Show simple item record

dc.contributor.advisorLópez Vaca, Oscar Rodrigo
dc.creatorSaavedra Tinjaca, Miguel Angel
dc.date.accessioned2018-11-27T23:47:12Z
dc.date.available2018-11-27T23:47:12Z
dc.date.created2018-11-22
dc.identifier.citationSaavedra Tinjaca Miguel Angel. (2018). Comportamiento biomecánico del sistema implante-hueso maxilar debido a la variación de la relación de alturas corona-implante y del diámetro de implante en hueso tipo II.spa
dc.identifier.urihttp://hdl.handle.net/11634/14542
dc.descriptionEn este trabajo se realizó una experimentación mediante simulación computacional con el fin de observar el comportamiento biomecánico del sistema implante corto - hueso mandibular tipo II debido a la variación de la altura coronal, longitud y diámetro del implante. Para este estudio se combinaron cada una de las variables: diámetro del implante (4.2, 5 y 6 mm), altura (6 y 8 mm) y relación corona-implante (1:1, 1,5:1, 2:1 y 2,5:1) obteniendo un total de 24 configuraciones del sistema, cada una de estas configuraciones se sometió a dos condiciones de carga que simulan las fuerzas masticatorias; carga axial de 200 N distribuida en las cuatro cúspides del molar y una carga de 100 N dividida en las dos cúspides linguales con una inclinación de 45°. Como resultado se obtuvo que para configuraciones de relación corona-implante 2:1 el hueso trabecular puede verse afectado estructuralmente si se usan diámetros inferiores a los 6 mm.spa
dc.description.abstractIn this work an experimentation was carried out by computer simulation in order to observe the biomechanical behavior of the mandibular short - bone implant system type II due to the variation of the coronal height, length and diameter of the implant. For this study, each of the variables was combined: diameter of the implant (4.2, 5 and 6 mm), height (6 and 8 mm) and crown-implant ratio (1: 1, 1.5: 1, 2: 1 and 2,5: 1) obtaining a total of 24 configurations of the system, each of these configurations underwent two load conditions that simulate masticatory forces; axial load of 200 N distributed in the four cusps of the molar and a load of 100 N divided into the two lingual cusps with a 45 ° inclination. As a result it was obtained that for configurations of crown-implant ratio 2: 1 the trabecular bone can be structurally affected if diameters smaller than 6 mm are used.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.sourceinstname:Universidad Santo Tomásspa
dc.sourcereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.subjectProstodonciaspa
dc.subjectMolarspa
dc.subjectImplantespa
dc.subjectElementos finitosspa
dc.titleComportamiento biomecánico del sistema implante-hueso maxilar debido a la variación de la relación de alturas corona-implante y del diámetro de implante en hueso tipo II.spa
dc.typeFormación de Recurso Humano para la Ctel: Trabajo de grado de pregradospa
dc.creator.degreeIngeniero Mecánicospa
dc.publisher.programPregrado Ingeniería Mecánicaspa
dc.publisher.departmentFacultad de Ingeniería Mecánicaspa
dc.subject.keywordFinite elementsspa
dc.subject.keywordImplantspa
dc.subject.keywordMolarspa
dc.subject.keywordProsthodonticsspa
dc.subject.lembProstodonciaspa
dc.subject.lembProtesis maxilofacialspa
dc.subject.lembProtesis dentalspa
dc.subject.lembAparatos maxilaresspa
dc.subject.lembMetodo de elementos finitosspa
dc.subject.lembMolaresspa
dc.subject.lembBiomecanicaspa
dc.type.spaTrabajo de gradospa
dc.rights.accesoAbierto (Texto Completo)spa
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersionspa
dc.description.sedeCRAI-USTA Bogotáspa
dc.identifier.topographicT.I.M. S11co 2018spa
dc.description.GoogleScholarhttps://scholar.google.es/citations?user=V0oEE7cAAAAJ&hl=esspa
dc.description.cvlachttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000531359spa
dc.description.gruplachttps://scienti.colciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000004853spa
dc.description.dominiohttp://unidadinvestigacion.usta.edu.cospa
dc.source.bibliographicCitationR. J. Blanes, “To what extent does the crown-implant ratio affect the survival and complications of implant-supported reconstructions? A systematic review,” Clin. Oral Implants Res., vol. 20, no. SUPPL. 4, pp. 67–72, 2009.spa
dc.source.bibliographicCitationF. Ramos Verri, J. F. Santiago Junior, D. A. de Faria Almeida, G. B. B. de Oliveira, V. E. de Souza Batista, H. Marques Hon??rio, P. Yoshito Noritomi, and E. Piza Pellizzer, “Biomechanical influence of crown-to-implant ratio on stress distribution over internal hexagon short implant: 3-D finite element analysis with statistical test,” J. Biomech., vol. 48, no. 1, pp. 138–145, 2015.spa
dc.source.bibliographicCitationS. L. D. Moraes, E. P. Pellizzer, F. R. Verri, J. F. Santiago, and J. V. L. Silva, “Three-dimensional finite element analysis of stress distribution in retention screws of different crown–implant ratios,” Comput. Methods Biomech. Biomed. Engin., vol. 18, no. 7, pp. 689–696, 2015.spa
dc.source.bibliographicCitationH. A. Bulaqi, M. Mousavi Mashhadi, H. Safari, M. M. Samandari, and F. Geramipanah, “Effect of increased crown height on stress distribution in short dental implant components and their surrounding bone: A finite element analysis,” J. Prosthet. Dent., vol. 113, no. 6, pp. 548–557, 2015.spa
dc.source.bibliographicCitationF. D. das Neves, D. Fones, S. R. Bernardes, C. J. do Prado, and A. J. Fernandes Neto, “Short Implants - An Analysis of Longitudinal Studies.,” Int. J. Oral Maxillofac. Implants, vol. 21, no. 1, pp. 86–93, 2006.spa
dc.source.bibliographicCitationM. Morand and T. Irinakis, “The challenge of implnt therapy in the posterior maxilla: Providing a rationale for the use of short implants,” J. Oral Implantol., no. C, pp. 257–267.spa
dc.source.bibliographicCitationM. L. I and F. G. J, “Pertinencia del uso de implantes dentales cortos en pacientes con atrofia ósea severa . Revisión de la literatura,” pp. 153–164, 2013.spa
dc.source.bibliographicCitationG. Telleman, G. Raghoebar, A. Vissink, L. Den Hartog, J. H. Slater, and H. J. A. Meijer, “A systematic review of the prognosis of short ( To cite this version : r Fo Pe er Re vi,” 2011.spa
dc.source.bibliographicCitationA. Y. J. Wu, J. T. Hsu, W. Chee, Y. Te Lin, L. J. Fuh, and H. L. Huang, “Biomechanical evaluation of one-piece and two-piece small-diameter dental implants: In-vitro experimental and three-dimensional finite element analyses,” J. Formos. Med. Assoc., vol. 115, no. 9, pp. 794–800, 2016.spa
dc.source.bibliographicCitationS. C. Hasan Sarfaraz, “Latest Advances in Concepts and Treatment Protocols of Dental Implants : A Brief Review,” vol. 2, no. December, pp. 121–125, 2011.spa
dc.source.bibliographicCitationN. Kang, Y. Y. Wu, P. Gong, L. Yue, and G. M. Ou, “A study of force distribution of loading stresses on implant-bone interface on short implant length using 3-dimensional finite element analysis,” Oral Surg. Oral Med. Oral Pathol. Oral Radiol., vol. 118, no. 5, pp. 519–523, 2014.spa
dc.source.bibliographicCitationS.-A. Lee, C.-T. Lee, M. Fu, W. Elmisalati, and S.-K. Chuang, “Systematic Review and Meta-Analysis of Randomized Controlled Trials for the Management of Limited Vertical Height in the Posterior Region: Short Implants (5 to 8 mm) vs Longer Implants (> 8 mm) in Vertically Augmented Sites,” Int. J. Oral Maxillofac. Implants, vol. 29, no. 5, pp. 1085–1097, 2014.spa
dc.source.bibliographicCitationY. Grossmann and A. Sadan, “The prosthodontic concept of crown-to-root ratio: A review of the literature,” J. Prosthet. Dent., vol. 93, no. 6, pp. 559–562, 2005.spa
dc.source.bibliographicCitationL. Baggi, I. Cappelloni, M. Di Girolamo, F. Maceri, and G. Vairo, “The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: A three-dimensional finite element analysis,” J. Prosthet. Dent., vol. 100, no. 6, pp. 422–431, 2008.spa
dc.source.bibliographicCitationS. H. Chang, C. L. Lin, S. S. Hsue, Y. S. Lin, and S. R. Huang, “Biomechanical analysis of the effects of implant diameter and bone quality in short implants placed in the atrophic posterior maxilla,” Med. Eng. Phys., vol. 34, no. 2, pp. 153–160, 2012.spa
dc.source.bibliographicCitationM. Esposito, G. Cannizzaro, E. Soardi, R. Pistilli, M. Piattelli, V. Corvino, and P. Felice, “Posterior atrophic jaws rehabilitated with prostheses supported by 6 mm-long, 4 mm-wide implants or by longer implants in augmented bone. Preliminary results from a pilot randomised controlled trial.,” Eur. J. Oral Implantol., vol. 5, no. 1, pp. 19–33, 2012.spa
dc.source.bibliographicCitationG. Zhang, H. Yuan, X. Chen, W. Wang, J. Chen, J. Liang, and P. Zhang, “A three-dimensional finite element study on the biomechanical simulation of various structured dental implants and their surrounding bone tissues,” Int. J. Dent., vol. 2016, 2016.spa
dc.source.bibliographicCitationH. C. Reyes JO, “Historia de la implantología dental. Revisión bibliográfica,” Med Oral, vol. 10, no. 3, pp. 81–85, 2008.spa
dc.source.bibliographicCitationR. Gonzalez, “Origen y evolucion de los implantes dentales,” Rev haban cienc méd, vol. 8, no. 4, p. 9, 2009.spa
dc.source.bibliographicCitationR. Rivera Rodas, “Historia de la implantología y la oseointegración, antes y después de Branemark,” Rev. Estomatol Hered., vol. 23, no. 1, pp. 39–43, 2013.spa
dc.source.bibliographicCitationJ. E. B. Tamez, F. N. Zilli, L. Antonio, and M. Guizar, “Cirugía Oral y Factores relacionados con el éxito o el fracaso de los implantes dentales colocados en la especialidad de Prostodoncia e Implantología en la Universidad de La Salle Bajío,” Cir Oral Maxilofac, vol. 9, no. x x, pp. 1–9, 2016.spa
dc.source.bibliographicCitationB. G. Hernandez B, David A, Chavez L, “Comparación de la distribución de esfuerzos en transepiteliales rectos y angulados en dos tipos de materiales. Análisis por elementos finitos,” Odontos, vol. 1, no. 2, pp. 28–38, 2014.spa
dc.source.bibliographicCitationA. H. R., M. L. I., F. G. J., and M. A. R., “Pertinencia del uso de implantes dentales cortos en pacientes con atrofia ósea severa: revisión de la literatura,” Av. en Periodoncia e Implantol. Oral, pp. 153–164, 2013.spa
dc.source.bibliographicCitationE. Kitamura, R. Stegaroiu, S. Nomura, and O. Miyakawa, “Biomechanical aspects of marginal bone resorption around osseointegrated implants: considerations based on a three-dimensional finite element analysis,” Clin. Oral Implants Res., vol. 15, no. 4, pp. 401–412, Aug. 2004.spa
dc.source.bibliographicCitationL. A. Weinberg, “Therapeutic Biomechanics Concepts and Clinical Procedures to Reduce Implant Loading. Part I,” J. Oral Implantol., vol. 27, no. 6, pp. 293–301, Dec. 2001.spa
dc.source.bibliographicCitationJ. L. Rangert B, Jemt T, “Forces and moments on Branemark implants. - SciCurve,” Int. J. oral Maxillofac. Implant. 1989; 4 doi, 1989.spa
dc.source.bibliographicCitationD. Wismeijer, M. A. van Waas, W. Kalk, R. Fonseca, R. Van Oort, D. Wismeijer, and J. Wolf, “Factors to consider in selecting an occlusal concept for patients with implants in the edentulous mandible.,” J. Prosthet. Dent., vol. 74, no. 4, pp. 380–4, Oct. 1995.spa
dc.source.bibliographicCitationO. Pérez Pérez, “Factores de riesgo para el fracaso de implantes dentales osteointegrados en la fase quirúrgica,” 2012.spa
dc.source.bibliographicCitationU. Lekholm and G. A. Zarb, Patient selection and preparation,in tissue integrated prostheses: Osseointegration in Clinical Dentistry. 1985.spa
dc.source.bibliographicCitationF. R. Verri, V. E. D. S. Batista, J. F. Santiago, D. A. D. F. Almeida, and E. P. Pellizzer, “Effect of crown-to-implant ratio on peri-implant stress: A finite element analysis,” Mater. Sci. Eng. C, vol. 45, pp. 234–240, 2014.spa
dc.source.bibliographicCitationS.-Y. Cho, Y.-H. Huh, C.-J. Park, and L.-R. Cho, “Three-Dimensional Finite Element Analysis of the Stress Distribution at the Internal Implant-Abutment Co[1] S.-Y. Cho, Y.-H. Huh, C.-J. Park, and L.-R. Cho, “Three-Dimensional Finite Element Analysis of the Stress Distribution at the Internal Implant-Abut,” Int. J. Periodontics Restorative Dent., vol. 36, no. 3, pp. e49-58, 2016.spa
dc.source.bibliographicCitationM. Bayraktar, B. A. Gultekin, S. Yalcin, and E. Mijiritsky, “Effect of crown to implant ratio and implant dimensions on periimplant stress of splinted implant-supported crowns: a finite element analysis.,” Implant Dent., vol. 22, no. 4, pp. 406–13, 2013.spa
dc.source.bibliographicCitationDopico MP, Castro C, “Importancia del primer molar permanente y consecuencias clínicas de su pérdida en edades tempranas del desarrollo,” Raao, vol. 54, no. 2, pp. 23–27, 2015.spa
dc.source.bibliographicCitationC. Hita-carrillo and M. Hernández-aliaga, “Unión diente-implante : Revisión bibliográfica,” no. May, 2015.spa
dc.source.bibliographicCitation“Tooth | anatomy | Britannica.com.” [Online]. Available: https://www.britannica.com/science/tooth-anatomy. [Accessed: 21-May-2018].spa
dc.source.bibliographicCitationS. L. D. de Moraes, F. R. Verri, J. F. Santiago, D. A. D. F. Almeida, C. C. de Mello, and E. P. Pellizzer, “A 3-D finite element study of the influence of crown-implant ratio on stress distribution.,” Braz. Dent. J., vol. 24, pp. 635–41, 2013.spa
dc.source.bibliographicCitationF. R. Verri, V. E. D. S. Batista, J. F. Santiago, D. A. D. F. Almeida, and E. P. Pellizzer, “Effect of crown-to-implant ratio on peri-implant stress: A finite element analysis,” Mater. Sci. Eng. C, vol. 45, pp. 234–240, 2014.spa
dc.source.bibliographicCitationB. S. Sotto-maior, P. M. Senna, W. José, and E. P. Rocha, “Influence of crown-to-implant ratio, retention system, restorative material, and occlusal loading on stress concentrations in single short implants.,” Int. J. Oral Maxillofac. Implants, vol. 27, p. e-13-e18, 2012.spa
dc.source.bibliographicCitationS. L. D. L. D. Moraes, E. P. P. Pellizzer, F. R. R. Verri, J. F. Santiago Jr, J. V. L. V. L. Silva, J. F. Santiago, and J. V. L. V. L. Silva, “Three-dimensional finite element analysis of stress distribution in retention screws of different crown-implant ratios.,” Comput. Methods Biomech. Biomed. Engin., vol. 18, no. 7, pp. 37–41, 2013.spa
dc.source.bibliographicCitationM. Bayraktar, B. A. Gultekin, S. Yalcin, and E. Mijiritsky, “Effect of crown to implant ratio and implant dimensions on periimplant stress of splinted implant-supported crowns: A finite element analysis,” Implant Dent., vol. 22, no. 4, pp. 406–413, 2013.spa
dc.source.bibliographicCitationF. Ramos Verri, J. F. Santiago Junior, D. A. de Faria Almeida, G. B. B. de Oliveira, V. E. de Souza Batista, H. Marques Honório, P. Yoshito Noritomi, and E. Piza Pellizzer, “Biomechanical influence of crown-to-implant ratio on stress distribution over internal hexagon short implant: 3-D finite element analysis with statistical test,” J. Biomech., vol. 48, no. 1, pp. 138–145, 2015.spa
dc.source.bibliographicCitationL. Himmlova, “Influence of implant length, diameter, and geometry on stress distribution: A Finite Element Analysis.,” Int. J. Periodontics Restorative Dent., vol. 30, no. 1, pp. 89–95, 2010.spa
dc.source.bibliographicCitationE. A. F. NEUMANN, C. C. VILLAR, F. M. G. FRANÇA, S. L. D. L. D. de Moraes, E. P. Pellizzer, F. R. Verri, J. F. Santiago, J. V. L. Silva, V. E. D. S. Batista, J. F. Santiago, D. A. de F. Almeida, E. P. Pellizzer, F. Ramos Verri, J. F. Santiago Junior, D. A. de Faria Almeida, G. B. B. de Oliveira, V. E. de Souza Batista, H. Marques Honório, P. Yoshito Noritomi, E. Piza Pellizzer, S. L. D. L. D. de Moraes, F. R. Verri, J. F. S. Junior, D. A. de F. Almeida, C. C. de Mello, E. P. Pellizzer, E. Anitua, R. Tapia, F. Luzuriaga, and G. Orive, “Fracture resistance of abutment screws made of titanium, polyetheretherketone, and carbon fiber-reinforced polyetheretherketone,” J. Prosthodont., vol. 18, no. 1, pp. 1–5, 2015.spa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record