Show simple item record

dc.creatorVitola, Jaime
dc.creatorAnaya, Maribel
dc.creatorRodríguez, Jairo
dc.date.accessioned2020-04-20T15:34:04Z
dc.date.available2020-04-20T15:34:04Z
dc.date.created2019-08
dc.identifier.urihttp://hdl.handle.net/11634/22595
dc.descriptionDada la necesidad del ser humano en reducir el riesgo que pueden suponer las estructuras ya sea por fallas en su construcción o detrimento en sus cualidades por factores como el uso, los cambios climáticos, o accidentes que afecten su integridad, el Monitoreo de la Salud Estructural ha venido posicionándose en un lugar relevante, dado que apunta a reducir precisamente este riesgo, además de mejorar la eficiencia de los procesos de mantenimiento, tanto predictivos como correctivos, aunado a la reducción de tiempo por interrupción de funcionamiento, hecho que repercute positivamente en las actividades del ser humano que interactúa con estructuras civiles y/o militares. El presente proyecto busca desarrollar un sistema, que haciendo uso de ondas de Lamb, permita la localización de diferentes tipos de daños en estructuras metálicas y de material compuesto, pero considerando daños diferentes al de masa deliberadamente incorporada (tipo de daño este que se había venido trabajando en proyectos anteriores), tales como perforaciones, fisuras completas y superficiales. Además se explorará mejorar la ubicación de los sensores, bien sea para reducir su cantidad o para mejorar la sensibilidad, y dado que las estructuras generalmente por cuestiones medioambientales se encuentran sujetas a cambios de temperatura, el presente proyecto buscará que el sistema sea inmune a variaciones térmicas, y de igual manera se explorará la insensibilidad a daños en los transductores de sensado verificando su tolerancia a fallas, con aplicación en aerogeneradores, aviones y drones, entre otras estructuras, que tienen en el material compuesto y el aluminio sus principales materiales de construcción.spa
dc.description.abstractGiven the need for human beings to reduce the risk that structures can pose, whether due to failures in their construction or detriment to their qualities due to factors such as use, climatic changes, or accidents that affect their integrity, Structural Health Monitoring It has been positioning itself in a relevant place, given that it aims to reduce precisely this risk, in addition to improving the efficiency of maintenance processes, both predictive and corrective, coupled with the reduction in time due to interruption of operation, a fact that has a positive impact on activities of the human being that interacts with civil and / or military structures. The present project seeks to develop a system that, using Lamb waves, allows the location of different types of damage to metal and composite structures, but considering damage different from that of the deliberately incorporated mass (type of damage that had come working on previous projects), such as perforations, complete and superficial fissures. Furthermore, the location of the sensors will be explored, either to reduce their quantity or to improve sensitivity, and since structures are generally subject to changes in temperature due to environmental issues, this project will seek to make the system immune to variations. thermal sensors, and in the same way the insensitivity to damage in the sensing transducers will be explored, verifying their fault tolerance, with application in wind turbines, airplanes and drones, among other structures, which have their main construction materials in composite material and aluminum. .spa
dc.format.mimetypeapplication/pdfspa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subjectMonitorización structuralspa
dc.subjectSHMspa
dc.subjectlocalizaciónspa
dc.titleDiseño de un sistema para la localización de daños en estructuras metálicas y de material compuesto expuestas a cambios de temperatura (Etapa II).spa
dc.typeFormación de Recurso Humano para la Ctel: Proyecto ejecutado con investigadores en empresas, industrias y Estadospa
dc.subject.keywordStructural Health monitoringspa
dc.subject.keywordlocationspa
dc.description.sedeCRAI-USTA Bogotáspa
dc.description.orcidhttps://orcid.org/0000-0003-4367-0592spa
dc.description.orcidhttps://orcid.org/0000-0002-0241-4771spa
dc.description.orcidhttps://orcid.org/0000-0001-6754-1838spa
dc.description.GoogleScholarhttps://scholar.google.es/citations?user=dTnXldcAAAAJ&hl=es&oi=aospa
dc.description.GoogleScholarhttps://scholar.google.com/citations?user=7czJgy0AAAAJ&hl=esspa
dc.description.GoogleScholarhttps://scholar.google.com/citations?user=orwDdywAAAAJ&hl=esspa
dc.description.cvlachttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000379204spa
dc.description.cvlachttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000726559spa
dc.description.cvlachttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000273821spa
dc.description.dominiohttp://unidadinvestigacion.usta.edu.cospa
dc.source.bibliographicCitationWang L, Chan THT. Review of vibration-based damage detection and condition assessment of bridge structures using structural health monitoring, 2009.spa
dc.source.bibliographicCitationRaju KS, Pratap Y, Sahni Y, Naresh Babu M. Implementation of a WSN system towards SHM of civil building structures. Intell. Syst. Control (ISCO), 2015 IEEE 9th Int. Conf., 2015, p. 1–7. doi:10.1109/ISCO.2015.7282303.spa
dc.source.bibliographicCitationGiurgiutiu V, Zagrai A, Bao J. Damage Identification in Aging Aircraft Structures with Piezoelectric Wafer Active Sensors. J Intell Mater Syst Struct 2004;15:673–87. doi:10.1177/1045389x04038051.spa
dc.source.bibliographicCitationWang Q, Su Z, Hong M. Online Damage Monitoring for High-Speed Train Bogie Using Guided Waves: Development and Validation. 7th Eur Work Struct Heal Monit July 8-11, 2014 La Cité, Nantes, Fr 2014.spa
dc.source.bibliographicCitationVendittozzi C, Sindoni G, Paris C, del Marmo PP. Application of an FBG sensors system for structural health monitoring and high performance trimming on racing yacht. Sens. Technol. (ICST), 2011 Fifth Int. Conf., 2011, p. 617–22. doi:10.1109/ICSensT.2011.6137057spa
dc.source.bibliographicCitationGruden M, Jobs M, Rydberg A. Empirical Tests of Wireless Sensor Network in Jet Engine Including Characterization of Radio Wave Propagation and Fading. Antennas Wirel Propag Lett IEEE 2014;13:762–5. doi:10.1109/LAWP.2014.2316311.spa
dc.source.bibliographicCitationRolfes R, Zerbst S, Haake G, Reetz J, Lynch JP. Integral SHM-System for Offshore Wind Turbines Using Smart Wireless Sensors. 6th Int Work Struct Heal Monit 2007:1–8spa
dc.source.bibliographicCitationRumsey MA, Paquette JA. Structural health monitoring of wind turbine blades. Proc SPIE 6933, Smart Sens Phenomena, Technol Networks, Syst 2008:1–15. doi:10.1117/12.778324.spa
dc.source.bibliographicCitationStaszewski WJ, Worden K. Signal processing for damage detection. Encycl Struct Heal Monit 2009.spa
dc.source.bibliographicCitationDervilis N, Worden K, Cross EJ. On robust regression analysis as a means of exploring environmental and operational conditions for SHM data. J Sound Vib 2015;347:279–96. doi:10.1016/j.jsv.2015.02.039.spa
dc.source.bibliographicCitationLorenzoni F, Caldon M, Modena C, Aoki T. Structural health monitoring for post-earthquake controls: Applications in l’Aquila. Environ. Energy Struct. Monit. Syst. (EESMS), 2015 IEEE Work., 2015, p. 162–7. doi:10.1109/EESMS.2015.7175871.spa
dc.source.bibliographicCitationFabbrocino G, Rainieri C. Some remarks on the design of smart SHM systems for advanced seismic protection of health facilities. Environ. Energy Struct. Monit. Syst. (EESMS), 2013 IEEE Work., 2013, p. 1–6. doi:10.1109/EESMS.2013.6661698.spa
dc.source.bibliographicCitationMrad N. SHM implementation. Fly by Wirel. Work. (FBW), 2011 4th Annu. Caneus, 2011, p. 1–4. doi:10.1109/FBW.2011.5967626.spa
dc.source.bibliographicCitationRohrmann RG, Thöns S, Rücker W. Integrated monitoring of offshore wind turbines – requirements, concepts and experiences. Struct Infrastruct Eng 2010;6:575–91. doi:10.1080/15732470903068706.spa
dc.source.bibliographicCitationCaizzone S, DiGiampaolo E. Wireless Passive RFID Crack Width Sensor for Structural Health Monitoring. Sensors Journal, IEEE 2015;15:6767–74. doi:10.1109/JSEN.2015.2457455spa
dc.source.bibliographicCitationDerriso MM, McCurry CD, DeSimio MP. Global workspace theory inspired architecture for autonomous structural health monitoring. Aerosp. Electron. Conf. (NAECON), 2012 IEEE Natl., 2012, p. 190–5. doi:10.1109/NAECON.2012.6531054.spa
dc.source.bibliographicCitationRytter A. Vibrational Based Inspection of Civil Engineering Structures 1993.spa
dc.source.bibliographicCitationFarrar CR, Duffey T a, Doebling SW, Nix D a. A Statistical Pattern Recognition Paradigm for Vibration-Based Structural Health Monitoring Charles R. Farrar, Thomas A. Duffey, Scott W. Doebling, David A. Nix 1999:10spa
dc.source.bibliographicCitationShen T, Wan F, Song B, Wu Y. Damage location and identification of the wing structure with Probabilistic Neural Networks. Progn. Syst. Heal. Manag. Conf. (PHM-Shenzhen), 2011, 2011, p. 1–6. doi:10.1109/PHM.2011.5939524.spa
dc.source.bibliographicCitationMujica LE, Tibaduiza DA, Rodellar J. Data-Driven Multiactuator Piezoelectric System for Structural Damage Localization. Fifth World Conf. Struct. Control Monit. Tokio-Japan, 2010.spa
dc.source.bibliographicCitationChintalapudi K, Paek J, Gnawali O, Fu TS, Dantu K, Caffrey J, et al. Structural damage detection and localization using NETSHM. Inf. Process. Sens. Networks, 2006. IPSN 2006. Fifth Int. Conf., 2006, p. 475–82. doi:10.1109/IPSN.2006.243936spa
dc.source.bibliographicCitationContreras W, Ziavras S. Efficient infrastructure damage detection and localization using wireless sensor networks, with cluster generation for monitoring damage progression. 2017 IEEE 8th Annu. Ubiquitous Comput. Electron. Mob. Commun. Conf., 2017, p. 173–8. doi:10.1109/UEMCON.2017.8249020.spa
dc.source.bibliographicCitationChehami L, de Rosny J, Prada C, Moulin E. Passive flaw detection and localization in thin plate from ambient noise cross-correlation. Ultrason. Symp. (IUS), 2014 IEEE Int., 2014, p. 138–41. doi:10.1109/ULTSYM.2014.0035spa
dc.source.bibliographicCitationHajrya R, Verge M, Mechbal N. Active damage detection and localization applied to a composite structure using piezoceramic patches. Control Fault-Tolerant Syst. (SysTol), 2010 Conf., 2010, p. 849–54. doi:10.1109/SYSTOL.2010.5676018.spa
dc.source.bibliographicCitationTansel IN, Rojas J, Uragun B. Localization of problems with Surface Response to Excitation method. Recent Adv. Sp. Technol. (RAST), 2013 6th Int. Conf., 2013, p. 33–7. doi:10.1109/RAST.2013.6581227.spa
dc.source.bibliographicCitationMichaels JE, Michaels TE. Guided wave signal processing and image fusion for in situ damage localization in plates. Wave Motion 2007;44:482–92. doi:10.1016/j.wavemoti.2007.02.008spa
dc.source.bibliographicCitationQatu KM, Abdelgawad A, Yelamarthi K. Structure damage localization using a reliable wave damage detection technique. 2016 Int. Conf. Electr. Electron. Optim. Tech., 2016, p. 1959–62. doi:10.1109/ICEEOT.2016.7755031.spa
dc.source.bibliographicCitationZrelli A, Ezzedine T. Localization of damage using wireless sensor networks for tunnel health monitoring. 2017 13th Int. Wirel. Commun. Mob. Comput. Conf., 2017, p. 1161–5. doi:10.1109/IWCMC.2017.7986449spa
dc.source.bibliographicCitationSchrader K, Abedi A, Caccese V. Impact localization and scaling for SHM of inflatable habitats. Fly by Wirel. Work. (FBW), 2010 Caneus, 2010, p. 20–1. doi:10.1109/FBW.2010.5613793spa
dc.source.bibliographicCitationWijetunge S, Gunawardana U, Liyanapathirana R. Wireless Sensor Networks for Structural Health Monitoring: Considerations for communication protocol design. Telecommun. (ICT), 2010 IEEE 17th Int. Conf., 2010, p. 694–9. doi:10.1109/ICTEL.2010.5478798.spa
dc.source.bibliographicCitationPark G, Taylor SG, Kevin MF, Farrar CR. SHM of wind turbine blades using piezoelectric active-sensors. Fifth Eur. Work. Struct. Heal. Monit., 2010, p. 321–6spa
dc.source.bibliographicCitationWorden K, Farrar CR. Structural Health Monitoring: a machine learning perspective. 2013. doi:10.1177/1475921708090560spa
dc.source.bibliographicCitationPerelli A, Caione C, De Marchi L, Brunelli D, Marzani A, Benini L. Design of an ultra-low power device for aircraft structural health monitoring. Des. Autom. Test Eur. Conf. Exhib. (DATE), 2013, 2013, p. 1127–30. doi:10.7873/DATE.2013.236.spa
dc.source.bibliographicCitationBabjak B, Szilvasi S, Volgyesi P, Yapar O, Basu PK. Analysis and efficient onset time detection of acoustic emission signals with power constrained sensor platforms. SENSORS, 2013 IEEE, 2013, p. 1–4. doi:10.1109/ICSENS.2013.6688148spa
dc.source.bibliographicCitationSchubert L, Frankenstein B, Reppe G. Match-X Based Microsystem for Structural Health Monitoring. Electron. Syst. Technol. Conf. 2006. 1st, vol. 1, 2006, p. 635–41. doi:10.1109/ESTC.2006.280071spa
dc.source.bibliographicCitationSi L, Chen Z, Yu X, Zhang Q, Liu X. Embedded real-time damage detection and identification algorithms in wireless health monitoring system for smart structures. Commun. Technol. Appl. 2009. ICCTA ’09. IEEE Int. Conf., 2009, p. 676–81. doi:10.1109/ICCOMTA.2009.5349114spa
dc.source.bibliographicCitationLiu X, Cao J, Tang S, Guo P. Fault Tolerant Complex Event Detection in WSNs: A Case Study in Structural Health Monitoring. Mob Comput IEEE Trans 2015;14:2502–15. doi:10.1109/TMC.2015.2405544.spa


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 2.5 Colombia
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 2.5 Colombia