Show simple item record

dc.contributor.authorOrozco, Eduardo A.
dc.contributor.authorGonzález, Jesus D.
dc.contributor.authorBarrera, Martha L.
dc.date.accessioned2020-01-22T17:29:52Z
dc.date.available2020-01-22T17:29:52Z
dc.date.issued2008-11
dc.identifier.urihttp://hdl.handle.net/11634/21016
dc.description.abstractWe analyze the effect of the potential shape on the ground state energy of the off-axis neutral donor in GaAs/Ga1−xAlxAs cylindrical nanotube in the presence of the uniform magnetic field applied along the symmetry axis. To take into account the mixing of the low lying subbands we express the wave function as a product of combination of 1s and 2px,y wave functions with an unknown envelope function that depends only on electron-ion separation. By using variational principle and the functional derivative procedure we derive a one-dimensional differential equation for the envelope function, which we solve numerically by using of the trigonometric sweep method. Results of calculation of the ground state binding energy dependencies on the distance from the donor position to the axis and on the strength of the external magnetic field for square-well, soft-edge-barrier and parabolic bottom potentials are presented. It is shown that the additional peaks in the curves of the density of impurity states appear due to the presence of the repulsive core is nanotube.spa
dc.format.mimetypeapplication/pdfspa
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 Colombia*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/co/*
dc.titleEffect of potential shape on the density of the impurity states in nanotubespa
dc.subject.keywordSubbands mixingspa
dc.subject.keywordMagnetic fieldspa
dc.subject.keywordDensity impurity statesspa
dc.subject.keywordBinding energyspa
dc.coverage.campusCRAI-USTA Bogotáspa
dc.identifier.doihttps://doi.org/10.1016/j.mejo.2008.01.018spa
dc.description.domainhttp://unidadinvestigacion.usta.edu.cospa
dc.relation.referencesA. Fereira da Silva, Phys. Rev. B 41, 1684 (1990); A. Latge, N.Porras-Montenegro and L. E. Oliveira, Phys. Rev., B 45, 9420 (1992); L. E. Oliveira, N.Porras-Montenegro, and A. Latge, Phys. Rev. B 47, 13864 (1993); P. Villamizal and N. PorrasMontenegro, J. Phys.: Condens. Matter 10, 10599 (1998);spa
dc.relation.referencesS. V. Branis, G. Li and K. K. Bajaj, Phys. Rev. B 47, 1316 (1993); J. Cen and K. K Bajaj, Phys. Rev. B 46, 13280 (1992); J. Cen, S. M. Lee and K. K Bajaj, J. Appl. Phys. 73, 2848 (1993)spa
dc.relation.referencesF. J. Betancur, E. A. Orozco, J. D. Gonzalez, and I. D. Mikhailov, Phys. Stat. Sol. 242 (b), 1833 (2005)spa
dc.relation.referencesJ. Sierra-Ortega, I. D. Mikhailov, and F.J. Betancur, Physica B 348, 66 (2004)spa
dc.relation.referencesF. J. Betancur, I. D. Mikhailov, and L. E. Oliveira, J. Appl. Phys. D 31, 3391 (1998)spa
dc.relation.referencesI. D. Mikhailov, F. J. Betancur, R. Escorcia, and J. Sierra-Ortega, Phys. Stat. Sol. 234 (b), 590 (2002), Phys. Rev., B67, 156317 (2003)spa
dc.type.categoryGeneración de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicosspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-CompartirIgual 2.5 Colombia
Except where otherwise noted, this item's license is described as Atribución-NoComercial-CompartirIgual 2.5 Colombia

Indexado por: