Show simple item record

dc.contributor.advisorChoque Jiménez, Bregy Hassler
dc.creatorValdés Uribe, Juan David
dc.date.accessioned2019-08-08T23:22:47Z
dc.date.available2019-08-08T23:22:47Z
dc.date.created2019-06-19
dc.identifier.citationValdés, J. (2019) Desempeño de materiales cementantes suplementarios en resistencia a compresión e hidratación en pastas de cemento (Tesis de pregrado). Universidad Santo Tomás, Villavicenciospa
dc.identifier.urihttp://hdl.handle.net/11634/18035
dc.descriptionDebido a las grandes emisiones de dióxido de carbono que genera la industria cementera, se ha investigado el uso de residuos agroindustriales como remplazos parciales del cemento, llamados materiales cementantes suplementarios. El propósito de este estudio es evaluar el desempeño de varios materiales cementantes suplementarios (Cenizas volantes, ceniza de cascarilla de arroz, ceniza de lodos de alcantarilla y relaves de cobre) como remplazo parcial en pastas de cemento en varios niveles de remplazo. Se utilizó polvo de roca químicamente inerte para comparar el efecto físico. Se realizaron ensayos de análisis de distribución de partícula y termo gravimetría para caracterizar los materiales, se realizaron ensayos de resistencia a compresión en pastas de cemento para comparar el desempeño en edades tempranas y tardías, calorimetrías isotérmicas para medir la actividad hidráulica y la interacción de cemento con los materiales cementantes suplementarios, además, se utilizó el método R3 para estimar la actividad puzolánica de los materiales. Los materiales presentaron buenos desempeños en los dos niveles de remplazo, la ceniza de lodos residuales y la ceniza de cascarilla de arroz destacaron por su contribución a la ganancia de resistencia a edades tempranas y tardías. Así mismo, la ceniza volante de clase F presentó muy buen desempeño a la edad de 90 días. Los materiales más con mejores resultados en el ensayo R3 lograron la mayor cantidad de calor añadido en las calorimetrías de interacción de cemento y materiales cementantes suplementarios.spa
dc.description.abstractDue to the large CO2 emissions generated by the cement industry, the use of agro industrial wastes as partial replacements of cement called supplementary cementing materials has been investigated. The aim of this study is to evaluate the performance of a wide range of supplementary cementing materials (fly ash, rice husk ash, sewage sludge ash and copper tailings) as partial replacement in cement pastes at various replacement levels. Chemically inert rock dust was used to compare the physical effect. Tests of particle zise distribution and thermogravimetry were carried out to characterize the materials, compression tests were performed on cement pastes to compare the performance at early and late ages, isothermal calorimetries were carried out to measure the hydraulic activity and interaction between cement and supplementary cementing materials, the R3 method was used to estimate the pozzolanic activity of the materials. The materials presented good performances at the two replacement levels, sewage sludge ash and rice husk ash showed prominent results for their contribution to the gain of resistance at both early and late ages. Likewise, Class F fly ash presented very good performance at the age of 90 days. The materials with the best results in the R3 procedure achieved the highest amount of added heat in the interaction calorimetries of cement and supplementary cementing materials.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.rightsAtribución-NoComercial 2.5 Colombia*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/2.5/co/*
dc.sourceinstname:Universidad Santo Tomásspa
dc.sourcereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.subjectMateriales cementantes suplementariosspa
dc.subjectResistenciaspa
dc.subjectHidrataciónspa
dc.subjectActividad hidráulicaspa
dc.subjectActividad puzolánicaspa
dc.subjectEfecto físicospa
dc.titleDesempeño de materiales cementantes suplementarios en resistencia a compresión e hidratación en pastas de cemento.spa
dc.typeFormación de Recurso Humano para la Ctel: Trabajo de grado de Pregradospa
dc.creator.degreeIngeniero Civilspa
dc.publisher.programPregrado Ingeniería Civilspa
dc.publisher.departmentFacultad de Ingeniería Civilspa
dc.subject.keywordSupplementary cementing materialsspa
dc.subject.keywordHydrationspa
dc.subject.keywordHydraulic activityspa
dc.subject.keywordPozzolanic activityspa
dc.subject.keywordFiller effectspa
dc.subject.lembIngeniería-Materialesspa
dc.subject.lembHidráulicaspa
dc.subject.lembResistencia de materialesspa
dc.subject.lembCementospa
dc.subject.lembIngeniería civilspa
dc.subject.lembTesis y disertaciones académicasspa
dc.type.spaTrabajo de gradospa
dc.rights.accesoAbierto (Texto Completo)spa
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersionspa
dc.description.sedeCRAI-USTA Villavicenciospa
dc.description.orcidhttps://orcid.org/0000-0003-1779-5148spa
dc.description.cvlachttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000142035spa
dc.description.dominiohttp://www.ustavillavicencio.edu.co/home/index.php/unidades/extension-y-proyeccion/investigacionspa
dc.source.bibliographicCitationAstm. (2010). Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use. Annual Book of ASTM Standards, (C), 3–6. https://doi.org/10.1520/C0618spa
dc.source.bibliographicCitationAvet, F., Snellings, R., Alujas Diaz, A., Ben Haha, M., & Scrivener, K. (2016). Development of a new rapid, relevant and reliable (R3) test method to evaluate the pozzolanic reactivity of calcined kaolinitic clays. Cement and Concrete Research, 85, 1–11. https://doi.org/10.1016/j.cemconres.2016.02.015spa
dc.source.bibliographicCitationBaeza-Brotons, F., Garcés, P., Payá, J., & Saval, J. M. (2014). Portland cement systems with addition of sewage sludge ash. application in concretes for the manufacture of blocks. Journal of Cleaner Production, 82, 112–124. https://doi.org/10.1016/j.jclepro.2014.06.072spa
dc.source.bibliographicCitationBouzoubaâ, N, L. . (2001). Self Compacting Concrete Incorporating High-Volumes of Class F Fly Ash : Preliminary Results. Cement and Concrete Research, 31(3), 413–420. https://doi.org/10.1016/S0008-8846(00)00504-4spa
dc.source.bibliographicCitationCelik, K., Meral, C., Gursel, P., Mehta, P., Horvath, A., & Monteiro, P. J. M. (2014). Mechanical Properties, Durability, and Life-Cycle Analysis of Self-consolidating Concrete Mixtures Made with Blended Portland Cements Containing Fly Ash and Limestone Powder. Cement and Concrete Composites, 56, 59–72.spa
dc.source.bibliographicCitationChindaprasirt, P., Jaturapitakkul, C., & Rattanasak, U. (2009). Influence of fineness of rice husk ash and additives on the properties of lightweight aggregate. Fuel, 88(1), 158–162. https://doi.org/10.1016/j.fuel.2008.07.024spa
dc.source.bibliographicCitationCyr, M., Lawrence, P., & Ringot, E. (2005). Mineral admixtures in mortars: Quantification of the physical effects of inert materials on short-term hydration. Cement and Concrete Research, 35(4), 719–730. https://doi.org/10.1016/j.cemconres.2004.05.030spa
dc.source.bibliographicCitationDamtoft, J. S., Lukasik, J., Herfort, D., Sorrentino, D., & Gartner, E. M. (2008). Sustainable development and climate change initiatives. Cement and Concrete Research, 38(2), 115–127. https://doi.org/10.1016/j.cemconres.2007.09.008spa
dc.source.bibliographicCitationFly Ash. (2006). Dictionary of architecture and construction. (McGraw-Hill., Ed.) (4 th Ed). New York, NY: Dictionary of Architecture and Construction. Retrieved from http://ezproxy.puc.cl/login?url=https://search.credoreference.com/content/entry/mhbuilding/fly_ash/0?institutionId=5056spa
dc.source.bibliographicCitationHemalatha, T., & Ramaswamy, A. (2017). A review on fly ash characteristics--Towards promoting high volume utilization in developing sustainable concrete. Journal of Cleaner Production, 147, 546–559.spa
dc.source.bibliographicCitationJamil, M., Kaish, A. B. M. A., Raman, S. N., & Zain, M. F. M. (2013). Pozzolanic contribution of rice husk ash in cementitious system. Construction and Building Materials, 47, 588–593. https://doi.org/10.1016/j.conbuildmat.2013.05.088spa
dc.source.bibliographicCitationJamshidi, M., Jamshidi, A., Mehrdadi, N., & Pacheco-Torgal, F. (2012). Mechanical performance and capillary water absorption of sewage sludge ash concrete (SSAC). International Journal of Sustainable Engineering, 5(3), 228–234. https://doi.org/10.1080/19397038.2011.642020spa
dc.source.bibliographicCitationJavali, S., Chandrashekar, A. R., Naganna, S. R., Manu, D. S., Hiremath, P., Preethi, H. G., & Vinod Kumar, N. (2017). Eco-concrete for sustainability: utilizing aluminium dross and iron slag as partial replacement materials. Clean Technologies and Environmental Policy, 19(9), 2291–2304. https://doi.org/10.1007/s10098-017-1419-9spa
dc.source.bibliographicCitationJuenger, M. C. G., Winnefeld, F., Provis, J. L., & Ideker, J. H. (2011). Advances in alternative cementitious binders. Cement and Concrete Research, 41(12), 1232–1243. https://doi.org/10.1016/j.cemconres.2010.11.012spa
dc.source.bibliographicCitationKarim, M. R., Zain, M. F. M., Jamil, M., Lai, F. C., & Islam, M. N. (2011). Use of wastes in construction industries as an energy saving approach. Energy Procedia, 12, 915–919. https://doi.org/10.1016/j.egypro.2011.10.120spa
dc.source.bibliographicCitationKathirvel, P., Saraswathy, V., Karthik, S. P., & Sekar, a. S. S. (2013). Strength and Durability Properties of Quaternary Cement Concrete Made with Fly Ash, Rice Husk Ash and Limestone Powder. Arabian Journal for Science and Engineering, 38(3), 589–598. https://doi.org/10.1007/s13369-012-0331-1spa
dc.source.bibliographicCitationKizhakkumodom Venkatanarayanan, H., & Rangaraju, P. R. (2015). Effect of grinding of low-carbon rice husk ash on the microstructure and performance properties of blended cement concrete. Cement and Concrete Composites, 55, 348–363. https://doi.org/10.1016/j.cemconcomp.2014.09.021spa
dc.source.bibliographicCitationLawrence, P., Cyr, M., & Ringot, E. (2003). Mineral admixtures in mortars. Cement and Concrete Research, 33(12), 1939–1947. https://doi.org/10.1016/S0008-8846(03)00183-2spa
dc.source.bibliographicCitationLi, X., Snellings, R., Antoni, M., Alderete, N. M., Ben Haha, M., Bishnoi, S., … Scrivener, K. L. (2018). Reactivity tests for supplementary cementitious materials: RILEM TC 267-TRM phase 1. Materials and Structures/Materiaux et Constructions, 51(6). https://doi.org/10.1617/s11527-018-1269-xspa
dc.source.bibliographicCitationLynn, C. J., Dhir, R. K., Ghataora, G. S., & West, R. P. (2015). Sewage sludge ash characteristics and potential for use in concrete. Construction and Building Materials, 98, 767–779. https://doi.org/10.1016/j.conbuildmat.2015.08.122spa
dc.source.bibliographicCitationMarie, E., & Berodier, J. (2015). Impact of the Supplementary Cementitious Materials on the kinetics and microstructural development of cement hydration PAR. ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE. https://doi.org/10.5075/epfl-thesis-6417spa
dc.source.bibliographicCitationMehta, P. K., & Monteiro, P. J. M. (2006). Concrete: microstructure, properties, and materials. Concrete. https://doi.org/10.1036/0071462899spa
dc.source.bibliographicCitationOliva, M., Vargas, F., & Lopez, M. (2019). Designing the incineration process for improving the cementitious performance of sewage sludge ash in Portland and blended cement systems. Journal of Cleaner Production, 223, 1029–1041. https://doi.org/10.1016/J.JCLEPRO.2019.03.147spa
dc.source.bibliographicCitationOner, A., Akyuz, S., & Yildiz, R. (2005). An experimental study on strength development of concrete containing fly ash and optimum usage of fly ash in concrete. Cement and Concrete Research, 35(6), 1165–1171. https://doi.org/10.1016/j.cemconres.2004.09.031spa
dc.source.bibliographicCitationOnuaguluchi, O., & Eren, Ö. (2012). Cement mixtures containing copper tailings as an additive: durability properties. Materials Research, 15(6), 1029–1036. https://doi.org/10.1590/S1516-14392012005000129spa
dc.source.bibliographicCitationPal, S. C., Mukherjee, A., & Pathak, S. R. (2003). Investigation of hydraulic activity of ground granulated blast furnace slag in concrete. Cement and Concrete Research, 33(9), 1481–1486. https://doi.org/10.1016/S0008-8846(03)00062-0spa
dc.source.bibliographicCitationRodríguez de Sensale, G., & Rodríguez Viacava, I. (2018). A study on blended Portland cements containing residual rice husk ash and limestone filler. Construction and Building Materials, 166, 873–888. https://doi.org/10.1016/j.conbuildmat.2018.01.113spa
dc.source.bibliographicCitationSalazar-carreño, D., García-cáceres, R. G., & Ortiz-rodríguez, O. O. (2015). Laboratory processing of Colombian rice husk for obtaining amorphous silica as concrete supplementary cementing material, 96, 65–75. https://doi.org/10.1016/j.conbuildmat.2015.07.178spa
dc.source.bibliographicCitationSchneider, M., Romer, M., Tschudin, M., & Bolio, H. (2011). Sustainable cement production-present and future. Cement and Concrete Research, 41(7), 642–650. https://doi.org/10.1016/j.cemconres.2011.03.019spa
dc.source.bibliographicCitationScrivener, K. L., Lothenbach, B., De Belie, N., Gruyaert, E., Skibsted, J., Snellings, R., & Vollpracht, A. (2015). TC 238-SCM: hydration and microstructure of concrete with SCMs: State of the art on methods to determine degree of reaction of SCMs. Materials and Structures/Materiaux et Constructions, 48(4), 835–862. https://doi.org/10.1617/s11527-015-0527-4spa
dc.source.bibliographicCitationShi, C., Meyer, C., & Behnood, A. (2008). Utilization of copper slag in cement and concrete. Resources, Conservation and Recycling, 52(10), 1115–1120. https://doi.org/10.1016/j.resconrec.2008.06.008spa
dc.source.bibliographicCitationSnellings, R., & Scrivener, K. L. (2016). Rapid screening tests for supplementary cementitious materials: past and future. Materials and Structures/Materiaux et Constructions, 49(8), 3265–3279. https://doi.org/10.1617/s11527-015-0718-zspa
dc.source.bibliographicCitationThomas, B. S., Damare, A., & Gupta, R. C. (2013). Strength and durability characteristics of copper tailing concrete. Construction and Building Materials, 48, 894–900. https://doi.org/10.1016/j.conbuildmat.2013.07.075spa
dc.source.bibliographicCitationTrauchessec, R., Mechling, J. M., Lecomte, A., Roux, A., & Le Rolland, B. (2015). Hydration of ordinary Portland cement and calcium sulfoaluminate cement blends. Cement and Concrete Composites, 56, 106–114. https://doi.org/10.1016/j.cemconcomp.2014.11.005spa
dc.source.bibliographicCitationU.S. Geological Survey (USGS). (2015). Mineral Commodity Summaries 2015 Mineral Commodity Summaries 2015, 1–196. https://doi.org/10.3133/70140094spa
dc.source.bibliographicCitationVargas, F., & Lopez, M. (2018). Development of a new supplementary cementitious material from the activation of copper tailings: Mechanical performance and analysis of factors. Journal of Cleaner Production, 182, 427–436. https://doi.org/10.1016/j.jclepro.2018.01.223spa
dc.source.bibliographicCitationWang, A., Zhang, C., & Sun, W. (2003). Fly ash effects: I. The morphological effect of fly ash. Cement and Concrete Research, 33(12), 2023–2029. https://doi.org/10.1016/S0008-8846(03)00217-5spa
dc.source.bibliographicCitationWang, C., Harbottle, D., Liu, Q., & Xu, Z. (2014). Current State of Fine Mineral Tailings Treatment - A Critical Review on Theory and Practice, 58, 113–131. https://doi.org/10.1016/j.mineng.2014.01.018spa
dc.source.bibliographicCitationXu, J. H., Fleiter, T., Eichhammer, W., & Fan, Y. (2012). Energy consumption and CO2emissions in China’s cement industry: A perspective from LMDI decomposition analysis. Energy Policy, 50, 821–832. https://doi.org/10.1016/j.enpol.2012.08.038spa
dc.source.bibliographicCitationYang, K.-H., Jung, Y.-B., Cho, M.-S., & Tae, S.-H. (2015). Effect of supplementary cementitious materials on reduction of CO2 emissions from concrete. Journal of Cleaner Production, 103, 774–783. https://doi.org/10.1016/j.jclepro.2014.03.018spa
dc.source.bibliographicCitationZunino, F., & Lopez, M. (2016). Decoupling the physical and chemical effects of supplementary cementitious materials on strength and permeability: A multi-level approach. Cement and Concrete Composites, 65, 19–28. https://doi.org/10.1016/j.cemconcomp.2015.10.003spa
dc.source.bibliographicCitationZunino, F., & Lopez, M. (2017). A methodology for assessing the chemical and physical potential of industrially sourced rice husk ash on strength development and early-age hydration of cement paste. Construction and Building Materials, 149, 869–881. https://doi.org/10.1016/j.conbuildmat.2017.05.187spa


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial 2.5 Colombia
Except where otherwise noted, this item's license is described as Atribución-NoComercial 2.5 Colombia