Mostrar el registro sencillo del ítem

dc.contributor.advisorQuiñones Segura, Cesar Augusto
dc.contributor.authorBurgos Contento, Jair Esteban
dc.date.accessioned2017-06-16T14:58:53Z
dc.date.accessioned2017-06-24T17:35:22Z
dc.date.available2017-06-16T14:58:53Z
dc.date.available2017-06-24T17:35:22Z
dc.date.issued2015
dc.identifier.citationBurgos Contento, J. E. (2015). Implementación de la Metodología de Voltamperometría Diferencial de Pulsos con Redisolución Anódica (DPASV) para la determinación de Mercurio Total en Atún Enlatado. [Trabajo de Grado, Universidad Santo Tomás]. Repositorio Institucional.
dc.identifier.citationBurgos Contento, J. E. (2015). Implementación de la Metodología de Voltamperometría Diferencial de Pulsos con Redisolución Anódica (DPASV) para la determinación de Mercurio Total en Atún Enlatado. [Trabajo de Especialización, Universidad Santo Tomás]. Repositorio Institucional.
dc.identifier.urihttps://hdl.handle.net/11634/2562
dc.descriptionLa utilización de todo tipo de materiales en la industria ha incrementado el uso del mercurio, que principalmente se utiliza en la fabricación de lámparas e instrumentos de medida, también en la industria manufacturera de productos químicos; algunas aplicaciones de compuestos de mercurio incluyen su uso como catalizadores, fungicidas, herbicidas, pigmentos e incluso drogas. Es por esto que surge la necesidad de crear una técnica que permita determinar la concentración de mercurio en diferentes tipos de muestras ya sea en agua, suelos, o alimentos. La determinación de este metal es importante debido a su alta toxicidad y facilidad de combinarse con otros metales para formar amalgamas altamente tóxicas para el ambiente y para la salud humana.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.titleImplementación de la Metodología de Voltamperometría Diferencial de Pulsos con Redisolución Anódica (DPASV) para la determinación de Mercurio Total en Atún Enlatadospa
dc.typebachelor thesis
dc.description.degreenameIngeniero Ambientalspa
dc.publisher.programPregrado de Ingeniería Ambientalspa
dc.publisher.facultyFacultad de Ingeniería Ambientalspa
dc.subject.lembIngeniería Ambiental
dc.subject.lembAlimento
dc.subject.lembMetodología
dc.type.localTesis de pregradospa
dc.rights.localAbierto (Texto Completo)spa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.coverage.campusCRAI-USTA Bogotáspa
dc.contributor.orcidhttps://orcid.org/0000-0002-5001-1627
dc.contributor.googlescholarhttps://scholar.google.es/citations?user=pa7wklMAAAAJ&hl=es
dc.contributor.cvlachttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000098086
dc.relation.referencesD. Martín-Yerga, M. B. González-García, and A. Costa-García, ‘Electrochemical determination of mercury: A review’, Talanta, vol. 116, pp. 1091–1104, 2013.
dc.relation.referencesJ. Murphy, P. Jones, and S. J. Hill, ‘Determination of total mercury in environmental and biological samples by flow injection cold vapour atomic absorption spectrometry’, Spectrochim. Acta, Part B, vol. 51, no. 14, pp. 1867– 1873, 1996.
dc.relation.referencesN. Bloom and W. F. Fitzgerald, ‘Determination of volatile mercury species at the picogram level by low-temperature gas chromatography with cold-vapour atomic fluorescence detection’, Anal. Chim. Acta, vol. 208, no. C, pp. 151–161, 1988
dc.relation.referencesJ. S. dos Santos, M. de la Guárdia, A. Pastor, and M. L. P. dos Santos, ‘Determination of organic and inorganic mercury species in water and sediment samples by HPLC on-line coupled with ICP-MS’, Talanta, vol. 80, no. 1, pp. 207– 211, 2009.
dc.relation.referencesJ. Manuel and S. Londoño, ‘Evaluación de la concentración de mercurio en diversas marcas de atún enlatado comercializadas en la ciudad de Cartagena de Indias’, 2011.
dc.relation.referencesAgency for Toxic Substances and Disease Registry, ‘Toxicological Profile for Mercury Department of Health and Human Services’, no. March, p. 676, 1999.
dc.relation.referencesG. R. J. Khaniki, I. Alli, E. Nowroozi, and R. Nabizadeh, ‘Mercury Contamination in Fish and Public Health Aspects: A review’, Pakistan J. Nutr., vol. 4, no. 5, pp. 276– 281, 2005.
dc.relation.referencesJ. Nriagu and C. Becker, ‘Volcanic emissions of mercury to the atmosphere: global and regional inventories.’, Sci. Total Environ., vol. 304, no. 1–3, pp. 3–12, 2003.
dc.relation.referencesF. Emami Khansari, M. Ghazi-Khansari, and M. Abdollahi, ‘Heavy metals content of canned tuna fish’, Food Chem., vol. 93, no. 2, pp. 293–296, 2005.
dc.relation.referencesUS EPA, ‘Mercury Update: Impact on Fish Advisories’, 2001.
dc.relation.referencesF. M. M. Morel, A. M. L. Kraepiel, and M. Amyot, ‘THE CHEMICAL CYCLE AND BIOACCUMULATION OF MERCURY’, Annu. Rev. Ecol. Syst., vol. 29, no. 1, pp. 543–566, Nov. 1998.
dc.relation.referencesR. C. Harris, J. W. M. Rudd, M. Amyot, C. L. Babiarz, K. G. Beaty, P. J. Blanchfield, R. A. Bodaly, B. A. Branfireun, C. C. Gilmour, J. A. Graydon, A. Heyes, H. Hintelmann, J. P. Hurley, C. A. Kelly, D. P. Krabbenhoft, S. E. Lindberg, R. P. Mason, M. J. Paterson, C. L. Podemski, A. Robinson, K. A. Sandilands, G. R. Southworth, V. L. St. Louis, and M. T. Tate, ‘Whole-ecosystem study shows rapid fish-mercury response to changes in mercury deposition’, Proc. Natl. Acad. Sci. , vol. 104 , no. 42 , pp. 16586–16591, Oct. 2007
dc.relation.referencesG. Biddinger and S. Gloss, ‘The importance of trophic transfer in the bioaccumulation of chemical contaminants in aquatic ecosystems’, in Residue Reviews SE - 4, vol. 91, F. Gunther and J. Gunther, Eds. Springer New York, 1984, pp. 103–145
dc.relation.referencesW. Clarkson, ‘Environmental in the food chain’, Blood, vol. 61, 1995
dc.relation.referencesB. D. Hall, R. A. Bodaly, R. J. P. Fudge, J. W. M. Rudd, and D. M. Rosenberg, ‘Food as the Dominant Pathway of Methylmercury Uptake by Fish’, Water. Air. Soil Pollut., vol. 100, no. 1–2, pp. 13–24, 1997.
dc.relation.referencesB. Braune, ‘Mercury accumulation in relation to size and age of Atlantic herring (Clupea harengus harengus) from the southwestern Bay of Fundy, Canada’, Arch. Environ. Contam. Toxicol., vol. 16, no. 3, pp. 311–320, 1987.
dc.relation.referencesL. D. Lacerda, E. D. Bidone, A. F. Guimaraes, and W. C. Pfeiffer, ‘Mercury concentrations in fish from the Itacaiunas-Parauapebas River system, Carajas region, Amazon.’, An. Acad. Bras. Cienc., vol. 66, no. 3, pp. 373–379, 1994
dc.relation.referencesJ. Park and L. R. Curtis, ‘Mercury distribution in sediments and bioaccumulation by fish in two oregon reservoirs: point-source and nonpoint-source impacted systems.’, Arch. Environ. Contam. Toxicol., vol. 33, no. 4, pp. 423–429, Nov. 1997.
dc.relation.referencesJ. Burger, K. F. Gaines, and M. Gochfeld, ‘Ethnic differences in risk from mercury among Savannah River fishermen.’, Risk Anal., vol. 21, no. 3, pp. 533–544, Jun. 2001
dc.relation.referencesL. R. Kamps, R. Carr, and H. Miller, ‘Total mercury-monomethylmercury content of several species of fish.’, Bull. Environ. Contam. Toxicol., vol. 8, no. 5, pp. 273– 279, Nov. 1972
dc.relation.referencesQ. Wang, D. Kim, D. D. Dionysiou, G. A. Sorial, and D. Timberlake, ‘Sources and remediation for mercury contamination in aquatic systems--a literature review.’, Environ. Pollut., vol. 131, no. 2, pp. 323–336, Sep. 2004.
dc.relation.referencesMinisterio de Agricultura Alimentación y Medio Ambiente., ‘Mercado de los Túnidos’, 2014
dc.relation.referencesMinisterio de Protección Social, ‘Resolución 0148’, 2007
dc.relation.referencesL. A. Zuleta J. and A. Becerra, ‘El Mercado del Atún en Colombia’, Bogotá, 2013.
dc.relation.referencesR. Mendoza San Miguel, ‘Análisis sectorial del atún y sus derivados’, 2003.
dc.relation.referencesT. W. Clarkson and L. Magos, ‘The Toxicology of Mercury and Its Chemical Compounds’, Crit. Rev. Toxicol., vol. 36, no. 8, pp. 609–662, Jan. 2006
dc.relation.referencesCommittee on the Toxicological Effects of Methylmercury, Toxicological Effects of Methylmercury. 2000
dc.relation.referencesG. Liu, Y. Cai, and N. O’Driscoll, Environmental Chemistry and Toxicology of mercury. Wiley, 2011.
dc.relation.referencesCH, ‘Appendices - Standards and Methods Manual - Food - Canadian Food Inspection Agency’, Can. Guidel. Chem. Contam. Toxins Fish Fish Prod., no. August, pp. 3–6, 2012
dc.relation.referencesJ. Burger and M. Gochfeld, ‘Mercury in canned tuna: white versus light and temporal variation.’, Environ. Res., vol. 96, no. 3, pp. 239–249, Nov. 2004.
dc.relation.referencesT. R. Lange, H. E. Royals, and L. L. Connor, ‘Mercury accumulation in largemouth bass (Micropterus salmoides) in a Florida Lake’, Arch. Environ. Contam. Toxicol., vol. 27, no. 4, pp. 466–471, 1994
dc.relation.referencesJ. DiFranco, L. Bacon, B. Mower, and D. Courtemanch, ‘Fish tissue contamination in maine lakes data report’, 1995
dc.relation.referencesS. L. Gerstenberger, J. Pratt-Shelley, M. S. Beattie, and J. A. Dellinger, ‘Mercury concentrations of Walleye (Stizostedion vitreum vitreum) in 34 Northern Wisconsin Lakes’, Bull. Environ. Contam. Toxicol., vol. 50, no. 4, pp. 612–617, 1993.
dc.relation.referencesG. R. W. Denton and C. Burdon-Jones, ‘Trace metals in fish from the Great Barrier Reef’, Mar. Pollut. Bull., vol. 17, no. 5, pp. 201–209, May 1986
dc.relation.referencesL. D. Hylander, E. C. Silva, L. J. Oliveira, S. A. Silva, E. K. Kuntze, and D. X. Silva, ‘Mercury Levels in Alto Pantanal: A Screening Study’, Ambio, vol. 23, no. 8, pp. 478–484, 1994.
dc.relation.referencesMinisterio de Salud. División Jurídica, Reglamento Sanitario de los Alimentos, vol. 13. Chile, 1996.
dc.relation.referencesS. E. Collings, M. S. Johnson, and R. T. Leah, ‘Metal contamination of angler caught fish from the Mersey Estuary’, Mar. Environ. Res., vol. 41, no. 3, pp. 281– 297, 1996.
dc.relation.referencesEPA, ‘Mercury in Aqueous Samples and Extracts’, 1996
dc.relation.referencesM. Litter, M. Armienta, and S. Farías, Metodologías analíticas para la determinación y especiación de arsénico en aguas y suelos. 2009.
dc.relation.referencesD. C. Harris, Quantitative Chemical Analysis, vol. 42, no. 5. 2007
dc.relation.referencesA. J. Bard, L. R. Faulkner, N. York, C. @Bullet, W. Brisbane, and S. E. Toronto, ELECTROCHEMICAL METHODS Fundamentals and Applications. 1944.
dc.relation.referencesJ. G. Osteryoung and R. a Osteryoung, ‘Square Wave Voltammetry’, Anal. Chem., vol. 57, no. 1, p. 101A–110A, 1985.
dc.relation.referencesC. Gao and X.-J. Huang, ‘Voltammetric determination of mercury(II)’, TrAC Trends Anal. Chem., vol. 51, pp. 1–12, 2013.
dc.relation.referencesM. C. Blanco-López, M. J. Lobo-Castañón, A. J. Miranda-Ordieres, and P. Tuñón Blanco, ‘Electrochemical sensors based on molecularly imprinted polymers’, TrAC Trends Anal. Chem., vol. 23, no. 1, pp. 36–48, Jan. 2004.
dc.relation.referencesR. Boqué, ‘El límite de detección de un método analítico.’, vol. 2009, p. 3, 2009.
dc.relation.referencesL. T. Hallett, ‘Editorial. Sensitivity of Analytical Methods’, Anal. Chem., vol. 32, no. 9, p. 1057, Aug. 1960.
dc.relation.referencesP. T. Kissinger and W. R. Heineman, ‘Cyclic voltammetry’, J. Chem. Educ., vol. 60, no. 9, p. 702, 1983.
dc.relation.referencesG. G. Muntyanu, ‘Differential Pulse Stripping Voltammetry of Mercury(II) Ions at a Cylindrical Carbon-Fiber Microelectrode in the Presence of Au(III) Ions’, J. Anal. Chem., vol. 56, no. 6, pp. 546–551, 2001.
dc.relation.referencesF. Afonso, F. Ribeiro, L. Proença, M. I. S. Lopes, M. M. Rocha, M. M. M. Neto, and I. T. E. Fonseca, ‘Voltammetric Studies on the Electrochemical Reduction of Methylmercury in HCl Aqueous Medium at a Carbon Microelectrode’, Electroanalysis, vol. 17, no. 2, pp. 127–133, Feb. 2005.
dc.relation.referencesY. Bonfil, M. Brand, and E. Kirowa-Eisner, ‘Trace determination of mercury by anodic stripping voltammetry at the rotating gold electrode’, Anal. Chim. Acta, vol. 424, no. 1, pp. 65–76, 2000
dc.relation.referencesR. D. Riso, M. Waeles, P. Monbet, and C. J. Chaumery, ‘Measurements of trace concentrations of mercury in sea water by stripping chronopotentiometry with gold disk electrode: influence of copper’, Anal. Chim. Acta, vol. 410, no. 1–2, pp. 97–105, Apr. 2000
dc.relation.referencesa Giacomino, O. Abollino, M. Malandrino, and E. Mentasti, ‘Parameters affecting the determination of mercury by anodic stripping voltammetry using a gold electrode’, Talanta, vol. 75, pp. 266–273, 2007.
dc.relation.referencesE. Bernalte, C. M. Sánchez, and E. P. Gil, ‘Determination of mercury in ambient water samples by anodic stripping voltammetry on screen-printed gold electrodes’, Anal. Chim. Acta, vol. 689, no. 1, pp. 60–64, 2011.
dc.relation.referencesM.-C. Radulescu and A. F. Danet, ‘Mercury Determination in Fish Samples by Chronopotentiometric Stripping Analysis Using Gold Electrodes Prepared from Recordable CDs’, Sensors (Basel)., vol. 8, no. 11, pp. 7157–7171, Nov. 2008.
dc.relation.referencesM. A. Augelli, R. A. Abarza Munoz, E. M. Richter, A. Gouveia Junior, and L. Angnes, ‘Chronopotentiometric Stripping Analysis Using Gold Electrodes, an Efficient Technique for Mercury Quantification in Natural Waters’, Electroanalysis, vol. 17, no. 9, pp. 755–761, May 2005.
dc.relation.referencesM. a. Augelli, R. a a Munoz, E. M. Richter, M. I. Cantagallo, and L. Angnes, ‘Analytical procedure for total mercury determination in fishes and shrimps by chronopotentiometric stripping analysis at gold film electrodes after microwave digestion’, Food Chem., vol. 101, pp. 579–584, 2007
dc.relation.referencesA. Manivannan, D. A. Tryk, and A. Fujishima, ‘Detection of Trace Lead at Boron Doped Diamond Electrodes by Anodic Stripping Analysis’, Electrochem. Solid State Lett. , vol. 2 , no. 9 , pp. 455–456, S
dc.relation.referencesP. E. Martínez and B. N. Martínez, ‘Modi fi cación de super fi cie activa de electrodos con complejo de base de Schiff’, vol. IX, no. 32, pp. 44–51, 2006.
dc.relation.referencesG. Popa and V. Magearu, ‘“Metal-complex” electrodes’, J. Electroanal. Chem. Interfacial Electrochem., vol. 22, no. 1, pp. 85–88, Jul. 1969.
dc.relation.referencesICONTEC, ‘NTC 1276’, 2000.
dc.relation.referencesCONTEC, ‘NTC 1322’, 1999.
dc.relation.referencesM. T. Morrissey, R. Rasmussen, and T. Okada, ‘Mercury Content in Pacific Troll Caught Albacore Tuna ( Thunnus alalunga )’, J. Aquat. Food Prod. Technol., vol. 13, no. 4, pp. 41–52, 2004
dc.relation.referencesBioanalytical Systems Inc, ‘BASi CV-50W Version 2.3 Instruction Manual’, no. January, 2001
dc.relation.referencesUS EPA, ‘Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846’, no. July, pp. 0–27, 2014.
dc.relation.referencesUS EPA, ‘Method 7000B: Flame Atomic Absorption Spectrophotometry’, no. February, p. 23, 2007
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.subject.proposalElectroquímicaspa
dc.subject.proposalAlimentospa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.identifier.instnameinstname:Universidad Santo Tomásspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.description.degreelevelPregradospa
dc.identifier.repourlrepourl:https://repository.usta.edu.cospa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driveinfo:eu-repo/semantics/bachelorThesis


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 2.5 Colombia
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 2.5 Colombia

Indexado por: