Show simple item record

dc.contributor.authorQuiroga, G. D.spa
dc.contributor.authorOspina-Henao, P. A.spa
dc.date.accessioned2019-06-06T21:45:52Zspa
dc.date.available2019-06-06T21:45:52Zspa
dc.date.issued2017-10-23spa
dc.identifier.citationQuiroga, G. D., & Ospina-Henao, P. A. (2017). Dynamics of damped oscillations: Physical pendulum. Bogotá: doi:10.1088/1361-6404/aa8961spa
dc.identifier.urihttp://hdl.handle.net/11634/17053
dc.description.abstractThe frictional force of the physical damped pendulum with the medium is usually assumed proportional to the pendulum velocity. In this work, we investigate how the pendulum motion will be affected when the drag force is modeled using power-laws bigger than the usual 1 or 2, and we will show that such assumption leads to contradictions with the experimental observation. For that, a more general model of a damped pendulum is introduced, assuming a power-law with integer exponents in the damping term of the equation of motion, and also in the nonharmonic regime. A Runge-Kutta solver is implemented to compute the numerical solutions for the first five powers, showing that the linear drag has the fastest decay to rest and that bigger exponents have long-time fluctuation around the equilibrium position, which have not correlation (as is expected) with experimental results.spa
dc.format.mimetypeapplication/pdfspa
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 Colombia*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/co/*
dc.titleDynamics of damped oscillations: physical pendulumspa
dc.subject.keywordDamped oscillationsspa
dc.subject.keywordPhysical Pendulumspa
dc.subject.keywordNon-conservative systemsspa
dc.coverage.campusCRAI-USTA Bogotáspa
dc.identifier.doihttps://doi.org/10.1088/1361-6404/aa8961spa
dc.description.domainhttp://unidadinvestigacion.usta.edu.cospa
dc.relation.referencesD. Halliday, R. Resnick, and J. Walker. Fundamentals of Physics - Extended. John Wiley & Sons, New York, USA, 2014, 10th edition, pp. 430-432.spa
dc.relation.referencesR. Serway and J. Jewett. Physics for scientists and engineers with modern physics. Brooks/Cole, Boston, USA, 2014, 9th edition, pp. 468-469.spa
dc.relation.referencesF. M. S. Lima and P. Arun. An accurate formula for the period of a simple pendulum oscillating beyond the small angle regime. Am. J. Phys., 74(10):892–895, (2006).spa
dc.relation.referencesF. M. S. Lima. Simple "log formulae" for pendulum motion valid for any amplitude. Eur. J. Phys., 29(5):1091–1098, (2008).spa
dc.relation.referencesJ.C. Simbach and J. Priest. Another look at a damped physical pendulum. Am. J. Physs, 73(11):1079–1080, (2005).spa
dc.relation.referencesR. A. Nelson and M. G. Olsson. The pendulum-rich physics from a simple system. Am. J. Phys., 54(2):112–121, (1986).spa
dc.relation.referencesC. M. Falco. Phase-space of a driven, damped pendulum (josephson weak link). Am. J. of Phys., 44(8):733–740, (1976).spa
dc.relation.referencesW. D. Hayes. On the equation for a damped pendulum under constant torque. Z. Angew. Math. Phys., 4(5):398–401, (1953).spa
dc.relation.referencesH. Dekker. Classical and quantum mechanics of the damped harmonic oscillator. Phys. Rep., 80(1):1–110, (1981).spa
dc.relation.referencesE. U. Condon. The physical pendulum in quantum mechanics. Phys. Rev., 31(5):891, (1928).spa
dc.relation.referencesG. Terenzi. Dynamics of sdof systems with nonlinear viscous damping. J. Eng. Mech.s, 125(8):956–63, (1999).spa
dc.relation.referencesWen-Hsiung Lin and A. K. Chopra. Earthquake response of elastic singledegree- of-freedom systems with nonlinear viscoelastic dampers. J. Eng. Mech., 129(6):597–606, (2003).spa
dc.relation.referencesF. Rüdinger. Optimal vibration absorber with nonlinear viscous power law damping and white noise excitation. J. Eng. Mech., 132(1):46–53, (2006).spa
dc.relation.referencesGu Dazhi and RI Tanner. The drag on a sphere in a power-law fluid. J. Non- Newton. Fluid., 17 (1):1-12, (1985).spa
dc.relation.referencesA. P. French. Vibrations and waves. The Massachusetts Institute of Technology, Cambridge, Massachusetts, USA, 2001, 1st edition, pp. 62-67.spa
dc.relation.referencesJ. C. Butcher. Numerical methods for ordinary differential equations. (JohnWiley & Sons, Chichester,England, 2008), 2nd edition, pp. 93-99.spa
dc.relation.referencesL. Perko. Differential equations and dynamical systems, volume 7. Springer Science & Business Media, New York, USA, 2001, 3rd edition, pp. 264-267.spa
dc.relation.referencesJean-Jacques E. Slotine and W. Li. Applied nonlinear control. prentice-Hall Englewood Cliffs, New Jersey, USA, 1991, 1st edition, pp. 64-65.spa
dc.type.categoryGeneración de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicosspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-CompartirIgual 2.5 Colombia
Except where otherwise noted, this item's license is described as Atribución-NoComercial-CompartirIgual 2.5 Colombia

Indexado por: