dc.contributor.author | Murillo, M T | spa |
dc.contributor.author | Otero, O | spa |
dc.date.accessioned | 2019-12-17T15:53:00Z | spa |
dc.date.available | 2019-12-17T15:53:00Z | spa |
dc.date.issued | 2016-02-12 | spa |
dc.identifier.uri | http://hdl.handle.net/11634/20396 | |
dc.description.abstract | As a contribution to the computational simulation of magnetic con nement and
heating of plasmas ECR (Electron Cyclotron Resonance), this work is dedicated to the
calculation and subsequent analysis of the magnetic elds generated by permanent magnets
and coils required in magnetic traps between which we can mention the mirror trap, minimum-
B and zero-B. To do this, we solved numerically the Biot-Savart law in the case of the coils
with stationary current and the Ampere law in the case of the permanent magnets. The study
includes the characterization of the ECR areas as well as the display of the vector eld all of
this applied to the magnetic traps mentioned above. Additionally, in the case of the mirror type
trap and minimum-B trap, it is determined the ratio of the mirror, because it is important in
the description of con nement. | spa |
dc.format.mimetype | application/pdf | spa |
dc.rights | Atribución-NoComercial-CompartirIgual 2.5 Colombia | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/2.5/co/ | * |
dc.title | Simulation of the magnetic field generated by wires with stationary current and magnets with constant magnetization applied to the mirror trap, minimum-B and zero-B | spa |
dc.subject.keyword | Plasmas | spa |
dc.subject.keyword | Electron Cyclotron Resonance | spa |
dc.subject.keyword | Minimum-B trap | spa |
dc.subject.keyword | Zero-B trap | spa |
dc.subject.keyword | Magnetic field | spa |
dc.subject.keyword | Mirror trap | spa |
dc.coverage.campus | CRAI-USTA Bogotá | spa |
dc.identifier.doi | https://doi.org/10.1088/1742-6596/687/1/012022 | spa |
dc.description.domain | http://unidadinvestigacion.usta.edu.co | spa |
dc.relation.references | W Greyner 1998 Classical electrodynamics 1st ed (United States of America: Springer-Verlag) pp 186-195 | spa |
dc.relation.references | R Geller 1996 Electron cyclotron resonance ion sources and RCE plasmas (Bristol: Institute of Physics Publishing) pp 117-127 | spa |
dc.relation.references | V Dougar-Jabon, A Umnov and D Suescun 2002 Rev Sci Instrum 73 629 | spa |
dc.relation.references | Y Baiborodov, M Io e, V Petrov and R Sobolev 1963 J Nucl Energy Part C Plasma Phys 5 409-410 | spa |
dc.relation.references | V Dugar-Jabon, F Vivas and A Umnov 2000 Phys Scr 62 183-185 | spa |
dc.relation.references | J Jackson 1999 Classical electrodynamics 3rd ed (United States of America: John Wiley&Sons Inc) pp 195-197 | spa |
dc.relation.references | R Ravaud and G Lemarquand 2009 Progress In Electromagnetics Research 98 207-219 | spa |
dc.relation.references | V Dougar-Jabon 2001 Phys Scr 63 322 | spa |
dc.relation.references | V Dugar-Zhabon 2004 Phys Scr 69 313 | spa |
dc.relation.references | V Dugar-Zhabon and M Murillo 2010 IEEE Transaction on Plasma Science 38 3449-3454 | spa |
dc.relation.references | M Murillo 2008 Simulaci on de un plasma RCE en una trampa tipo espejo mediante el m etodo a articula en celda (Colombia: Universidad Industrial de Santander) | spa |
dc.relation.references | M Murillo, J Guerrero and V Dougar Jabon 2008 Revista Colombiana de F sica 40 180-182 | spa |
dc.type.category | Generación de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicos | spa |