Show simple item record

dc.contributor.authorRodriguez, Saithspa
dc.contributor.authorPérez, Katherínspa
dc.contributor.authorQuintero, Carlosspa
dc.contributor.authorLópez, Jorgespa
dc.contributor.authorRojas, Eyberthspa
dc.contributor.authorCalderón, Juanspa
dc.description.abstractIn this paper we propose a methodology to build multiclass classifiers for the human-robot interaction problem. Our solution uses kernel-based classifiers and assumes that each data type is better represented by a different kernel. The kernels are then combined into one single kernel that uses all the dataset involved in the HRI process. The results on real data shows that our proposal is capable of obtaining lower generalization errors due to the use of specific kernels for each data type. Also, we show that our proposal is more robust when presented to noise in either or both data
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 Colombia*
dc.titleIdentification of multimodal human-robot interaction using combined kernelsspa
dc.subject.keywordHuman-robot interactionspa
dc.subject.keywordCombined Kernelsspa
dc.subject.keywordData typesspa
dc.coverage.campusCRAI-USTA Bogotáspa
dc.relation.referencesGoodrich, M., Schultz, A.: Human-robot Interaction: a survey. Found. Trends Hum.-Comput. Interact. 1, 203–275 (2007)spa
dc.relation.referencesBehnke, S., Veloso, M., Visser, A., Xiong, R. (eds.): RoboCup 2013: Robot World Cup XVII, LNCS. Springer, Berlin (2014)spa
dc.relation.referencesVan Beek, L., Chen, K., Holz, D., Matamoros, M., Rascon, C., Rudinac, M., Ruiz del Solar, J., Sugiura, K., Wachsmuth, S.: RoboCupHome 2015: Rule and Regulations (2015)spa
dc.relation.referencesBhattacharya, S., Czejdo, B., Perez, N.: Gesture classification with machine learning using kinect sensor data. In: Third International Conference on Emerging Applications of Information Technology, pp. 348–351. IEEE Press, Kolkata (2012)spa
dc.relation.referencesKinect Gesture Recognition for Interactive System. ZhangDuLiKinectGestureRecognitionforInteractiveSystem.pdfspa
dc.relation.referencesHuang, J., Lee, C., Ma, J.: Gesture Recognition and Classification using the Microsoft Kinect. Final Project CS229 Machine Learning. Stanford University, Stanford (2012)spa
dc.relation.referencesDhanalakshimi, P., Palanivel, S., Ramaligam, V.: Classification of audio signals using SVM and RBFNN. Expert Syst. Appl. 36, 6069–6075 (2009)spa
dc.relation.referencesSarachaga, G., Sartori, V., Vignoli, L.: Identificacin Automtica de Resumen en Canciones. Proyecto de fin de carrera, Universidad de la Repblica, Uruguay (2006)spa
dc.relation.referencesSuresh, V., Mohan, C., Kumaraswamy, R., Yegnanarayana, B.: Content-based video classification using support vector machines. In: Pal, N.R., et al. (eds.) ICONIP 2004. LNCS, vol. 3316, pp. 726–731. Springer, Heidelberg (2004)spa
dc.relation.referencesSubashini, K., Palanivel, S., Ramalingam, V.: Audio-Video based classification using SVM and AANN. Int. J. Comput. Appl. 53(18), 43–49 (2012)spa
dc.relation.referencesGönen, M.M., Alpaydin, E.: Multiple Kernel Learning Algorithms. J. Mach. Learn. Res. 12, 2211–2268 (2011)spa
dc.relation.referencesManevitz, L., Yousef, M.: One-Class SVMs for document classication. J. Mach. Learn. Res. 2, 139–154 (2001)spa
dc.relation.referencesScholkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J.,Williamson, R.C.: Estimating the support of a high-dimensional distribution. Technical report, Microsoft Research MSR-TR-99-87 (1999)spa
dc.relation.referencesChang, C.C., Lin, C.J.: LIBSVM : a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 27:1–27:27 (2011)spa
dc.type.categoryGeneración de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicosspa

Files in this item


This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-CompartirIgual 2.5 Colombia
Except where otherwise noted, this item's license is described as Atribución-NoComercial-CompartirIgual 2.5 Colombia

Indexado por: