Show simple item record

dc.creatorTrujillo-González, Daniel E.
dc.creatorRamírez-Romero, María C.
dc.creatorRodríguez, Juan I.
dc.creatorUribe, Emilbus A.
dc.description.abstractDensity functional theory unrestricted calculations at the BPW91/6-311+G* level of theory have been used to explore the potential energy surface of MOncomplexes (M = Sc–Zn, n = 1–2). Nine physico-chemical properties were selected to characterize each of the MOncomplexes to conduct a chemotopological study. Our results show that the similarity relations between the group-VIIIB elements (Fe, Co and Ni)are transferred to their corresponding MOncomplexes. A classification of M O interactions in the MOncomplexes based on the QTAIM methodology is
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 Colombia*
dc.titleA DFT-chemotopological study on the 3D transition metal oxides anddioxygen complexesspa
dc.typeGeneración de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicosspa
dc.subject.keywordChemotopological studyspa
dc.subject.keyword3D transition metal oxidesspa
dc.subject.keywordDioxygen complexesspa
dc.description.sedeCRAI-USTA Bogotáspa
dc.source.bibliographicCitationY. Gong, M. Zhou, L. Andrews, Chem. Rev. 109 (2009)
dc.source.bibliographicCitationM. Costas, M.P. Mehn, M.P. Jensen, L. Que Jr., Chem. Rev. 104 (2004)
dc.source.bibliographicCitationJ.F. Weaver, Chem. Rev. 113 (2013)
dc.source.bibliographicCitationL.M. Mirica, X. Ottenwaelder, T.D.P. Stack, Chem. Rev. 104 (2004)
dc.source.bibliographicCitationE.A. Lewis, W.B. Tolman, Chem. Rev. 104 (2004)
dc.source.bibliographicCitationM. Suzuki, Acc. Chem. Res. 40 (2007)
dc.source.bibliographicCitationP.L. Holland, Dalton Trans. 39 (2010)
dc.source.bibliographicCitationG.L. Gutsev, B.K. Rao, P. Jena, J. Phys. Chem. A 104 (2000)
dc.source.bibliographicCitationR.F.W. Bader, Atoms in Molecules. A Quantum Theory, Oxford University Press,Oxford,
dc.source.bibliographicCitationC.F. Matta, R.J. Boyd (Eds.), The Quantum Theory of Atoms in Molecules. FromSolid State to DNA and Drug Design, Wiley-VCH, Weinheim,
dc.source.bibliographicCitationR.F.W. Bader, J. Phys. Chem. A 102 (1998)
dc.source.bibliographicCitationR.F.W. Bader, H. Essén, J. Chem. Phys. 80 (1984)
dc.source.bibliographicCitationD. Cremer, E. Kraka, Croat. Chem. Acta 57 (1984)
dc.source.bibliographicCitationR. Bianchi, G. Gervasio, D. Marabello, C. R. Chim. 8 (2005)
dc.source.bibliographicCitationE. Espinosa, I. Alkorta, J. Elguero, E. Molins, J. Chem. Phys. 117 (2002)
dc.source.bibliographicCitationJ.I. Rodríguez, J. Comp. Chem. 34 (2013)
dc.source.bibliographicCitationG. Restrepo, H. Mesa, E.J. Llanos, J.L. Villaveces, J. Chem. Inf. Comput. Sci. 44(2004)
dc.source.bibliographicCitationG. Restrepo, J.L. Villaveces, Croat. Chem. Acta 78 (2005)
dc.source.bibliographicCitationN. Quintero, G. Restrepo, I.M. Cohen, J. Radioanal. Nucl. Chem. 295 (2013)
dc.source.bibliographicCitationM.C. Daza, G. Restrepo, E.A. Uribe, J.L. Villaveces, Chem. Phys. Lett. 428 (2006)

Files in this item


This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-CompartirIgual 2.5 Colombia
Except where otherwise noted, this item's license is described as Atribución-NoComercial-CompartirIgual 2.5 Colombia

Indexado por: