Show simple item record

dc.contributor.authorElles-Pérez, Cindy J.spa
dc.contributor.authorMuñoz-Acevedo, Amnerspa
dc.contributor.authorGuzmán, Andrésspa
dc.contributor.authorCamargo, Hernandospa
dc.date.accessioned2019-11-20T17:34:00Zspa
dc.date.available2019-11-20T17:34:00Zspa
dc.date.issued2017-07-01spa
dc.identifier.urihttp://hdl.handle.net/11634/19964
dc.description.abstractIn this work, NaY zeolite is explored as a possible “template” to obtain porous materials type ZTC from the adsorption of heavy crude oil in a water-oil model system (emulsion). In order to produce the adsorbents, a cationic surfactant is selected to facilitate the adsorption of the crude oil into the pores of the zeolite and to get the composite, which was activated with controlled thermal treatments (T: 700 - 800 C and t: 0.5 - 1 h) in inert conditions (N2 gaseous). The starting materials, composite and porous carbons were characterized using structural/surface analysis techniques (API Gravity, SARA, IR, XRD, XRF, TGA, Langmuir isotherms, BET and SEM). The results showed that four types of mesoporous carbons were produced with specific surface areas between 70 ± 1 m2/g and 220 ± 3 m2/g, average pore volumes between 0.144 cm3/g and 0.40 cm3/g and average pore widths between 4.9 nm and 8.3 nm. The activation conditions of 800 C and 1 h allowed to make the carbonaceous material with the best surface characteristics (220 ± 3 m2/g, 0.27 cm3/g, and 4.9 nm). Therefore, it is concluded that under assay conditions employed, the heavy crude oil, as a mixed model (water-oil), from an aqueous environment is a starting material suitable for preparation of “mesoporous” carbons.spa
dc.format.mimetypeapplication/pdfspa
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 Colombia*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/co/*
dc.titleEvaluation of heavy crude oil from a water-oil model system as starting material for the preparation of adsorbents type NaY zeolite-templated carbonspa
dc.subject.keywordMesoporous carbonsspa
dc.subject.keywordZTC materialsspa
dc.subject.keywordHeavy oilspa
dc.subject.keywordNaY zeolitespa
dc.subject.keywordOil-water modelspa
dc.coverage.campusCRAI-USTA Bogotáspa
dc.identifier.doihttps://doi.org/10.1016/j.jenvman.2017.03.049spa
dc.description.domainhttp://unidadinvestigacion.usta.edu.cospa
dc.relation.referencesAchaw, O.-W., 2012. A Study of the Porosity of Activated Carbons Using the Scanning Electron Microscope. http://dx.doi.org/10.5772/36337.spa
dc.relation.referencesAl-Majed, A.A., Adebayo, A.R., Hossain, M.E., 2012. A sustainable approach to controlling oil spills. J. Environ. Manag. 113, 213e227. http://dx.doi.org/10.1016/ j.jenvman.2012.07.034.spa
dc.relation.referencesBandura, L., Franus, M., J ozefaciuk, G., Franus, W., 2015. Synthetic zeolites from fly ash as effective mineral sorbents for land-based petroleum spills cleanup. Fuel 147, 100e107. http://dx.doi.org/10.1016/j.fuel.2015.01.067spa
dc.relation.referencesBansal, R.C., Goyal, M., 2005. Activated Carbon Adsorption. CRC Press.spa
dc.relation.referencesConley, R.T., 1979. Espectroscopia Infrarroja. Madrid etc, Alhambra.spa
dc.relation.referencesFukuyama, A.K., Shigenaka, G., Coats, D.A., 2014. Status of intertidal infaunal communities following the Exxon Valdez oil spill in Prince William Sound, Alaska. Mar. Pollut. Bull. 84, 56e69. http://dx.doi.org/10.1016/j.marpolbul.2014.05.043.spa
dc.relation.referencesGierszal, K.P., Kim, T.-W., Ryoo, R., Jaroniec, M., 2005. Adsorption and structural properties of ordered mesoporous carbons synthesized by using various carbon precursors and ordered siliceous P6mm and Ia3d mesostructures as templates. J. Phys. Chem. B 109, 23263e23268. http://dx.doi.org/10.1021/ jp054562m.spa
dc.relation.referencesJin, X., Jiang, M., Shan, X., Pei, Z., Chen, Z., 2008. Adsorption of methylene blue and orange II onto unmodified and surfactant-modified zeolite. J. Colloid Interface Sci. 328, 243e247. http://dx.doi.org/10.1016/j.jcis.2008.08.066.spa
dc.relation.referencesJovanovic, M., Grbavcic, Z., Rajic, N., Obradovic, B., 2014. Removal of Cu(II) from aqueous solutions by using fluidized zeolite A beads: hydrodynamic and sorption studies. Chem. Eng. Sci. 117, 85e92. http://dx.doi.org/10.1016/ j.ces.2014.06.017.spa
dc.relation.referencesKarakasi, O.K., Moutsatsou, A., 2010. Surface modification of high calcium fly ash for its application in oil spill clean up. Fuel 89, 3966e3970. http://dx.doi.org/ 10.1016/j.fuel.2010.06.029.spa
dc.relation.referencesLi, G., 2005. Ft-IR Studies of Zeolite Materials: Characterization and Environmental Applications. Theses Diss.spa
dc.relation.referencesMa, Z., Kyotani, T., Tomita, A., 2002. Synthesis methods for preparing microporous carbons with a structural regularity of zeolite Y. Carbon 40, 2367e2374. http:// dx.doi.org/10.1016/S0008-6223(02)00120-3.spa
dc.relation.referencesPowder Diffraction File-2 (PDF-2), International Centre for Diffraction Data (ICDD), 12 Campus Blvd., Newtown Square PA 19073e3273, U.S.A., n.d.spa
dc.relation.referencesRadovic, L.R., 2007. Chemistry & Physics of Carbon. CRC Press.spa
dc.relation.referencesSakthivel, T., Reid, D.L., Goldstein, I., Hench, L., Seal, S., 2013. Hydrophobic high surface area zeolites derived from fly ash for oil spill remediation. Environ. Sci. Technol. 47, 5843e5850. http://dx.doi.org/10.1021/es3048174.spa
dc.relation.referencesTansel, B., Regula, J., Shalewitz, R., 1995. Treatment of fuel oil and crude oil contaminated waters by ultrafiltration membranes. Desalination. In: Proceedings of the American Desalting Association 1994 Biennial Conference and Exposition Membrane and Desalting Technologies, vol. 102, pp. 301e311. http:// dx.doi.org/10.1016/0011-9164(95)00067-C.spa
dc.relation.referencesUS. Energy Information Administration, 2016. Short-term Energy Outlook - U.S. Energy Information Administration (EIA). https://www.eia.gov/forecasts/steo/ report/global_oil.cfm (Accessed 14 March 2016).spa
dc.relation.referencesVidal, C.B., Raulino, G.S.C., Barros, A.L., Lima, A.C.A., Ribeiro, J.P., Pires, M.J.R., Nascimento, R.F., 2012. BTEX removal from aqueous solutions by HDTMAmodified Y zeolite. J. Environ. Manag. 112, 178e185. http://dx.doi.org/10.1016/ j.jenvman.2012.07.026.spa
dc.relation.referencesWei, C.-L., Rowe, G.T., Escobar-Briones, E., Nunnally, C., Soliman, Y., Ellis, N., 2012. Standing stocks and body size of deep-sea macrofauna: predicting the baseline of 2010 Deepwater Horizon oil spill in the northern Gulf of Mexico. Deep Sea Res. Part Oceanogr. Res. Pap. 69, 82e99. http://dx.doi.org/10.1016/ j.dsr.2012.07.008.spa
dc.relation.referencesZeolyst, n.d. Zeolite Y [WWW Document]. URL http://www.zeolyst.com/ourproducts/ standard-zeolite-powders/zeolite-y.aspx (Accessed 15 March 2016).spa
dc.type.categoryGeneración de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicosspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-CompartirIgual 2.5 Colombia
Except where otherwise noted, this item's license is described as Atribución-NoComercial-CompartirIgual 2.5 Colombia

Indexado por: