Show simple item record

dc.contributor.authorVitola, Jaimespa
dc.contributor.authorSanabria, Adrianaspa
dc.contributor.authorPedraza, Césarspa
dc.contributor.authorSepúlveda, Johannaspa
dc.description.abstractThe use of evolutionary algorithms in the boolean synthesis is an attractive alternative to generate interesting and efficient hardware structures, with a high computational load. This paper presents the implementation of a parallel genetic programming (PGP) for boolean synthesis on a GPU-CPU based platform. Our implementation uses the island model, that allows the parallel and independent evolution of the PGP through the multiple processing units of the GPU and the multiple cores of a new generation desktop processors. We tested multiple mapping alternatives of the PGP on the platform in order to optimize the PGP response time. As a result we show that our approach achieves a speedup up to 41 compared to CPU
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 Colombia*
dc.titleParallel algorithm for evolvable-based boolean synthesis on GPUsspa
dc.subject.keywordEvolutionary algorithmsspa
dc.subject.keywordBoolean synthesisspa
dc.coverage.campusCRAI-USTA Bogotáspa
dc.relation.referencesAguirre, A., Coello, C., & Buckles, B. (1999). A genetic programming approach to logic function synthesis by means of multiplexers. Proceedings of the First NASA/DoD Workshop on Evolvable pp. 46 –
dc.relation.referencesAmdahl, G.M. (1967). Validity of the single processor approach to achieving large scale computing capabilities. In: Proceedings of the April 18-20, 1967, spring joint computer conference, AFIPS ’67 Spring, (pp. 483–485). ACM, New York (1967). doi: 10.1145/1465482.1465560. URL
dc.relation.referencesBremner, P., Samie, M., & Pipe, A. (2011). Multi-objective optimisation of cell-array circuit evolution. (CEC), 2011 IEEE (pp. 440–446).spa
dc.relation.referencesCharles, J., Jassi, P., Ananth, N.S., Sadat, A., & Fedorova, A. (2009). Evaluation of the Intel CoreTM i7 Turbo Boost feature. In: 2009 IEEE International Symposium on Workload Characterization (IISWC), (pp. 188–197). IEEE. doi:10.1109/
dc.relation.referencesCoello, C., Zavala, R., & Garcı´a, B. (2000). Ant colony system for the design of combinational logic circuits. Evolvable Systems: From Biology to Hardware (pp. 21–30).spa
dc.relation.referencesEiben, A.E., & Smith, J. (2010). Introduction to evolutionary computing (Natural Computing Series). Heidelberg:
dc.relation.referencesGlette, K., & Torresen, J. (2005). A flexible on-chip evolution system Implemented on a Xilinx Virtex-II Pro Device. Evolvable Systems: From Biology to Hardware (pp. 66–75).spa
dc.relation.referencesGlette, K., Torresen, J., & Yasunaga, M. (2009). Online evolvable pattern recognition hardware. In: Evolutionary Image Analysis and Signal Processing, (pp. 41–54) Heidelberg:
dc.relation.referencesGoldberg, D., & Holland, J. (1988). Genetic algorithms and machine learning. Machine Learning, 3(2): 95–
dc.relation.referencesHarding, S., Miller, J.F., & Banzhaf, W. (2010). Developments in Cartesian genetic programming: self-pmodifying CGP. Genetic Programming and Evolvable Machines, 11(3-4):397–439 doi: 10.1007/
dc.relation.referencesKajitani, I., Hoshino, T., Iwata, M., & Higuchi, T. (1996). Variable length chromosome GA for evolvable hardware. In: Proc. of the 3rd Int. Conf. on Evolutionary Computation, (pp. 443–447). Japan:
dc.relation.referencesKoza, J., Keane, M., Streeter, M., Mydlowec, W., & Yu, J. (2005). Genetic programming IV: routine human-competitive machine. Burlington: Morgan
dc.relation.referencesLuong, T.V., Melab, N., & Talbi, E.G. (2010). GPU-based island model for evolutionary algorithms. In: Proceedings of the 12th annual conference on Genetic and evolutionary computation - GECCO ’10, (p. 1089). New York: ACM doi:10.1145/1830483.18 30685spa
dc.relation.referencesMoreno, J., Thoma, Y., & Sanchez, E. (2006). POETIC: a hardware prototyping platform with bio-inspired capabilities. In: Mixed Design of Integrated Circuits and System, 2006. MIXDES (pp. 363–368).spa
dc.relation.referencesNicholson, A. (2000). Evolution and Learning for Digital Circuit Design. In: Proceedings of Genetic and Evolutionary Computation Conf, (pp. 519–524).spa
dc.relation.referencesPedraza, C., Castillo, E., Castillo, J., Camarero, C., Bosque, J., Martinez, J., & Menendez, R. (2008). Cluster architecture based on low cost reconfigurable hardware. In: Field Programmable Logic and Applications, FPL 2008. International Conference on, (pp. 595–598) Heidelbergspa
dc.relation.referencesPedraza, C., Castillo, J., Martı´nez, J., & Huerta, P. (2011) Genetic Algorithm for Boolean minimization in an FPGA cluster. Journal of Supercomputing 58(2):244–
dc.relation.referencesRothlauf, F. (2006). Representations for genetic and evolutionay algorithms. Heidelberg:
dc.relation.referencesSekanina, L. (2009). Evolvable Hardware: From Applications to Implications for the theory of computation. In: Unconventional Computation,Lecture Notes in Computer Science, vol. 5715/2009, (pp. 24–36) Heidelberg:
dc.relation.referencesThoma, Y., Sanchez, E., & Hetherington, C. (2004). Prototyping with a bio-inspired reconfigurable chip. In: 15th IEEE International Workshop on Rapid System
dc.type.categoryGeneración de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicosspa

Files in this item


This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-CompartirIgual 2.5 Colombia
Except where otherwise noted, this item's license is described as Atribución-NoComercial-CompartirIgual 2.5 Colombia

Indexado por: