Show simple item record

dc.creatorCepeda-Gomez, Rudy
dc.creatorOlgac, Nejat
dc.description.abstractAn investigation of double-integrator agents with directed asymmetric consensus protocols and multiple rationally independent time delays is presented in this paper from two novel perspectives. First, we complement the group consensus literature on crucial stability analysis, using a recent technique called the Cluster Treatment of Characteristic Roots (CTCR) for the first time on this class of time-delayed systems. The CTCR paradigm is pursued after a block-diagonalization (mode-decoupling) transformation on the system. This treatment produces some unique stability tables for the dynamics in the space of the delays which are non-conservative and exhaustive. Second, a novel concept of spectral delay space is presented, as an overture to the CTCR for the determination of the complete set of stabilitycrossing (switching) hypersurfaces in the delay space. Examples are provided to display the strengths and efficiency of this new stability analysis
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 Colombia*
dc.titleExact stability analysis of second-order leaderless and leader–follower consensus protocols with rationally-independent multiple time delaysspa
dc.typeGeneración de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicosspa
dc.subject.keywordRationally-independent delaysspa
dc.subject.keywordDirected topologyspa
dc.description.sedeCRAI-USTA Bogotáspa
dc.source.bibliographicCitationR. Olfati-Saber, R. Murray, Consensus problems in networks of agents with switching topology and time delay, IEEE Transactions on Automatic Control 49 (8) (2004) 1520–
dc.source.bibliographicCitationW. Ren, R.W. Beard, Consensus seeking in multi-agent systems under dynamically changing interaction topologies, IEEE Transactions on Automatic Control 50 (5) (2005) 655–
dc.source.bibliographicCitationY. Sun, L. Wang, Consensus problems in networks of agents with double integrator dynamics and time varying delays, International Journal of Control 82 (9) (2009) 1937–
dc.source.bibliographicCitationY. Sun, L. Wang, Consensus of multi-agent systems in directed networks with non-uniform time-varying delays, IEEE Transactions on Automatic Control 54 (7) (2009) 1607–
dc.source.bibliographicCitationR. Cepeda-Gomez, N. Olgac, An exact methodology for the stability analysis of linear consensus protocols with time delay, IEEE Transactions on Automatic Control 56 (7) (2011) 1734–
dc.source.bibliographicCitationR. Cepeda-Gomez, N. Olgac, Exhaustive stability analysis in a consensus system with time delay and irregular topologies, International Journal of Control 84 (4) (2011) 746–
dc.source.bibliographicCitationR. Cepeda-Gomez, N. Olgac, Consensus analysis with large and multiple communication delays using spectral delay space (SDS) concept, International Journal of Control 84 (12) (2011) 1996–
dc.source.bibliographicCitationZ. Meng, W. Ren, Y. Cao, Y. Zheng, Leaderless and leader–follower consensus with communication and input delays under a directed network topology, IEEE Transactions on Systems Man and Cybernetics—Part B 41 (1) (2011) 75–
dc.source.bibliographicCitationY. Tian, C. Liu, Consensus of multi-agent systems with diverse input and communication delays, IEEE Transactions on Automatic Control 53 (2008) 2122–
dc.source.bibliographicCitationY. Tian, C. Liu, Robust consensus of multi-agent systems with diverse input delays and asymmetric interconnection perturbations, Automatica 43 (2009) 1347–
dc.source.bibliographicCitationJ.K. Hale, S.M. Verduyn-Lunel, Introduction to Functional Differential Equations, Springer Verlag, New York,
dc.source.bibliographicCitationU. Münz, A. Papachristodoulou, F. Allgower, Delay robustness in consensus problems, Automatica 45 (2010) 1252–
dc.source.bibliographicCitationN. Olgac, R. Sipahi, The cluster treatment of characteristic roots and the neutral type time-delayed systems, Journal of Dynamics, Measurement and Control— Transactions of the ASME 127 (2005) 88–
dc.source.bibliographicCitationR. Sipahi, N. Olgac, A unique methodology for the stability robustness of multiple time delay systems, Systems and Control Letters 55 (10) (2006) 819–
dc.source.bibliographicCitationH. Fazelinia, R. Sipahi, N. Olgac, Stability robustness analysis of multiple timedelayed systems using building block concept, IEEE Transactions on Automatic Control 52 (5) (2007) 799–
dc.source.bibliographicCitationN. Olgac, R. Sipahi, A.F. Ergenc, Delay scheduling, an unconventional use of time delay for trajectory tracking, Mechatronics 17 (4–5) (2007) 199–
dc.source.bibliographicCitationN. Olgac, A.F. Ergenc, R. Sipahi, Delay scheduling: a new concept for stabilization in multiple time delay systems, Journal of Vibration and Control 11 (9) (2005) 1159–
dc.source.bibliographicCitationR.D. Schaefer, An Introduction to Nonassociative Algebras, Dover, New York, 1996spa
dc.source.bibliographicCitationN. Olgac, T. Vyhlidal, R. Sipahi, A new perspective in the stability assessment of neutral systems with multiple and cross-talking delays, SIAM Journal of Control and Optimization 47 (1) (2008) 327–
dc.source.bibliographicCitationW. Michiels, T. Vyhlídal, An eigenvalue based approach for the stabilization of linear time-delay systems of neutral type, Automatica 41 (2005) 991–

Files in this item


This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-CompartirIgual 2.5 Colombia
Except where otherwise noted, this item's license is described as Atribución-NoComercial-CompartirIgual 2.5 Colombia