Show simple item record

dc.contributor.advisorSierra Alarcón, Adriana Fernanda
dc.creatorRodríguez Amaya, Alejandro
dc.date.accessioned2018-11-27T01:55:54Z
dc.date.available2018-11-27T01:55:54Z
dc.date.created2018-11-22
dc.identifier.citationRodríguez Amaya Alejandro. (2018). Simulación computacional del desempeño hidráulico de una turbina hidrocinética de eje horizontalspa
dc.identifier.urihttp://hdl.handle.net/11634/14503
dc.descriptionEl grupo de investigación GEAMEC de la Universidad Santo Tomás diseñó una turbina hidrocinética para estudiar su viabilidad en Colombia, considerando sus condiciones de desempeño. Junto a este proyecto surge la necesidad de simular dicha turbina mediante dinámica de fluidos computacional (CFD) utilizando ANSYS Workbench, para analizar sus características de funcionamiento. Antes de emplear herramientas computacionales, se plantea un diseño distinto de los alabes sustentado en la teoría de momento del elemento pala. Se realizan simulaciones estacionarias utilizando el modelo de turbulencia k-ω SST. La potencia generada por la turbina es de 153.52 W, suficiente para suministrar la energía requerida para un día en regiones remotas con ríos como suministro hídrico.spa
dc.description.abstractThe GEAMEC research group of the Universidad Santo Tomás designed a hydrokinetic turbine to study its viability in Colombia, considering its performance conditions. Next to this project arises the need to simulate said turbine by computational fluid dynamics (CFD) using ANSYS Workbench, to analyze its operating characteristics. Before using computational tools, a different design of the blades based on the moment theory of the blade element is proposed. Stationary simulations are performed using the turbulence model k-ω SST. The power generated by the turbine is 153.52 W, enough to supply the energy required for a day in remote regions with rivers as water supply.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.sourceinstname:Universidad Santo Tomásspa
dc.sourcereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.subjectSimulación computacionalspa
dc.subjectDinámica de fluidos computacionalspa
dc.subjectTurbina hidrocinéticaspa
dc.subjectMicrogeneración de energíaspa
dc.subjectEnergías renovablesspa
dc.titleSimulación computacional del desempeño hidráulico de una turbina hidrocinética de eje horizontalspa
dc.typeFormación de Recurso Humano para la Ctel: Trabajo de grado de pregradospa
dc.creator.degreeIngeniero Mecánicospa
dc.publisher.programPregrado Ingeniería Mecánicaspa
dc.publisher.departmentFacultad de Ingeniería Mecánicaspa
dc.subject.keywordRenewable energyspa
dc.subject.keywordMicrogeneration of energyspa
dc.subject.keywordHydrokinetic turbinespa
dc.subject.keywordComputational fluid dynamicsspa
dc.subject.keywordComputational simulationspa
dc.subject.lembTurbinas hidraulicasspa
dc.subject.lembHidrodinamicaspa
dc.subject.lembIndustria energeticaspa
dc.subject.lembGeneracion de energiaspa
dc.subject.lembDinamica de fluidosspa
dc.type.spaTrabajo de gradospa
dc.rights.accesoAbierto (Texto Completo)spa
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersionspa
dc.description.sedeCRAI-USTA Bogotáspa
dc.identifier.topographicT.I.M. R61si 2018spa
dc.description.orcidhttps://orcid.org/0000-0002-9666-1246spa
dc.description.GoogleScholarhttps://scholar.google.co.th/citations?user=Ikhp8FEAAAAJ&hl=thspa
dc.description.cvlachttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001579173spa
dc.description.dominiohttp://unidadinvestigacion.usta.edu.cospa
dc.source.bibliographicCitationInternational Energy Agency (IEA), “Free publications,” 2017. [Online]. Available: http://www.iea.org/publications/freepublications/. [Accessed: 23-Aug-2017].spa
dc.source.bibliographicCitationF. Behrouzi, M. Nakisa, A. Maimun, and Y. M. Ahmed, “Global renewable energy and its potential in Malaysia : A review of Hydrokinetic turbine technology,” Renew. Sustain. Energy Rev., vol. 62, pp. 1270–1281, 2016.spa
dc.source.bibliographicCitationA. M. Altan BD, “An experimental and numerical study on the improvement of the performance of Savonius wind rotor,” Energy Convers Manag, vol. 49:3425-32, 2008.spa
dc.source.bibliographicCitationW. A. Kaltschmitt M, Streicher W, Renewable energy: technology, eco- nomics and environment, Springer. Berlin, 2007.spa
dc.source.bibliographicCitationUnidad de planeación Minero Energética (UPME), “Informe Mensual de Variables de Generación y del Mercado Eléctrico Colombiano - Diciembre de 2016,” Subdirección Energía Eléctrica - Grup. Generación, no. 69, p. 15, 2016.spa
dc.source.bibliographicCitationP. J. Ginter VJ, “Robust gain scheduled control of a hydrokinetic turbine,” Control Syst Technol IEEE Trans, no. 19:805-17, 2011.spa
dc.source.bibliographicCitationM. Ghasemian, Z. N. Ashrafi, and A. Sedaghat, “A review on computational fluid dynamic simulation techniques for Darrieus vertical axis wind turbines,” Energy Convers. Manag., vol. 149, pp. 87–100, 2017.spa
dc.source.bibliographicCitationE. D. Roberto Ortiz, “Diseño de una turbina hidrocinética de eje horizontal para microgeneración de energía eléctrica,” Universidad Santo Tomás, 2017.spa
dc.source.bibliographicCitationJ. S. Kaizer, A. K. Heller, and W. L. Oberkampf, “Scientific computer simulation review,” Reliab. Eng. Syst. Saf., vol. 138, pp. 210–218, 2015.spa
dc.source.bibliographicCitationC. Daskiran, J. Riglin, W. Schleicher, and A. Oztekin, “Transient analysis of micro-hydrokinetic turbines for river applications,” Ocean Eng., vol. 129, no. November 2016, pp. 291–300, 2017.spa
dc.source.bibliographicCitationJ. Riglin, F. Carter, N. Oblas, W. C. Schleicher, C. Daskiran, and A. Oztekin, “Experimental and numerical characterization of a full-scale portable hydrokinetic turbine prototype for river applications,” Renew. Energy, vol. 99, pp. 772–783, 2016.spa
dc.source.bibliographicCitationG. Tampier, C. Troncoso, and F. Zilic, “Numerical analysis of a diffuser-augmented hydrokinetic turbine,” Ocean Eng., vol. 145, no. September, pp. 138–147, 2017.spa
dc.source.bibliographicCitationJ. Riglin, W. Chris Schleicher, I. H. Liu, and A. Oztekin, “Characterization of a micro-hydrokinetic turbine in close proximity to the free surface,” Ocean Eng., vol. 110, pp. 270–280, 2015.spa
dc.source.bibliographicCitationA. Muratoglu and M. Ishak Yuce, “Design of a River Hydrokinetic Turbine Using Optimization and CFD Simulations,” J. Energy Eng., vol. 143, no. Muratoglu 2014, pp. 1–11, 2017.spa
dc.source.bibliographicCitationJ. Riglin, W. C. Schleicher, and A. Oztekin, “Numerical analysis of a shrouded micro-hydrokinetic turbine unit,” J. Hydraul. Res., vol. 53, no. 4, pp. 525–531, 2015.spa
dc.source.bibliographicCitationW. C. Schleicher, J. D. Riglin, and A. Oztekin, “Numerical characterization of a preliminary portable micro- hydrokinetic turbine rotor design,” Renew. Energy, vol. 76, pp. 234–241, 2015.spa
dc.source.bibliographicCitationL. Wang, R. Quant, and A. Kolios, “Fluid structure interaction modelling of horizontal-axis wind turbine blades based on CFD and FEA,” J. Wind Eng. Ind. Aerodyn., vol. 158, pp. 11–25, 2016.spa
dc.source.bibliographicCitationM. H. Giahi and A. Jafarian Dehkordi, “Investigating the influence of dimensional scaling on aerodynamic characteristics of wind turbine using CFD simulation,” Renew. Energy, vol. 97, pp. 162–168, 2016.spa
dc.source.bibliographicCitationD. Vučina, I. Marinić-Kragić, and Z. Milas, “Numerical models for robust shape optimization of wind turbine blades,” Renew. Energy, vol. 87, pp. 849–862, 2016.spa
dc.source.bibliographicCitationM. I. Yuce and A. Muratoglu, “Hydrokinetic energy conversion systems: A technology status review,” Renew. Sustain. Energy Rev., vol. 43, pp. 72–82, 2015.spa
dc.source.bibliographicCitationH. J. Vermaak, K. Kusakana, and S. P. Koko, “Status of micro-hydrokinetic river technology in rural applications: A review of literature,” Renew. Sustain. Energy Rev., vol. 29, pp. 625–633, 2014.spa
dc.source.bibliographicCitationM. R. Patel, Wind and solar power systems: Design, Analysis, and Operation. CRC Press Taylor & Francis Group, LLC, 2006.spa
dc.source.bibliographicCitationD. Kumar and S. Sarkar, “A review on the technology, performance, design optimization, reliability, techno-economics and environmental impacts of hydrokinetic energy conversion systems,” Renew. Sustain. Energy Rev., vol. 58, pp. 796–813, 2016.spa
dc.source.bibliographicCitationM. R. Colley G, “Computational flow field analysis of a vertical axis wind turbine,” in Proceedings of the International conference on renewable energies and power quality, 2011.spa
dc.source.bibliographicCitationGarman P, “Water current turbines: providing pumping, power in remote areas,” Hydro Rev World, vol. 6, pp. 24–28, 1998.spa
dc.source.bibliographicCitationF. Mahmuddin, “Rotor Blade Performance Analysis with Blade Element Momentum Theory,” Energy Procedia, vol. 105, pp. 1123–1129, 2017.spa
dc.source.bibliographicCitationT. Kajishima and K. Taira, Computational fluid dynamics. Incompressible turbulent flows. Switzerland: Springer International Publishing AG, 2017.spa
dc.source.bibliographicCitationANSYS 18 Theory guide, “ANSYS, A.” Ansys Inc., U.S.A., 2017.spa
dc.source.bibliographicCitationT. J. Bardina, J.E., Huang, P.G. and Coakley, Turbulence Modeling Validation Testing and Development. NASA Technical Memorandum 110446, 1997.spa
dc.source.bibliographicCitationF. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications,” AIAA-Journal, vol. 32(8), pp. 1598–1605, 1994.spa
dc.source.bibliographicCitationE. Madenci and I. Guven, The Finite Element Method and Applications in Engineering Using ANSYS, Second edi. 2015.spa
dc.source.bibliographicCitationG. Ingram, “Wind Turbine Blade Analysis using the Blade Element Momentum Method,” D. University, Ed. 2011.spa
dc.source.bibliographicCitationM. Anyi and B. Kirke, “Hydrokinetic turbine blades: Design and local construction techniques for remote communities,” Energy Sustain. Dev., vol. 15, no. 3, pp. 223–230, 2011.spa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 2.5 Colombia
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 2.5 Colombia