Show simple item record

dc.contributor.authorElles-Pérez, Cindy
dc.contributor.authorMuñoz-Acevedo, Amnerspa
dc.contributor.authorGuzmán, Andrésspa
dc.contributor.authorCamargo, Hernandospa
dc.description.abstractIn this work, NaY zeolite is explored as a possible “template” to obtain porous materials type ZTC from the adsorption of heavy crude oil in a water-oil model system (emulsion). In order to produce the adsorbents, a cationic surfactant is selected to facilitate the adsorption of the crude oil into the pores of the zeolite and to get the composite, which was activated with controlled thermal treatments (T: 700 - 800 C and t: 0.5 - 1 h) in inert conditions (N2 gaseous). The starting materials, composite and porous carbons were characterized using structural/surface analysis techniques (API Gravity, SARA, IR, XRD, XRF, TGA, Langmuir isotherms, BET and SEM). The results showed that four types of mesoporous carbons were produced with specific surface areas between 70 ± 1 m2/g and 220 ± 3 m2/g, average pore volumes between 0.144 cm3/g and 0.40 cm3/g and average pore widths between 4.9 nm and 8.3 nm. The activation conditions of 800 C and 1 h allowed to make the carbonaceous material with the best surface characteristics (220 ± 3 m2/g, 0.27 cm3/g, and 4.9 nm). Therefore, it is concluded that under assay conditions employed, the heavy crude oil, as a mixed model (water-oil), from an aqueous environment is a starting material suitable for preparation of “mesoporous”
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 Colombia*
dc.titleEvaluation of heavy crude oil from a water-oil model system as starting material for the preparation of adsorbents type NaY zeolite-templated carbonspa
dc.subject.keywordMesoporous carbonsspa
dc.subject.keywordZTC materialsspa
dc.subject.keywordHeavy oilspa
dc.subject.keywordNaY zeolitespa
dc.subject.keywordOil-water modelspa
dc.coverage.campusCRAI-USTA Bogotáspa
dc.relation.referencesAchaw, O.-W., 2012. A Study of the Porosity of Activated Carbons Using the Scanning Electron Microscope.
dc.relation.referencesAl-Majed, A.A., Adebayo, A.R., Hossain, M.E., 2012. A sustainable approach to controlling oil spills. J. Environ. Manag. 113, 213e227.
dc.relation.referencesBandura, L., Franus, M., J ozefaciuk, G., Franus, W., 2015. Synthetic zeolites from fly ash as effective mineral sorbents for land-based petroleum spills cleanup. Fuel 147, 100e107.
dc.relation.referencesBansal, R.C., Goyal, M., 2005. Activated Carbon Adsorption. CRC
dc.relation.referencesConley, R.T., 1979. Espectroscopia Infrarroja. Madrid etc,
dc.relation.referencesFukuyama, A.K., Shigenaka, G., Coats, D.A., 2014. Status of intertidal infaunal communities following the Exxon Valdez oil spill in Prince William Sound, Alaska. Mar. Pollut. Bull. 84, 56e69.
dc.relation.referencesGierszal, K.P., Kim, T.-W., Ryoo, R., Jaroniec, M., 2005. Adsorption and structural properties of ordered mesoporous carbons synthesized by using various carbon precursors and ordered siliceous P6mm and Ia3d mesostructures as templates. J. Phys. Chem. B 109, 23263e23268.
dc.relation.referencesJin, X., Jiang, M., Shan, X., Pei, Z., Chen, Z., 2008. Adsorption of methylene blue and orange II onto unmodified and surfactant-modified zeolite. J. Colloid Interface Sci. 328, 243e247.
dc.relation.referencesJovanovic, M., Grbavcic, Z., Rajic, N., Obradovic, B., 2014. Removal of Cu(II) from aqueous solutions by using fluidized zeolite A beads: hydrodynamic and sorption studies. Chem. Eng. Sci. 117, 85e92.
dc.relation.referencesKarakasi, O.K., Moutsatsou, A., 2010. Surface modification of high calcium fly ash for its application in oil spill clean up. Fuel 89, 3966e3970. 10.1016/
dc.relation.referencesLi, G., 2005. Ft-IR Studies of Zeolite Materials: Characterization and Environmental Applications. Theses
dc.relation.referencesMa, Z., Kyotani, T., Tomita, A., 2002. Synthesis methods for preparing microporous carbons with a structural regularity of zeolite Y. Carbon 40, 2367e2374. http://
dc.relation.referencesPowder Diffraction File-2 (PDF-2), International Centre for Diffraction Data (ICDD), 12 Campus Blvd., Newtown Square PA 19073e3273, U.S.A.,
dc.relation.referencesRadovic, L.R., 2007. Chemistry & Physics of Carbon. CRC
dc.relation.referencesSakthivel, T., Reid, D.L., Goldstein, I., Hench, L., Seal, S., 2013. Hydrophobic high surface area zeolites derived from fly ash for oil spill remediation. Environ. Sci. Technol. 47, 5843e5850.
dc.relation.referencesTansel, B., Regula, J., Shalewitz, R., 1995. Treatment of fuel oil and crude oil contaminated waters by ultrafiltration membranes. Desalination. In: Proceedings of the American Desalting Association 1994 Biennial Conference and Exposition Membrane and Desalting Technologies, vol. 102, pp. 301e311. http://
dc.relation.referencesUS. Energy Information Administration, 2016. Short-term Energy Outlook - U.S. Energy Information Administration (EIA). report/global_oil.cfm (Accessed 14 March 2016).spa
dc.relation.referencesVidal, C.B., Raulino, G.S.C., Barros, A.L., Lima, A.C.A., Ribeiro, J.P., Pires, M.J.R., Nascimento, R.F., 2012. BTEX removal from aqueous solutions by HDTMAmodified Y zeolite. J. Environ. Manag. 112, 178e185.
dc.relation.referencesWei, C.-L., Rowe, G.T., Escobar-Briones, E., Nunnally, C., Soliman, Y., Ellis, N., 2012. Standing stocks and body size of deep-sea macrofauna: predicting the baseline of 2010 Deepwater Horizon oil spill in the northern Gulf of Mexico. Deep Sea Res. Part Oceanogr. Res. Pap. 69, 82e99.
dc.relation.referencesZeolyst, n.d. Zeolite Y [WWW Document]. URL standard-zeolite-powders/zeolite-y.aspx (Accessed 15 March 2016).spa
dc.type.categoryGeneración de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicosspa

Files in this item


This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-CompartirIgual 2.5 Colombia
Except where otherwise noted, this item's license is described as Atribución-NoComercial-CompartirIgual 2.5 Colombia

Indexado por: