Show simple item record

dc.contributor.advisorOrtiz Rico, Andrés Felipe
dc.creatorJaramillo Barrios, Camilo Ignacio
dc.date.accessioned2019-01-18T22:39:22Z
dc.date.available2019-01-18T22:39:22Z
dc.date.created2018
dc.identifier.citationJaramillo Barrios, C. I. ( 2018). Determinación de zonas homogéneas en un suelo de origen aluvialspa
dc.identifier.urihttp://hdl.handle.net/11634/14813
dc.descriptionLa capacidad del suelo para mantener el crecimiento de las plantas y la actividad biológica radica en sus propiedades físicas y químicas. El objetivo de esta investigación fue observar la distribución espacial de algunas propiedades químicas del suelo como pH, Materia orgánica (OM), Conductividad eléctrica (EC), Capacidad de intercambio catiónico efectiva (ECEC) y contenidos de S y Al y determinar zonas con características químicas homogéneas a través de la técnica MULTISPATI-PCA y el algoritmo fuzzy c-means. El área de estudio está localizada en el Valle de Tundama y Sugamuxi (Boyacá-Colombia) con una extensión de 8017 ha. Las propiedades pH, OM, EC, S, Al, y ECEC fueron indicadoras de la degradación química de estos suelos. Cuatro zonas de manejo fueron identificadas, donde la primera representa áreas con acidez y azufre excesivo, con pH de 4.54, OM de 15.88, EC de 3.19 dS m-1 , Al en 2.47 meq 100g-1 y S en 365.59 meq 100g-1 ; en contraste, la segunda zona representa áreas con alta capacidad de auto-neutralización, con pH de 5.98, OM de 4.22%, EC de 0.75 dS m-1 , Al de 0.20 meq 100g-1 y S de 44.64 meq 100g-1 . La zona tres presentó mayor similitud con la dos, excepto en EC y S. Finalmente, la zona cuatro presentó similitud con la uno, excepto en OM, EC y S. Por lo anterior, se concluye que las zonas de manejo fueron influenciadas por el azufre y conductividad eléctrica, debido a que los suelos de esta área son denominados sulfatados ácidosspa
dc.description.abstractThe ability of the soil to maintain plant growth and biological activity lies in its physical and chemical properties. The objective of this research was to observe the spatial distribution of some chemical properties of the soil as pH, Organic matter (OM), Electrical conductivity (EC), Effective cation exchange capacity (ECEC), S and Al contents and to determine zones with characteristics homogeneous chemistries through the MULTISPATI-PCA technique and the fuzzy c-means algorithm. The study area is in the Tundama and Sugamuxi Valleys (BoyacáColombia) with an area of 8017 ha. The properties pH, OM, EC, S, Al, and ECEC were indicators of the chemical degradation of these soils. Four management zones were identified, where the first represents areas with acidity and excessive sulfur, with pH of 4.54, OM of 15.88, EC of 3.19 dS m-1 , Al of 2.47 meq 100g-1 and S of 365.59 meq 100g-1 ; in contrast, the second zone represents areas with a high self-neutralizing capacity, with a pH of 5.98, OM of 4.22%, EC of 0.75 dS m-1 , Al of 0.20 meq 100g-1 and S of 44.64 meq 100g-1 . Zone three presented greater similarity with the two, except in EC and S. Finally, zone four presented similarity with the one, except in OM, EC and S. For the above, it is concluded that the management zones were influenced by the sulfur and electrical conductivity, due to the soils in this area are called acid sulfates.spa
dc.format.mimetypeapplication/pdfspa
dc.subjectGeoestadísticaspa
dc.subjectSemivariogramaspa
dc.subjectDegradación de Suelosspa
dc.subjectMULTISPATI-PCAspa
dc.subjectZonas Homogéneasspa
dc.titleDeterminación de zonas homogéneas en un suelo de origen aluvialspa
dc.typeFormación de Recurso Humano para la Ctel: Trabajo de maestríaspa
dc.subject.keywordStatistical Analysisspa
dc.subject.keywordChemical properties of the soil -- Valle de Tundama y Sugamuxi (Boyacá-Colombia)spa
dc.subject.keywordSoils -- Classificationspa
dc.subject.lembAnálisis Estadísticospa
dc.subject.lembPropiedades Químicas del Suelo -- Valle de Tundama y Sugamuxi (Boyacá-Colombia)spa
dc.subject.lembSuelos -- Clasificaciónspa
dc.description.sedeCRAI-USTA Bogotáspa
dc.description.orcidhttps://orcid.org/0000-0001-5272-4447spa
dc.description.GoogleScholarhttps://scholar.google.es/citations?user=OuVxcUgAAAAJ&hl=esspa
dc.description.cvlachttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000650579spa
dc.description.dominiohttp://unidadinvestigacion.usta.edu.cospa
dc.source.bibliographicCitationACEVEDO, D. C. et al. Variabilidad espacial de propiedades químicas del suelo y su uso en el diseño de experimentos. Terra latinoamericana, 26(4): 317-324, 2008. Available at: <http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-57792008000400004> Accessed on: August, 06, 2018.spa
dc.source.bibliographicCitationAGHASI, B. et al. Sub-basin scale spatial variability of soil properties in Central Iran. Arabian Journal of Geosciences, 10(6): 136. 2017. Available at: < https://link.springer.com/article/10.1007/s12517-017-2921-4> Accessed on: August, 06, 2018.spa
dc.source.bibliographicCitationAGUILERA, E. et al. Plan para el manejo de los impactos en el sector agropecuario ocasionados por la emergencia invernal. Informe técnico final, Corporación Colombiana de Investigación Agropecuaria, 2012.spa
dc.source.bibliographicCitationARAUJO, G.; VARGAS, R. Predicción de variables edafológicas (pH, CE) a partir de técnicas de inferencia geoestadística en el Valle alto de Cochabamba, Bolivia. Revista Boliviana de Ciencias del Suelo, 1(1): 12. 2010.spa
dc.source.bibliographicCitationARROUAYS, D. Large trends in French topsoil characteristics are revealed by spatially constrained multivariate analysis. Geoderma, 161(3-4): 107-114, 2011. Available at: < https://www.sciencedirect.com/science/article/pii/S001670611000368X> Accessed on: August, 06, 2018.spa
dc.source.bibliographicCitationBACHMEIER, O. A.; BUFFA, E. Variabilidad espacial de un suelo bajo vegetación de Prosopis sp., Turrialba. 42: 365-370, 1992.spa
dc.source.bibliographicCitationBALZARINI, M.; GILI, A.; CÓRDOBA, M. Análisis de variabilidad espacial multivariada en agricultura de precision. XVI Reunión Científica GAB 2011, 30 p., 2011.spa
dc.source.bibliographicCitationBARBAT, J. M. Spatial variability of the chemical, physical and biological properties in lowland cultivated with irrigated rice. Revista Brasileira de Ciência do Solo, 33(4): 819-830, 2009. Available at: <http://www.scielo.br/scielo.php?pid=S0100-06832009000400007&script=sci_arttext> Accessed on: August, 13, 2018.spa
dc.source.bibliographicCitationBEHERA, S. K., et al. Spatial variability of soil properties and delineation of soil management zones of oil palm plantations grown in a hot and humid tropical region of southern India. Catena, 165: 251-259, 2018.spa
dc.source.bibliographicCitationBERNAL, A. A.; FORERO, F. E. Evaluación de especies vegetales para el manejo de la acidez en suelos sulfatados ácidos de Paipa, Boyacá. Revista Corpoica: Ciencia y Tecnología Agropecuaria, 15(2): 229-236, 2014. Available at: < https://dialnet.unirioja.es/servlet/articulo?codigo=5624680> Accessed on: August, 06, 2018.spa
dc.source.bibliographicCitationBERTSCH, F. et al. Site-Specific nutrient management in the highlands of Cartago province. Better Crops International, 16(1):16-19, 2002. Available at: <https://www.researchgate.net/publication/265410585_SiteSpecific_Nutrient_Management_in_the_Highlands_of_Cartago_Province> Accessed on: September, 20, 2018.spa
dc.source.bibliographicCitationBEZDEK, J. C. Objective function clustering. En: Pattern recognition with fuzzy objective function algorithms. New York: Plenum Press. 43-93, 1981.spa
dc.source.bibliographicCitationBIVAND, R. Implementing representations of space in economic geography. Journal of Regional Science, 48(1): 1-27, 2008.spa
dc.source.bibliographicCitationBIVAND, R.; LEWIN, N. maptools: Tools for Reading and Handling Spatial Objects. R package version 0.9-2, 2017. Available at: <https://CRAN.R-project.org/package=maptools> Accessed on: August, 15, 2018spa
dc.source.bibliographicCitationBIVAND, R. et al. spdep: Spatial dependence: weighting schemes, statistics and models. R package version 0.7-8. 223 p. 2018. Available at: <https://cran.r-project.org/web/packages/spdep/spdep.pdf> Accessed on: September, 27, 2018.spa
dc.source.bibliographicCitationBLOOMFIELD, C.; COULTER, J.K. Genesis and management of acid sulphate soil. Advances in Agronomy, 25: 265-326, 1972.spa
dc.source.bibliographicCitationBOX, G.E.P.; JENKINS, G.M. Time Series Analysis Forecasting and Control. Holden-Day, San Francisco, 1976.spa
dc.source.bibliographicCitationCABALLERO, W. D. J. Kriging Universal para Datos Funcionales. Tesis de Maestría, Universidad Nacional de Colombia, 68 p., 201spa
dc.source.bibliographicCitationCAMBARDELLA, C.A. et al. Field-scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal, 58: 1501-1511, 1994. Available at: <https://www.researchgate.net/publication/43269985_Field-Scale_Variability_of_Soil_Properties_in_Central_Iowa_Soils> Accessed on: August, 13, 2018.spa
dc.source.bibliographicCitationCASTRO, H. E., et al. Diagnostic and controlling acidity in acid sulphate soils by using incubation tests at the Upper Chicamocha basin, Boyaca. Agronomía Colombiana, 24(1): 122-130, 2006. Available at: < http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-99652006000100014> Accessed on: August, 21, 2018.spa
dc.source.bibliographicCitationCLARK, I. Practical Geostatistics. Elsevier Publishing, New York, 1979.spa
dc.source.bibliographicCitationCOMBATT, E.; PALENCIA, G.; MARTÍN, N. Clasificación de suelos sulfatados acidos según azufre extraible en los municipios del Medio y Bajo Sínu. Temas Agrarios, 8(2): 22-29, 2003. Available at: <http://revistas.unicordoba.edu.co/index.php/temasagrarios/article/view/616/732> Accessed on: August, 21, 2018.spa
dc.source.bibliographicCitationCÓRDOBA, M. et al. Análisis de componentes principales con datos georreferenciados: Una aplicación en agricultura de precisión. Revista de la Facultad de Ciencias Agrarias.spa
dc.source.bibliographicCitationUniversidad Nacional de Cuyo, 44(1): 27-39, 2012. Available at: <http://www.scielo.org.ar/scielo.php?pid=S185386652012000100003&script=sci_arttext&tlng=en> Accessed on: August, 13, 2018.spa
dc.source.bibliographicCitationCÓRDOBA, M. et al. Identificación de zonas de manejo sitio-específico a partir de la combinación de variables de suelo. Revista Corpoica: Ciencia y Tecnología Agropecuaria, 13(1): 47-54, 2012. Available at: <https://dialnet.unirioja.es/servlet/articulo?codigo=5624696> Accessed on: August, 18, 2018spa
dc.source.bibliographicCitationCORDOBA, M. et al. Subfield management class delineation using cluster analysis from spatial principal components of soil variables. Computers and Electronics in Agriculture, 97: 6-14, 2013.spa
dc.source.bibliographicCitationCÓRDOBA, M. et al. Protocol for multivariate homogeneous zone delineation in precision agriculture. Biosystems engineering, 143(1): 95-107, 2016. Available at: <https://www.sciencedirect.com/science/article/pii/S153751101530204X> Accessed on: September, 11, 2018.spa
dc.source.bibliographicCitationCORTÉS, M.A. Estimación paramétrica y no paramétrica de la tendencia en datos con dependencia espacial. Un estudio de simulación. 58 p., 2010.spa
dc.source.bibliographicCitationCORTÉS, D. L.; CAMACHO, J. H.; GIRALDO, R. Spatial prediction of soil penetration resistance using functional geostatistics. Scientia Agricola, 73(5): 455-461, 2016. Available at: <http://www.scielo.br/scielo.php?pid=S0103-90162016000500455&script=sci_arttext> Accessed on: August, 13, 2018.spa
dc.source.bibliographicCitationCOSTA, C. et al. Spatial variability of soil organic C, inorganic N and extractable P in a Mediterranean grazed area. Land degradation & development, 26(2): 103-109, 2015. Available at: <https://onlinelibrary.wiley.com/doi/abs/10.1002/ldr.2188> Accessed on: August, 06, 2018.spa
dc.source.bibliographicCitationCOVER, T. M.; HART, P. E. 1967. Nearest Neighbor Pattern Classification. IEEE Xplore: IEEE Transactions on Information Theory, 13: 21-27, 1967.spa
dc.source.bibliographicCitationCOX, M. S.; GERARD, P. D.; ABSHIRE, M. J. Selected soil properties variability and their relationships with yield in three Mississippi fields. Soil science, 171(7): 541-551, 2004.spa
dc.source.bibliographicCitationCRESSIE, N. Statistics for Spatial Data. John Wiley & Sons, New York, 1993.spa
dc.source.bibliographicCitationDENT, D. Acid sulphate soils: a baseline for research and development. International institute of land reclamation and improvement. Publication 39. Wageningen. 204 p, 1986.spa
dc.source.bibliographicCitationDÍAZ, V. M. Geoestadística aplicada. Instituto de Geofísica, UNAM e Instituto de Geofísica y Astronomía, CITMA, Cuba, 2002. 131p.spa
dc.source.bibliographicCitationDÍAZ-FRANCÉS, E. Introducción a conceptos básicos de geoestadística. Memorias Seminario Estadística y Medio Ambiente. Centro de Investigación en Matemáticas, Cimat, Guanajuato, México, 1993spa
dc.source.bibliographicCitationDIGGLE, P. J.; RIBEIRO, P. J. Model-based geostatistics. Springer Science, New York. 2007. 228 p.spa
dc.source.bibliographicCitationDOBERMANN, A. et al. Classification of crop yield variability in irrigated production fields. Agronomy Journal, 95: 1105–1120, 2003.spa
dc.source.bibliographicCitationDRAY, S.; DUFOUR, A. B. The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software. 22(4): 1-20, 2007.spa
dc.source.bibliographicCitationDRAY, S.; SAÏD, S.; DÉBIAS, F. Spatial ordination of vegetation data using a generalization of Wartenberg's multivariate spatial correlation. Journal of Vegetation Science, 19(1): 45-56, 2008. Available at: <https://onlinelibrary.wiley.com/doi/abs/10.3170/2007-8-18312> Accessed on: August, 06, 2018.spa
dc.source.bibliographicCitationDRAY, S.; JOMBART, T. Revisiting guerry’s data: introducing spatial constraints in multivariate analysis. The Annals of Applied Statistics, 5(4): 2278-2299, 2011. Available at: < https://projecteuclid.org/euclid.aoas/1324399595> Accessed on: August, 06, 2018.spa
dc.source.bibliographicCitationFARACO, M. A. et al. Seleção de modelos de variabilidade espacial para elaboração de mapas temáticos de atributos físicos do solo e produtividade da soja. Revista Brasileira de Ciência do Solo, 32(2), 463-476, 2008. Available at: <http://www.scielo.br/pdf/rbcs/v32n2/01.pdf> Accessed on: August, 13, 2018.spa
dc.source.bibliographicCitationFERNÁNDEZ, C.; COMBATT, E.; RIVERA, H. Algunas características de la entomofauna de suelos sulfatados ácidos en Córdoba, Colombia. Revista mexicana de ciencias agrícolas, 2(3): 461-470, 2011. Available at: <https://dialnet.unirioja.es/servlet/articulo?codigo=4182344> Accessed on: August, 21, 2018.spa
dc.source.bibliographicCitationFORERO, S.; CASTILLO, M. Diagnóstico de emprendimiento en el fortalecimiento empresarial en la provincia del Tundama, Colombia. Ingeniería Industrial. Actualidad y Nuevas Tendencias, 9(5): 139-152, 2016. Available at: <http://www.redalyc.org/html/2150/215049679010/> Accessed on: August, 06, 2018.spa
dc.source.bibliographicCitationFRINK, C.R. Aluminum chemistry in acid sulphate soil. Technical report. The Connectticut Agriculture Experiment Station, New Haven, CT. 49 p., 1972.spa
dc.source.bibliographicCitationFUKUYAMA, Y.; SUGENO, M. A new method of choosing the number of clusters for the fuzzy c-means method. In: Proc. 5th fuzzy Syst. Symp, 247-250 p., 1989.spa
dc.source.bibliographicCitationGABRIEL, K. R.; SOKAL, R. R. A New Statistical Approach to Geographic Variation Analysis. Systematic zoology. 18: 259-278., 1969.spa
dc.source.bibliographicCitationGALLARDO, A. Geostadística. Asociación Española de Ecología Terrestre. Ecosistemas, 15: 48-58.spa
dc.source.bibliographicCitationGAVIOLI, A. Módulos computacionais para seleção de variáveis e Análise de agrupamento para definição de zonas de manejo. Tese (Doutorado) – Universidade Estadual do Oeste do Paraná, Campus de Cascavel, 128 p., 2017.spa
dc.source.bibliographicCitationGIRALDO, R. Introducción a la Geoestadística. Teoría y Aplicación. Bogotá D. C. Universidad Nacional de Colombia. 94 p., 2002.spa
dc.source.bibliographicCitationGÓMEZ, M. I.; CASTRO, H. E.; PACHECO, W. Recuperación y manejo de suelos sulfatados ácidos actuales en Boyacá (Colombia). Agronomía Colombiana, 23(1): 128-135, 2005. Available at: <http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-99652005000100016> Accessed on: August, 21, 2018.spa
dc.source.bibliographicCitationGÓMEZ, et al. Optimización de la producción y calidad en cebolla cabezona (Allium cepa) mediante el balance nutricional con magnesio y micronutrientes (B, Zn y Mn), Valle Alto del Río Chicamocha, Boyacá. Agronomía Colombiana, 25(2): 339-348, 2007.spa
dc.source.bibliographicCitationGREGORET, M. et al. Regional model for nitrogen fertilization of site-specific rainfed corn in haplustolls of the central Pampas, Argentina. Precission Agriculture, 12(6): 831-849, 2011.spa
dc.source.bibliographicCitationGRINGARTEN, E.; DEUTSCH, C. V. Teacher's aide variogram interpretation and modeling. Mathematical Geology, 33(4): 507-534, 2001spa
dc.source.bibliographicCitationGUASTAFERRO, F. et al. A comparison of different algorithms for the delineation of management zones. Precision Agriculture, v. 11, p. 600-620, 2010.spa
dc.source.bibliographicCitationHARRIS, P.; BRUNSDON, C.; CHARLTON, M. Geographically weighted principal components analysis. International Journal of Geographical Information Science, 25(10): 1717-1736, 2011.spa
dc.source.bibliographicCitationHENGL, T. Finding the right pixel size. Computers & geosciences, 32(9): 1283-1298, 2006.spa
dc.source.bibliographicCitationHERNÁNDEZ, W. et al. Variabilidad espacial del pH y del contenido de Fe2O3 en suelos de la cuenca del río Tabure del Estado Lara. Ciencia y Tecnología, 11(1): 19-27, 2018. Available at: <http://revistas.uteq.edu.ec/index.php/cyt/article/view/202/171> Accessed on: August, 13, 2018.spa
dc.source.bibliographicCitationHIJMANS, R. raster: Geographic Data Analysis and Modeling. R package version 2.6-7. Available at: <https://CRAN.R-project.org/package=raster> Accessed on: August, 15, 2018spa
dc.source.bibliographicCitationJAIN, A. K.; MURTY, M. N.; FLYNN, P. J. Data clustering: a review. ACM computing surveys (CSUR), 31(3): 264-323, 1999.spa
dc.source.bibliographicCitationJARAMILLO, D. F. Variabilidad espacial de las propiedades químicas del epipedón de un Andisol hidromórfico del Oriente Antioqueño (Colombia). Revista Facultad Nacional de Agronomía Medellín, 61(2): 4588-4599, 2008. Available at: < https://revistas.unal.edu.co/index.php/refame/article/view/39919> Accessed on: August, 13, 2018.spa
dc.source.bibliographicCitationJARAMILLO, D. F. Variabilidad espacial de las propiedades ándicas de un Andisol hidromórfico del Oriente Antioqueño (Colombia). Revista Facultad Nacional de Agronomía-Medellín, 62(1), 4907-4921, 2009. Available at: <http://www.redalyc.org/html/1799/179915377017/> Accessed on: August, 13, 2018.spa
dc.source.bibliographicCitationJARAMILLO, D. F. Variabilidad Espacial Del Suelo: Bases Para Su Estudio. Revista de La Facultad de Ciencias Universidad Nacional de Colombia, Sede Medellín, 1: 73–87, 2012. Available at: <https://revistas.unal.edu.co/index.php/rfc/article/view/49004> Accessed on: August, 06, 2018.spa
dc.source.bibliographicCitationJARAMILLO, D. F.; SADEGHIAN, S.; LINCE, L. A. Variabilidad espacial de las bases en un Andisol de la zona cafetera central colombiana. Boletín de Ciencias de la Tierra, (33): 111-124, 2013. Available at: <https://revistas.unal.edu.co/index.php/rbct/article/view/33516> Accessed on: August, 06, 2018.spa
dc.source.bibliographicCitationJARAMILLO, D. F. El suelo: Origen, Propiedades, Espacialidad. Universidad Nacional de Colombia. Medellín, 2014. 553p.spa
dc.source.bibliographicCitationJIANG, Q.; FU, Q.; WANG, Z. Study on delineation of irrigation management zones based on Management Zone Analyst software. In: LI, D.: LIU, Y.: CHEN, Y. (Ed.). Computer and computing technologies in agriculture IV. Dordrecht: Springer, 346: 419-427, 2011. (IFIP, AICT, 346spa
dc.source.bibliographicCitationJOHANN, J. A. et al. Variabilidade espacial da rentabilidade, perdas na colheita e produtividade do feijoeiro Spatial variability of profitability, harvest losses and productivity of beans. Engenharia Agrícola, 30(4): 700-714, 2010. Available at: <http://www.scielo.br/pdf/eagri/v30n4/14.pdf> Accessed on: August, 13, 2018.spa
dc.source.bibliographicCitationJOMBART, T. et al. Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity, 101(1), 92, 2008.spa
dc.source.bibliographicCitationKERRY, R.; OLIVER, M. A. Average variograms to guide soil sampling. International Journal of Applied Earth Observation and Geoinformation, 5(4): 307-325. 2004. Available at: <https://www.sciencedirect.com/science/article/pii/S030324340400042X> Accessed on: August, 13, 2018.spa
dc.source.bibliographicCitationLAL, R. Soil carbon dynamics in cropland and rangeland. Environmental pollution, 116(3): 353-362, 2002. Available at: < https://www.sciencedirect.com/science/article/pii/S0269749101002111> Accessed on: August, 06, 2018.spa
dc.source.bibliographicCitationLARK, R. M. Forming spatially coherent regions by classification of multivariate data: an example from the analysis of maps of crop yield. International Journal of Geographical Information Science, 12: 83-98, 1998.spa
dc.source.bibliographicCitationLEE, D. T.; SCHACHTER, B. J. Two Algorithms for Constructing a Delaunay Triangulation. International Journal of Computing and Information Sciences, 9(3): 219-242, 1980.spa
dc.source.bibliographicCitationLIEBHOLD, A. M.; ROSSI, R. E.; KEMP, W. P. Geostatistics and geographic information systems in applied insect ecology. Annual review of entomology, 38(1): 303-327, 1993.spa
dc.source.bibliographicCitationLI, H. Y.; WENSTER, R.; SHI, Z. Mapping soil salinity in the Yangtze delta: REML and universal kriging (E-BLUP) revisited. Geoderma, 237: 71-77, 2015. Available at: < https://www.sciencedirect.com/science/article/pii/S0016706114003152> Accessed on: August, 06, 2018.spa
dc.source.bibliographicCitationLIU, Z. et al. A simple assessment on spatial variability of rice yield and selected soil chemical properties of paddy fields in South China. Geoderma, 235: 39-47, 2014. Available at: < https://www.sciencedirect.com/science/article/pii/S0016706114002572> Accessed on: August, 06, 2018.spa
dc.source.bibliographicCitationLONDOÑO, D.; MORENO, J. A. Cuantificación de la variabilidad espacial de suelos en un huerto citrícola en el departamento de Caldas. Universidad de Manizales. Pág. 38, 2015spa
dc.source.bibliographicCitationMcGRATH, D.; ZHANG, C.; CARTON, O. T. Geostatistical analyses and hazard assessment on soil lead in Silvermines area, Ireland. Environmental Pollution, 127(2): 239-248, 2004.spa
dc.source.bibliographicCitationMARRIOTT, C. A. et al. Spatial variability of soil total C and N and their stable isotopes in an upland Scottish grassland. Plant and Soil, 196(1): 151-162, 1997. Available at: < https://link.springer.com/article/10.1023/A:1004288610550> Accessed on: August, 06, 2018.spa
dc.source.bibliographicCitationMATHERON, G. Traité de géostatistique appliquée, vol. 1. Editions Technip. 1962. 333p.spa
dc.source.bibliographicCitationMATHERON, G. Principles of geostatistics. Economic geology, 58(8): 1246-1266, 1963.spa
dc.source.bibliographicCitationMATHERON, G. Le krigeage universel, vol 1. Cahiers du Centre de Morphologie Mathématique, École des Mines de Paris, Fontainebleau, 1969. 82p.spa
dc.source.bibliographicCitationMcGRAW, T. Soil test level variability in Southern Minnesota. Better Crops Plant Foods, 78: 24-25, 1994. Available at: <http://www.ipni.net/publication/bettercrops.nsf/0/2EBA65618731F77A85257D310068EE70/$FILE/%20BC-1994-4%20p24.pdf> Accessed on: August, 06, 2018.spa
dc.source.bibliographicCitationMEYER, D. et al. e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. R package version 1.6-8, 2017. Available at: <https://CRAN.R-project.org/package=e1071> Accessed on: August, 18, 2018.spa
dc.source.bibliographicCitationMILNE, A. E. et al. Spatial multivariate classification of an arable field into compact management zones based on past crop yields. Computers and Electronics in Agriculture, 80: 17-30, 2012.spa
dc.source.bibliographicCitationMOLIN, J. P.; CASTRO, C. N. Establishing management zones using soil electrical conductivity and other soil properties by the fuzzy clustering technique. Scientia Agricola, 65(6): 567–573, 2008.spa
dc.source.bibliographicCitationMONCAYO, F. H. O. et al. Variabilidad espacial de propiedades químicas y físicas en un Typic Udivitrands, arenoso de la región andina central colombiana. Revista Facultad Nacional de Agronomia Medellin, 59(1): 3217, 2006.spa
dc.source.bibliographicCitationMONTAÑO, J. C.; FORERO, F. E. Efecto de subproductos orgánicos del proceso panelero sobre propiedades físicas de un suelo sulfatado ácido. Revista Corpoica: Ciencia y Tecnología Agropecuaria, 14(2): 207-214, 2013. Available at: < https://dialnet.unirioja.es/servlet/articulo?codigo=5624605> Accessed on: August, 06, 2018.spa
dc.source.bibliographicCitationMORAL, F. J.; TERRÓN, J. M.; DA SILVA, J. M. Delineation of management zones using mobile measurements of soil apparent electrical conductivity and multivariate geostatistical techniques. Soil and Tillage Research, 106(2): 335-343, 2010. Available at: < https://www.sciencedirect.com/science/article/pii/S0167198709002268> Accessed on: August, 06, 2018.spa
dc.source.bibliographicCitationMORENO, J. Introducción a la geoestadística y su aplicación. Tesis Licenciatura. Ciudad de México, México. Universidad Autónoma de Chapingo, 2009, 151 p.spa
dc.source.bibliographicCitationMUÑOZ, J. D.; MARTÍNEZ, L. J.; GIRALDO, R. Variabilidad espacial de propiedades edáficas y su relación con el rendimiento en un cultivo de papa (Solanum tuberosum L.). Agronomía Colombiana, 24(2): 355-366. 2006.spa
dc.source.bibliographicCitationMZUKU, M. et al. Spatial Variability of Measured Soil Properties across Site-Specific Management Zones. Soil Science Society of America, 69: 1572-1579, 2005. Available at: < http://www.nrel.colostate.edu/assets/nrel_files/labs/macdonaldlab/pubs/Mzuku_Khosla_et_al.pdf> Accessed on: August, 06, 2018.spa
dc.source.bibliographicCitationNIÑO, L. Uso de la función semivariograma y estimación kriging en el análisis espacial de un indicador entomológico de Aedes aegypti (Diptera: Culicidae). Biomédica, 28(4): 578-586, 2008.spa
dc.source.bibliographicCitationOBANDO, F. H. et al. Variabilidad espacial de propiedades químicas y físicas en un Typic Udivitrands, arenoso de la región andina central colombiana. Revista Facultad Nacional de Agronomía-Medellín, 59(1): 3217-3235, 2006. Available at: <http://www.redalyc.org/html/1799/179914074009/> Accessed on: August, 13, 2018.spa
dc.source.bibliographicCitationODEH, I. O. A.; McBRATNEY, A.B.; CHITTLEBOROUGH, D.J., 1992. Soil pattern recognition with fuzzy c-means: application to classification and soil-landform interrelatioship. Soil Science Society of America Journal, 56: 505–516.spa
dc.source.bibliographicCitationPEBESMA, E. J. Multivariable geostatistics in S: the gstat package. Computers & Geosciences, 30: 683-691. 2004.spa
dc.source.bibliographicCitationPEBESMA, E. J.; BIVAND, R. S. Classes and methods for spatial data in R. R News, 5(2): 9-13, 2005. Available at: <https://cran.r-project.org/doc/Rnews/.> Accessed on: August, 15, 2018.spa
dc.source.bibliographicCitationPOLO, J. R. V.; GARCÍA, D. B.; FLORES, J. C. M. Variabilidad espacial de propiedades físicas y químicas en suelos de la granja experimental de la Universidad del Magdalena (Santa Marta, Colombia). Acta Agronómica, 59(4): 449, 201spa
dc.source.bibliographicCitationRAHAL, N. S. Characterization of spatial variability of some physiochemical soil properties of mesopotamian plain soils. European Journal of Agriculture and Forestry Research, 3(3): 1-16, 2015. Available at: < http://www.eajournals.org/wp-content/uploads/Characterization-of-Spatial-Variability-of-Some-Physiochemical-Soil-Properties-of-Mesopotamian-Plain-Soils.1.pdf> Accessed on: August, 06, 2018.spa
dc.source.bibliographicCitationR, CORE TEAM. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Versión 3.4.4. 2018. Available at: <http://www.r-project.org/> Accessed on: August, 15, 2018.spa
dc.source.bibliographicCitationREICHARDT, K.; TIMM, L.C. Solo, planta e atmosfera: Conceitos, processos e aplicações. São Paulo, Manole, 2008. 478p.spa
dc.source.bibliographicCitationREYES, C. M. A. Estimación paramétrica y no paramétrica de la tendencia en datos con dependencia espacial. un estudio de simulación. Reporte técnico, Universidad Santiago de Compostela, 2010, 58p.spa
dc.source.bibliographicCitationRIBEIRO, P. J.; DIGGLE, P. geoR: Analysis of Geostatistical Data. R package version 1.7-5.2., 2016. Available at: <https://CRAN.R-project.org/package=geoR> Accessed on: August, 15, 2018.spa
dc.source.bibliographicCitationRINCÓN, Á.; CASTRO, H.; GÓMEZ, M. Caracterización física de los suelos sulfatados ácidos del Distrito de Riego del Alto Chicamocha (Boyacá) y su aplicación al manejo. Agronomía Colombiana, 26(1): 134-145. Available at: <https://revistas.unal.edu.co/index.php/agrocol/article/view/13928> Accessed on: August, 21, 2018.spa
dc.source.bibliographicCitationRODRÍGUEZ, F. A.; CAMACHO, J. H.; RUBIANO, Y. Variabilidad espacial de los atributos químicos del suelo en el rendimiento y calidad de café. Corpoica Ciencia y Tecnología Agropecuaria, 17(2): 237-254, 2016. Available at: <http://www.scielo.org.co/pdf/ccta/v17n2/v17n2a08.pdf> August, 13, 2018.spa
dc.source.bibliographicCitationRODRIGUES, M. S.; CORÁ, J. E. Management zones using fuzzy clustering based on spatial-temporal variability of soil and corn yield. Engenharia Agrícola, 35(3): 470-483, 2015. Available at: <http://www.scielo.br/scielo.php?pid=S0100-69162015000300470&script=sci_arttext&tlng=pt> August, 18, 2018.spa
dc.source.bibliographicCitationROSEMARY, F. et al. Exploring the spatial variability of soil properties in an Alfisol soil catena. Catena, 150: 53-61, 2017. Available at: < https://www.sciencedirect.com/science/article/pii/S0341816216304350> Accessed on: August, 06, 2018.spa
dc.source.bibliographicCitationSAMPER, F.; CARRERA, J. Geoestadística. Aplicaciones a la hidrogeología subterránea. Technical report, Centro Internacional de Métodos Numéricos en Ingeniería. Universitat Politécnica de Catalunya. Barcelona, 1990.spa
dc.source.bibliographicCitationSCHABENBERGER, O.; PIERCE, F. J. Contemporary statistical models for the plant and soil sciences. Taylor and Francis. N. Y. CRC Press, Boca Raton, Florida, 2002, 738p.spa
dc.source.bibliographicCitationSELBY, B.; KOCKELMAN, K. M. Spatial prediction of traffic levels in unmeasured locations: applications of universal kriging and geographically weighted regression. Journal of Transport Geography, 29: 24-32, 2013. Available at: <https://www.sciencedirect.com/science/article/pii/S0966692312003079> Accessed on: August, 13, 2018.spa
dc.source.bibliographicCitationSIBERCHICOT, A. et al. adegraphics: An S4 Lattice-Based Package for the Representation of Multivariate Data. The R Journal. 9(2): 198-212, 2017. Available at: <https://journal.r-project.org/archive/2017/RJ-2017-042/index.html> Accessed on: August, 15, 2018.spa
dc.source.bibliographicCitationSTOYAN, H. et al. Spatial heterogeneity of soil respiration and related properties at the plant scale. Plant and soil, 222(1-2): 203-214, 2000. Available at: < https://link.springer.com/article/10.1023/A:1004757405147> Accessed on: August, 06, 2018.spa
dc.source.bibliographicCitationROSICKY, M.A.; SULLIVAN, L.A.; SLAVICH, P.G. Factor contri-buting to the acid soil scalding process in coastal floodplain of New South Wales. Australian Journal Soil Research, 42: 587-594, 2004.spa
dc.source.bibliographicCitationTAGARAKIS, A. et al. Management zones delineation using fuzzy clustering techniques in grapevines. Precision Agriculture, 14(1):18-39, 2013.spa
dc.source.bibliographicCitationVALENTE, D. S. M. et al. Definition of management zones in coffee production fields based on apparent soil electrical conductivity. Scientia Agricola, Piracicaba, 69: 173-179, 2012.spa
dc.source.bibliographicCitationVARÓN-RAMÍREZ, V. M.; CAMACHO, J. H.; GONZÁLEZ, J. Management zones determination based on physical properties of the soil. Ciência e Agrotecnologia, 42(3): 248-260, 2018. Available on: <http://www.scielo.br/scielo.php?pid=S1413-70542018000300248&script=sci_arttext> Accessed on: August, 20, 2018.spa
dc.source.bibliographicCitationVENDRUSCULO, L. G.; KALEITA, A. F. Modeling zone management in precision agriculture through Fuzzy C-Means technique at spatial database. American Society of Agricultural and Biological Engineers. Louisville, Kentucky, 1: 1-15, 2011.spa
dc.source.bibliographicCitationXIN-ZHONG, W. et al. Determination of management zones for a tobacco field based on soil fertility. Computers and Electronics in Agriculture, 65(2): 168-175, 2009. Available on: <https://www.sciencedirect.com/science/article/pii/S0168169908002020> Accessed on: August, 06, 2018.spa
dc.source.bibliographicCitationWARRICK, A. W.; NIELSEN, D.R. Spatial variability of soil physical properties in the field. In: Hileel, D, editor. Applications of soil physics. Nueva York: Academic Press, 1980, p. 319-344.spa
dc.source.bibliographicCitationWACKERNAGEL, H. Multivariate Geostatistics. Berlin Heidelberg New York: Springer, 1995, 256 p.spa
dc.source.bibliographicCitationWANG, Y. Q.; SHAO, M. A. Spatial variability of soil physical properties in a region of the loess plateau of Pr China Subject to wind and water erosion. Land Degradation & Development, 24: 296-304. 2013. Available at: < https://onlinelibrary.wiley.com/doi/abs/10.1002/ldr.1128> Accessed on: August, 06, 2018.spa
dc.source.bibliographicCitationWARRICK, A. W.; MYERS, D. E.; NIELSEN, D. R. Geostatistical Methods Applied to Soil Science. Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods-Agronomy Monograph 9, 53 – 81, 1986.spa
dc.source.bibliographicCitationWELCH, S. et al. Mineralogical control of rare earth elements in acid sulfate soils. Geochimica et Cosmochimica Acta, 73: 44-64, 2009.spa
dc.source.bibliographicCitationWINDHAM, M. P. Cluster validity for fuzzy clustering algorithms. Fuzzy Sets and Systems, 5: 177-185, 1981.spa
dc.source.bibliographicCitationXIE, L. X.; BENI, G. Validity measure for fuzzy clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 3(8): 841-847, 1991.spa
dc.source.bibliographicCitationXU, R.; WUNSCH, D. C. Clustering. Piscataway: IEEE Press, 358 p, 2009.spa
dc.source.bibliographicCitationYAN, L. et al. Classification of management zones for precision farming in saline soil based on multi-data sources to characterize spatial variability of soil properties. Transactions of the Chinese Society of Agricultural Engineering, 23(8): 84–89, 2007.spa
dc.source.bibliographicCitationZADEH, L. A. Fuzzy sets. Information and Control, 8(1): 338-353, 1965spa


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record