Show simple item record

dc.contributor.authorBreidt, F. Jayspa
dc.contributor.authorGutiérrez Rojas, Hugo Andrésspa
dc.date.accessioned2020-06-09T22:50:11Zspa
dc.date.available2020-06-09T22:50:11Zspa
dc.date.issued2009-03spa
dc.identifier.citationGutiérrez, H. A., & Breidt, F. J. (2009). Estimation of the Population Total using the Generalized Difference Estimator and Wilcoxon Ranks. Revista Colombiana De Estadística, 32(1), 123-14spa
dc.identifier.urihttp://hdl.handle.net/11634/23993spa
dc.descriptionEste artículo presenta un nuevo estimador de regresión para el total poblacional de una característica de interés, creado por la minimización de una medida de dispersión y el uso de los puntajes de Wilcoxon. Se considera el uso de un modelo no paramétrico con el fin de obtener un estimador asistido por modelos, que surge del estimador de diferencia gene ralizada. En primer lugar, se presenta un nuevo estimador del vector de coeficientes de regresión y luego, haciendo uso de los principios del estimador de diferencia generalizada, se propone un estimador para el total poblacional. El estudio de las medidas de precisión y eficiencias, como el sesgo y el error cuadrático medio, se lleva a cabo mediante experimentos de simulación.spa
dc.description.abstractThis paper presents a new regression estimator for the total of a population created by means of the minimization of a measure of dispersion and the use of the Wilcoxon scores. The use of a particular nonparametric model is considered in order to obtain a model-assisted estimator by means of the generalized difference estimator. First, an estimator of the vector of the regression coefficients for the finite population is presented and then, using the generalized difference principles, an estimator for the total a population is proposed. The study of the accuracy and efficiency measures, such as design bias and mean square error of the estimators, is carried out through simulation experiments.spa
dc.format.mimetypetext/htmlspa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.titleEstimation of the Population Total using the Generalized Difference Estimator and Wilcoxon Ranks : Estimación del total poblacional usando el estimador de diferencia generalizada y los rangos de Wilcoxonspa
dc.typeGeneración de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicosspa
dc.subject.keywordFinite populationspa
dc.subject.keywordRegression estimatorspa
dc.subject.keywordWilcoxon scorespa
dc.subject.lembPrueba de Wilcoxonspa
dc.coverage.campusCRAI-USTA Bogotáspa
dc.contributor.orcidhttps://orcid.org/0000-0002-0167-2162spa
dc.contributor.orcidhttps://orcid.org/0000-0002-4205-1960spa
dc.contributor.googlescholarhttps://scholar.google.es/citations?user=HajkarwAAAAJ&hl=esspa
dc.contributor.cvlachttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000634824spa
dc.description.domainhttp://unidadinvestigacion.usta.edu.cospa
dc.relation.referencesBreidt, F. J. & Opsomer, J. D. (2000), `Local Polynomial Regression Estimators in Survey Sampling´, The Annals of Statistics 28, 1026-1053spa
dc.relation.referencesCassel, C. M., Särndal, C. E. & Wretman, J. (1976a), `Some Results on Generalized Difference Estimation and Generalized Regression Estimation for Finite Populations´, Biometrika 63, 615-620.spa
dc.relation.referencesCassel, C. M., Särndal, C. E. & Wretman, J. (1976b), Foundations of Inference in Survey Sampling, Wiley, New York, United Statesspa
dc.relation.referencesChen, J. & Qin, J. (1993), `Empirical Likelihood Estimation for Finite Populations and the Efectivene Usage of Auxiliary Information´, Biometrika 80, 107-116.spa
dc.relation.referencesDeville, J. C. & Särndal, C. E. (1992), `Calibration Estimators in Survey Sampling´, Journal of the American Statistical Association 87, 376-382.spa
dc.relation.referencesDraper, D. (1988), `Rank-Based Robust Analysis of Linear Models I. Exposition and Review´, Statistical Science 3, 239-257.spa
dc.relation.referencesHettmansperger, T. P. (1984), Statistical Inference Based on Ranks, Wiley, New York, United States.spa
dc.relation.referencesHettmansperger, T. P. & McKean, J. W. (1998 address London, Great Britain), Robust Nonparametric Statistical Methods, Arnold.spa
dc.relation.referencesHorvitz, D. G. & Thompson, D. J. (1952), `A Generalization of Sampling Without Replacement from a Finite Universe´, Journal of the American Statistical Association 47, 663-685.spa
dc.relation.referencesIsaki, C. T. & Fuller, W. A. (1982), `Survey Design under the Regression Superpopulation Model´, Journal of the American Statistical Association 767, 89-96.spa
dc.relation.referencesJaeckel, L. (1972), `Estimating Regression Coefficients by Minimizing the Dispersion of the Residuals´, The Annals of Mathematical Statistics 43, 1449-1458.spa
dc.relation.referencesJurecková, J. (1971), `Nonparametric Estimate of Regression Coefficients´, The Annals of Mathematical Statistics 42, 1328-1338.spa
dc.relation.referencesLohr, S. (1999), Sampling: Design and Analysis, Duxbury Press, California, United States.spa
dc.relation.referencesSärndal, C. E. (1980), `On \pi-inverse Weighting Versus best Linear Unbiased Weighting in Probability Sampling´, Biometrika 67, 639-650.spa
dc.relation.referencesSärndal, C. E., Swensson, B. & Wretman, J. (1989), `The Weighted Residual Technique for Estimating the Variance of the General Regression Estimator of the Finite Popoulation Total´, Biometrika 76, 527-537.spa
dc.relation.referencesSärndal, C. E., Swensson, B. & Wretman, J. (1992), Model Assisted Survey Sampling, Springer, New York, United States.spa
dc.relation.referencesTeam, R. D. C. (2007), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.spa
dc.relation.referencesTerpstra, J. F. & McKean, J. W. (2005), `Rank-based analyses of linear models using R´, Journal of Statistical Software 14, 1-26.spa
dc.relation.referencesWu, C. (2003), `Optimal Calibration Estimators in Survey Sampling´, Biometrika 90, 937-951.spa
dc.relation.referencesWu, C. & Sitter, R. R. (2001), `A Model Calibration Approach to Using Complete Auxiliary Information from Survey Data´, Journal of the American Statistical Association 96, 185-193.spa
dc.subject.proposalEstimador de regresiónspa
dc.subject.proposalPoblación finitaspa
dc.subject.proposalPuntaje de Wilcoxonspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 2.5 Colombia
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 2.5 Colombia

Indexado por: