración de Nuevo Conocimiento: Artículos publicadosspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 2.5 Colombia
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 2.5 Colombia

Indexado por: