Show simple item record

Actividad larvicida de aceites esenciales y extractos de plantas colombianas frente a Culex quinquefasciatus (Díptera: Culicidae)

dc.contributoren-US
dc.contributorUniversidad Santo Tomáses-ES
dc.contributorColcienciases-ES
dc.creatorRosado-Solano, Doris Natalia
dc.creatorJaramillo-Pérez, Víctor Mario
dc.creatorKouznetsov, Vladimir Valentinovich
dc.creatorRestrepo-Manrique, Ricardo
dc.creatorPuerto-Galvis, Carlos Eduardo
dc.creatorVargas-Méndez, Leonor Yamile
dc.date2018-12-07
dc.date.accessioned2018-12-20T20:27:49Z
dc.date.available2018-12-20T20:27:49Z
dc.identifierhttp://revistas.ustabuca.edu.co/index.php/ITECKNE/article/view/2069
dc.identifier10.15332/iteckne.v15i2.2069
dc.identifier.urihttp://hdl.handle.net/11634/14751
dc.descriptionEssential oils and extracts obtained by microwave hydrodistillation and percolation from plants organically cultivated in the farm El Limonal Piedecuesta-Santander, Colombia, were characterized by Gas Chromatography coupled with Mass Spectrometry. The insecticidal activity against third instar larva of Culex quinquefasciatus and the inhibition activity of acetylcholinesterase of those compounds were studied. Also, the toxicity was evaluated against the zebrafish (Danio rerio). Our results show that the Ruta graveolens essential oil had the highest larvicidal activity with a LC50 7.20±0.19 μg/mL, a moderate inhibition over the enzyme with an IC50 44.98±1.1 μg/mL and a moderate toxicity with a LC50 13.33±0.59 mg/L.en-US
dc.descriptionLos aceites esenciales y extractos de plantas,cultivadas de forma orgánica en la finca El Limonal Piedecuesta-Santander, Colombia, obtenidos por hidrodestilación asistida por microondas y percolación, se caracterizaron por cromatografía de gases acoplada a espectrometría de masas. La actividad insecticida se evaluó frente a larvas en tercer instar de Culex quinquefasciatus y en la enzima acetilcolinesterasa. La toxicidad se determinó en el modelo del pez cebra (Danio rerio). De ellos, el aceite esencial de Ruta graveolens fue el que presentó la mejor actividad larvicida, con CL50 7.20±0.19 μg/mL, una moderada inhibición de la enzima con IC50 44.98±1.1 μg/mL y moderada toxicidad con CL50 13.33±0.59 mg/L.es-ES
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Santo Tomás. Seccional Bucaramangaes-ES
dc.relationhttp://revistas.ustabuca.edu.co/index.php/ITECKNE/article/view/2069/1609
dc.relation/*ref*/F. Ruiz López, et al., “Presencia de Aedes (Stegomyia) aegypti (Linnaeus, 1762) y su infección natural con el virus del dengue en alturas no registradas para Colombia,” Biomédica, vol. 36, no. 2, pp. 303-308, 2016.
dc.relation/*ref*/V.S.S. Dharmagadda, S.N. Naik, P.K. Mittal, y P. Vasudevan, “Larvicidal activity of Tagetes patula essential oil against three mosquito species,” Bioresour. Technol., vol. 96, no. 11, pp. 1235-1240, 2005.
dc.relation/*ref*/World Health Organization (WHO), “Temephos in drinking-water: Use for vector control in drinking-water sources and containers,” pp. 1-15, 2009.
dc.relation/*ref*/O. Mbare, S. W. Lindsay, y U. Fillinger, “Pyriproxyfen for mosquito control: Female sterilization or horizontal transfer to oviposition substrates by Anopheles gambiae sensu stricto and Culex quinquefasciatus,” Parasit Vectors, vol. 7, no. 1, pp. 1-12, 2014.
dc.relation/*ref*/C.B. Ocampo, M.J. Salazar-Terreros, N.J. Mina, J. McAllister, y W. Brogdon, “Insecticide resistance status of Aedes aegypti in 10 localities in Colombia”, Acta Trop., vol. 118, no. 1, pp. 37-44, 2011.
dc.relation/*ref*/I.S. Rana and A.S. Rana, “Efficacy of essential oils of aromatic plants as larvicide for the management of filarial vector Culex quinquefasciatus Say (Diptera: Culicidae) with special reference to Foeniculum vulgare,” Asian Pacific J. Trop. Dis., vol. 2, no. 3, pp. 184-189, 2012.
dc.relation/*ref*/R.P. Adams, Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy. San Diego, Estados Unidos: Academic press, 1995. 302p.
dc.relation/*ref*/D. Joliuan y W.A.Köning, The Atlas of Spectral Data of Sesquiterpene Hydrocarbons. Hamburgo, Alemania: EB-Verlag Dr. Brandt e.K.,1998. 661p.
dc.relation/*ref*/NIST, “NIST Chemistry WebBook,” 2017 [en línea] disponible en https://webbook.nist.gov/chemistry/ [Último acceso 18 octubre 2017].
dc.relation/*ref*/WHO, “Guidelines for laboratory and field testing of mosquito larvicides,” World Health. Organazation, pp. 1-41, 2005.
dc.relation/*ref*/G.L. Ellman, K.D. Courtney, V. Andres, y R.M. Featherstone, “A new and rapid colorimetric determination of acetylcholinesterase activity,” Biochem. Pharmacol., vol. 7, no. 2, pp. 88-95, 1961.
dc.relation/*ref*/S. Ali, H.G. J. van Mil, y M.K. Richardson, “Large-Scale assessment of the zebrafish embryo as a possible predictive model in toxicity testing,” PLoS One, vol. 6, no. 6, pp. e21076, 2011.
dc.relation/*ref*/U.S. Eggert, “The why and how of phenotypic small-molecule screens,” Nat. Chem. Biol., vol. 9, no. 4, pp. 206-209, 2013.
dc.relation/*ref*/R.T. Peterson, B.A. Link, J.E. Dowling, y S.L. Schreiber, “Small molecule developmental screens reveal the logic and timing of vertebrate development,” Proc. Natl. Acad. Sci., vol. 97, no. 24, pp. 12965-12969, 2000.
dc.relation/*ref*/A. Rubinstein, “Zebrafish: from disease modeling to drug discovery,” Curr. Opin. Drug Discov. Devel., vol. 6, no. 2, pp. 218-223, 2003.
dc.relation/*ref*/C.E. Puerto Galvis y V.V. Kouznetsov, “An unexpected formation of the novel 7-oxa-2-azabicyclo[2.2.1]hept-5-ene skeleton during the reaction of furfurylamine with maleimides and their bioprospection using a zebrafish embryo model,” Org. Biomol. Chem., vol. 11, no. 3, pp. 407-411, 2013.
dc.relation/*ref*/E.S. Cavalcanti, S.M. Morais, M. A.A. Lima, y E.W.P. Santana, “Larvicidal activity of essential oils from Brazilian plants against Aedes aegypti L.,” Mem Inst Oswaldo Cruz, vol. 99, no. 5, pp. 541-544, 2004.
dc.relation/*ref*/M. Chellappandian, et al., “Botanical essential oils and uses as mosquitocides and repellents against dengue,” Environ. Int., vol. 113, no. 113, pp. 214-230, 2018.
dc.relation/*ref*/B. Conti, M. Leonardi, L. Pistelli, R. Profeti, I. Ouerghemmi, y G. Benelli, “Larvicidal and repellent activity of essential oils from wild and cultivated Ruta chalepensis L. (Rutaceae) against Aedes albopictus Skuse (Diptera: Culicidae), an arbovirus vector”, Parasitol. Res., vol. 112, no. 3, pp. 991-999, 2013.
dc.relation/*ref*/R. Pavela, K. Kaffková, y M. Kumšta, “Chemical composition and larvicidal activity of essential oils from different Mentha L. and Pulegium species against Culex quinquefasciatus Say (Diptera: Culicidae),” Plant Prot. Sci., vol. 50, no. 1, pp. 36-42, 2014.
dc.relation/*ref*/A. Lucia, S. Licastro, E. Zerba, y H. Masuh, “Yield, chemical composition, and bioactivity of essential oils from 12 species of Eucalyptus on Aedes aegypti larvae,” Entomol. Exp. Appl., vol. 129, no. 1, pp. 107-114, 2008.
dc.relation/*ref*/Environment Directorate (OECD), “Validation Report (Phase 1) for the Zebrafish Embryo Toxicity Test. Part 1,” OECD Ser. Test. Assess., vol. 1, no. 157, pp. 1-123, 2011.
dc.rightsCopyright (c) 2018 ITECKNEes-ES
dc.sourceITECKNE; Vol. 15, Núm. 2 (2018); 79-87es-ES
dc.source2339-3483
dc.source1692-1798
dc.subjecten-US
dc.subjectAcetylcholinesterase inhibitors; Culex; quinquefasciatus; essential oils; extracts; larvicidal activity; zebrafish embryos bioassaysen-US
dc.subjectes-ES
dc.subjectAceites esenciales; actividad larvicida; bioensayos en embriones cebra; Culex quinquefasciatus; extractos; inhibidores de acetilcolinesterasaes-ES
dc.titleLarvicidal activity of essential oils and extracts of colombian plants against Culex quinquefasciatus (Diptera: Culicidae)en-US
dc.titleActividad larvicida de aceites esenciales y extractos de plantas colombianas frente a Culex quinquefasciatus (Díptera: Culicidae)es-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typees-ES
dc.typeen-US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record