Show simple item record

dc.contributor.authorMerchán Arenas, Diego R.spa
dc.contributor.authorMuñoz Acevedo, Amnerspa
dc.contributor.authorVargas Méndez, Leonor Y.spa
dc.contributor.authorKouznetsov, Vladimir V.spa
dc.date.accessioned2020-02-18T14:42:06Zspa
dc.date.available2020-02-18T14:42:06Zspa
dc.date.issued2011-10-17spa
dc.identifier.urihttp://hdl.handle.net/11634/21761
dc.description.abstractThe essential oil (EO) of clove bud dried fruits from Eugenia caryophyllus was obtained by a conventional hydrodistillation process in an excellent yield (11.7 %). Its chemical composition was analyzed by GC-MS, identifying eugenol as a main constituent (60.5%). Four eugenol-like molecules, γ-diisoeugenol, hydroxymethyleugenol, dihydroeugenol and 1,3-dioxanylphenol, were synthesized using eugenol or isoeugenol as initial precursors under green chemistry protocols. To evaluate the possible antioxidant capacity of eugenol compounds including the clove bud EO, the Trolox® Equivalent Antioxidant Capacity value, obtained by the ABTS+• radical-cation discoloration method, was employed. The methodology was performed in a UV-Vis reader of 96-well microplates (dilution methodology), using well-known antioxidant agents (BHA, BHT and vitamin E) as reference compounds. It was found that the prepared eugenol derivatives had a more potent free radical scavenger activity than the reference compounds. In particular, the most active molecules, γ-diisoeugenol and 1,3-dioxanylphenol, were ca. 3-fold more potent than vitamin E.spa
dc.format.mimetypeapplication/pdfspa
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 Colombia*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/co/*
dc.titleScavenger activity evaluation of the clove bud essential oil (Eugenia caryophyllus) and eugenol derivatives employing ABTS+• decolorizationspa
dc.subject.keywordClove essential oilspa
dc.subject.keywordEugenolspa
dc.subject.keywordIsoeugenolspa
dc.subject.keywordAntioxidant activityspa
dc.subject.keywordABTS radical-cationspa
dc.subject.keywordGC-MSspa
dc.subject.keywordFree radical scavenger activityspa
dc.coverage.campusCRAI-USTA Bogotáspa
dc.identifier.doihttps://doi.org/10.3797/scipharm.1109-11spa
dc.description.domainhttp://unidadinvestigacion.usta.edu.cospa
dc.relation.referencesBarja G, Cadenas S, Rojas C, López-Torres M, Pérez-Campo R. A decrease of free radical production near critical targets as a cause of maximum longevity in animals Comp Biochem Physiol Biochem Mol Biol. 1994; 108: 501–512. http://www.ncbi.nlm.nih.gov/pubmed/7953069spa
dc.relation.referencesPark E.-Y, Hong Y-C, Lee K-H, Im M-W, Ha E, Kim Y, Ha M. Maternal exposure to environmental tobacco smoke, GSTM1/T1 polymorphisms and oxidative stress. Reprod Toxicol. 2008; 26: 197–202. http://dx.doi.org/10.1016/j.reprotox.2008.08.010spa
dc.relation.referencesJi L. Oxidative stress during exercise: Implication of antioxidant nutrients. Free Rad Biol Med. 1995; 18: 1079–1086. http://dx.doi.org/10.1016/0891-5849(94)00212-3spa
dc.relation.referencesRadak Z, Chung H. Y, Koltai E, Taylor A. W, Goto S. Exercise, oxidative stress and hormesis. Ageing Res Rev. 2008; 7: 34–42. http://dx.doi.org/10.1016/j.arr.2007.04.004spa
dc.relation.referencesHartmann A, Niess A. Oxidative DNA damage in exercise. Handbook of Oxidants and Antioxidants in Exercise. 2000; 195–217.spa
dc.relation.referencesPalli D, Sera F, Giovannelli L, Masala G, Bendinelli B, Caini S, Dolara P, Saieva C. Environmental ozone exposure and oxidative DNA damage in adult residents of Florence, Italy. Environ Pollut. 2009; 157: 1521–1525. http://dx.doi.org/10.1016/j.envpol.2008.09.011spa
dc.relation.referencesZinchuk V, Dorokhina L, Maltsev A. Prooxidant–antioxidant balance in rats under hypothermia combined with modified hemoglobin– oxygen affinity. J Therm Biol. 2002; 27: 345–352. http://dx.doi.org/10.1016/S0306-4565(01)00099-7spa
dc.relation.referencesSakihama Y, Cohen M, Grace S, Yamasaki H. Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants. Toxicology. 2002; 177: 67-80. doi:10.1016/S0300-483X(02)00196-8spa
dc.relation.referencesIndo H, Davidson M, Yen H, Suenaga S, Tomita K, Nishii T, Higuchi M, Koga Y, Ozawa T, Majima H. Evidence of ROS generation by mitochondria in cells with impaired electron transport chain and mitochondrial DNA damage. Mitochondrion. 2007; 7: 106–118. http://dx.doi.org/10.1016/j.mito.2006.11.026spa
dc.relation.referencesFrenkel K. Carcinogen-mediated oxidant formation and oxidative DNA damage. Pharmacol Ther. 1992; 53: 127–166. http://dx.doi.org/10.1016/0163-7258(92)90047-4spa
dc.relation.referencesRowe L, Degtyareva N, Doetsch P. DNA damage-induced reactive oxygen species (ROS) stress response in Saccharomyces cerevisiae. Free Rad Biol Med. 2008; 45: 1167–1177. http://dx.doi.org/10.1016/j.freeradbiomed.2008.07.018spa
dc.relation.referencesMartínez-Cayuela M. Oxygen free radicals and human disease. Biochimie. 1995; 77: 147–161. http://dx.doi.org/10.1016/0300-9084(96)88119-3spa
dc.relation.referencesGusdon A, Chen J, Mathews C. mt-Nd2c Increases Susceptibility to Type 1 Diabetes (T1D) by Increasing Mitochondrial Reactive Oxygen Species (ROS) Production. Mitochondrion, 2009; 9: 67–68. http://dx.doi.org/10.1016/j.mito.2008.12.024spa
dc.relation.referencesAbe J, Bradford C. Reactive Oxygen Species as Mediators of Signal Transduction in Cardiovascular Disease. Trends Cardiovas Med. 1998; 8: 59–64. http://dx.doi.org/10.1016/S1050-1738(97)00133-3spa
dc.relation.referencesPelicano H, Carney D, Huang P. ROS stress in cancer cells and therapeutic implications. Drug Resist Updates. 2004; 7: 97–110. http://dx.doi.org/10.1016/j.drup.2004.01.004spa
dc.relation.referencesMigliore L, Coppedè F. Environmental-induced oxidative stress in neurodegenerative disorders and aging. Mutat Res. 2009; 674: 73–84. http://dx.doi.org/10.1016/j.mrgentox.2008.09.013spa
dc.relation.referencesVelez-Pardo C, Jimenez Del Rio M, Lopera F. Familial Alzheimer’s Disease: Oxidative Stress, β-amyloid, Presenilins, and Cell Death. General Pharm. 1998; 31: 675–681. http://dx.doi.org/10.1016/S0306-3623(98)00189-Xspa
dc.relation.referencesBannister J. Autoxidation in Food and Biological Systems: edited by M G Sinic and M Karel. pp 659. Plenum Publishing Corp, New York. 1980. ISBN 0-306-40561. Biochem. Ed. 1982; 10: 43.spa
dc.relation.referencesLim Y, Lim T,Tee J. Antioxidant properties of several tropical fruits: A comparative study. Food Chem. 2007: 103; 1003–1008. http://dx.doi.org/10.1016/j.foodchem.2006.08.038spa
dc.relation.referencesZulueta A, Esteve M, Frasquet I, Frígola A. Vitamin C, vitamin A, phenolic compounds and total antioxidant capacity of new fruit juice and skim milk mixture beverages marketed in Spain. Food Chem. 2007; 103: 1365–1374. http://dx.doi.org/10.1016/j.foodchem.2006.10.052spa
dc.type.categoryGeneración de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicosspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-CompartirIgual 2.5 Colombia
Except where otherwise noted, this item's license is described as Atribución-NoComercial-CompartirIgual 2.5 Colombia

Indexado por: