dc.creator | Trujillo-González, Daniel E. | |
dc.creator | Ramírez-Romero, María C. | |
dc.creator | Rodríguez, Juan I. | |
dc.creator | Uribe, Emilbus A. | |
dc.date.accessioned | 2019-11-13T17:54:44Z | |
dc.date.available | 2019-11-13T17:54:44Z | |
dc.date.created | 2016-02-22 | |
dc.identifier.uri | http://hdl.handle.net/11634/19730 | |
dc.description.abstract | Density functional theory unrestricted calculations at the BPW91/6-311+G* level of theory have been used to explore the potential energy surface of MOncomplexes (M = Sc–Zn, n = 1–2). Nine physico-chemical properties were selected to characterize each of the MOncomplexes to conduct a chemotopological study. Our results show that the similarity relations between the group-VIIIB elements (Fe, Co and Ni)are transferred to their corresponding MOncomplexes. A classification of M O interactions in the MOncomplexes based on the QTAIM methodology is introduced. | spa |
dc.format.mimetype | application/pdf | spa |
dc.rights | Atribución-NoComercial-CompartirIgual 2.5 Colombia | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/2.5/co/ | * |
dc.title | A DFT-chemotopological study on the 3D transition metal oxides anddioxygen complexes | spa |
dc.type | Generación de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicos | spa |
dc.subject.keyword | Chemotopological study | spa |
dc.subject.keyword | 3D transition metal oxides | spa |
dc.subject.keyword | Dioxygen complexes | spa |
dc.description.sede | CRAI-USTA Bogotá | spa |
dc.identifier.doi | 10.1016/j.cplett.2016.02.025 | spa |
dc.description.dominio | http://unidadinvestigacion.usta.edu.co | spa |
dc.source.bibliographicCitation | Y. Gong, M. Zhou, L. Andrews, Chem. Rev. 109 (2009) 6765. | spa |
dc.source.bibliographicCitation | M. Costas, M.P. Mehn, M.P. Jensen, L. Que Jr., Chem. Rev. 104 (2004) 939. | spa |
dc.source.bibliographicCitation | J.F. Weaver, Chem. Rev. 113 (2013) 4164. | spa |
dc.source.bibliographicCitation | L.M. Mirica, X. Ottenwaelder, T.D.P. Stack, Chem. Rev. 104 (2004) 1013. | spa |
dc.source.bibliographicCitation | E.A. Lewis, W.B. Tolman, Chem. Rev. 104 (2004) 1047. | spa |
dc.source.bibliographicCitation | M. Suzuki, Acc. Chem. Res. 40 (2007) 609. | spa |
dc.source.bibliographicCitation | P.L. Holland, Dalton Trans. 39 (2010) 5415. | spa |
dc.source.bibliographicCitation | G.L. Gutsev, B.K. Rao, P. Jena, J. Phys. Chem. A 104 (2000) 11961. | spa |
dc.source.bibliographicCitation | R.F.W. Bader, Atoms in Molecules. A Quantum Theory, Oxford University Press,Oxford, 1990. | spa |
dc.source.bibliographicCitation | C.F. Matta, R.J. Boyd (Eds.), The Quantum Theory of Atoms in Molecules. FromSolid State to DNA and Drug Design, Wiley-VCH, Weinheim, 2007. | spa |
dc.source.bibliographicCitation | R.F.W. Bader, J. Phys. Chem. A 102 (1998) 7314. | spa |
dc.source.bibliographicCitation | R.F.W. Bader, H. Essén, J. Chem. Phys. 80 (1984) 1943. | spa |
dc.source.bibliographicCitation | D. Cremer, E. Kraka, Croat. Chem. Acta 57 (1984) 1259. | spa |
dc.source.bibliographicCitation | R. Bianchi, G. Gervasio, D. Marabello, C. R. Chim. 8 (2005) 1392. | spa |
dc.source.bibliographicCitation | E. Espinosa, I. Alkorta, J. Elguero, E. Molins, J. Chem. Phys. 117 (2002) 5529. | spa |
dc.source.bibliographicCitation | J.I. Rodríguez, J. Comp. Chem. 34 (2013) 681. | spa |
dc.source.bibliographicCitation | G. Restrepo, H. Mesa, E.J. Llanos, J.L. Villaveces, J. Chem. Inf. Comput. Sci. 44(2004) 68. | spa |
dc.source.bibliographicCitation | G. Restrepo, J.L. Villaveces, Croat. Chem. Acta 78 (2005) 275. | spa |
dc.source.bibliographicCitation | N. Quintero, G. Restrepo, I.M. Cohen, J. Radioanal. Nucl. Chem. 295 (2013) 823. | spa |
dc.source.bibliographicCitation | M.C. Daza, G. Restrepo, E.A. Uribe, J.L. Villaveces, Chem. Phys. Lett. 428 (2006)55. | spa |