Show simple item record

dc.contributor.advisorBecerra Quiroz, Ana Paolaspa
dc.contributor.authorLinares Fajardo, Daniel Santiagospa
dc.date.accessioned2020-07-28T22:03:45Zspa
dc.date.available2020-07-28T22:03:45Zspa
dc.date.issued2020-07-24spa
dc.identifier.citationLinares, D., (2020). Aprovechamiento de lodos residuales de una planta de tratamiento de aguas residuales (PTAR) para la generación de energía eléctrica.spa
dc.identifier.urihttp://hdl.handle.net/11634/28585
dc.descriptionEn los últimos años ha sido evidente la preocupación mundial frente al manejo de los lodos generados dentro del proceso de floculación, coagulación y filtrado que tienen lugar en la depuración de aguas residuales dada la alta generación de estos. En Europa se genera un promedio 10,9 millones de toneladas al año, teniendo consigo impactos negativos relacionados con la emisión de compustos organicos volatiles (VOC), derivados de dióxido de nitrógeno (NOXs), óxidos de azufre (SOXs) y olores ofensivos, disminuyendo la calidad ambiental y deteriorando la salud humana afectando el sistema respiratorio, generación de afecciones en la piel debido a que contiene una gran variedad de elementos patógenos y sustancias tóxicas tales como: amoniaco, metano, ozono troposférico y compuestos halogenados Con base al contexto anteriormente mencionado como uno de los tantos escenarios existentes en la actualidad se han establecido y aplicado diferentes medidas para el manejo de este residuo, una de las medidas más utilizadas corresponde a la transformación de los lodos en abono y fertilizante orgánico dada la viabilidad económica del proceso y la reducción total de los lodos, los cuales son ingresados al interior de un biodigestor para finalmente ser adicionados a los cultivos. Todos las medidas, metodologías o tratamientos anteriormente mencionados conllevan impactos negativos por ende este trabajo busca plantear una alternativa con mayores beneficios ambientales, económicos y sociales. Mediante la utilización de los lodos como fuente de generación de energía eléctrica a través del biogás producido en la digestión anaerobia de los lodos.spa
dc.description.abstractIn recent years there has been a clear global concern about the management of sludge generated in the flocculation, coagulation and filtering process that takes place in the purification of wastewater due to the high generation of these. An average of 10.9 million tonnes per year is generated in Europe, resulting in negative impacts related to the emission of volatile organic compounds (VOCs), nitrogen dioxide (NOXs) derivatives, sulphur oxides (SOXs) and offensive odors, diminishing environmental quality and deteriorating human health affecting the respiratory system, generating skin conditions due to it containing a wide variety of pathogens and toxic substances such as: ammonia, methane, tropospheric ozone and halogenated compounds. Based on the aforementioned context as one of the many existing scenarios, different measures for the management of this waste have been established and implemented, one of the most widely used measures relates to the processing of sludge into fertiliser and organic fertiliser, given the economic viability of the process and the total reduction of sludge, which are fed into a biodigester and finally added to the crops. All the measures, methodologies or treatments mentioned above have negative impacts, therefore this paper seeks to propose an alternative with greater environmental, economic and social benefits. By using the sludge as a source of electricity generation through the biogas produced.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.rightsAtribución-CompartirIgual 2.5 Colombia*
dc.rightsAtribución-CompartirIgual 2.5 Colombia*
dc.rightsAtribución-CompartirIgual 2.5 Colombia*
dc.rights.urihttp://creativecommons.org/licenses/by-sa/2.5/co/*
dc.titleAprovechamiento de lodos residuales de una planta de tratamiento de aguas residuales (PTAR) para la generación de energía eléctricaspa
dc.typebachelor thesis
dc.description.degreenameIngeniero Ambientalspa
dc.publisher.programPregrado de Ingeniería Ambientalspa
dc.publisher.facultyFacultad de Ingeniería Ambientalspa
dc.subject.keywordClean technologiesspa
dc.subject.keywordBiogasspa
dc.subject.keywordSludgespa
dc.subject.keywordEnvironmental carespa
dc.subject.lembEnergias alternativasspa
dc.subject.lembTratamiento de aguas residualesspa
dc.subject.lembCuidado del medio ambientespa
dc.type.localTesis de pregradospa
dc.rights.localAbierto (Texto Completo)spa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.coverage.campusCRAI-USTA Bogotáspa
dc.contributor.orcidhttps://orcid.org/0000-0002-0238-1586spa
dc.contributor.googlescholarhttps://scholar.google.es/citations?user=Eq5InnAAAAAJ&hl=esspa
dc.contributor.cvlachttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000004523spa
dc.description.domainhttp://unidadinvestigacion.usta.edu.cospa
dc.relation.referencesShiu, H., Lee, M., & Chiueh, P. (2017). Water reclamation and sludge recycling scenarios for sustainable resource management in a wastewater treatment plant in kinmen islands, taiwan.spa
dc.relation.referencesDeepnarain, N., Nasr, M., Amoah, I. D., Enitan-Folami, A. M., Reddy, P., Stenström, T. A., . . . Bux, F. (2020). Impact of sludge bulking on receiving environment using quantitative microbial risk assessment (QMRA)-based management for full-scale wastewater treatment plants.spa
dc.relation.referencesAmin, M. M., Taheri, E., Ghasemian, M., Puad, N. I. M., Dehdashti, B., & Fatehizadeh, A. (2020). Proposal of upgrading isfahan north wastewater treatment plant: An adsorption/bio-oxidation process with emphasis on excess sludge reduction and nutrient removal.spa
dc.relation.referencesBenito, M., Menacho, C., Chueca, P., Ormad, M. P., & Goñi, P. (2020). Seeking the reuse of effluents and sludge from conventional wastewater treatment plants: Analysis of the presence of intestinal protozoa and nematode eggs.spa
dc.relation.referencesTong, J., Fang, P., Zhang, J., Wei, Y., Su, Y., & Zhang, Y. (2019). Microbial community evolution and fate of antibiotic resistance genes during sludge treatment in two full-scale anaerobic digestion plants with thermal hydrolysis pretreatment.spa
dc.relation.referencesBenedetti, B., Majone, M., Cavaliere, C., Montone, C. M., Fatone, F., Frison, N., . . . Capriotti, A. L. (2020). Determination of multi-class emerging contaminants in sludge and recovery materials from waste water treatment plants: Development of a modified QuEChERS method coupled to LC–MS/MSspa
dc.relation.referencesNie, E., Zheng, G., Gao, D., Chen, T., Yang, J., Wang, Y., & Wang, X. (2019). Emission characteristics of VOCs and potential ozone formation from a full-scale sewage sludge composting plant [8] Verrelli, D. I., Dixon, D. R., & Scales, P. J. (2009). Effect of coagulation conditions on the dewatering properties of sludges produced in drinking water treatmentspa
dc.relation.referencesChen, T., Yang, J., Wang, Y., & Wang, X. (2019). semisólido o líquido. La comprensión del comportamiento del flujo y las propiedades reológicas de los lodos de depuración en diferentes secciones de una planta de tratamiento de aguas residuales (EDAR)spa
dc.relation.referencesByliński, H., Aszyk, J., Kubica, P., Szopińska, M., Fudala-Książek, S., & Namieśnik, J. (2019). Differences between selected volatile aromatic compound concentrations in sludge samples in various steps of wastewater treatment plant operationsspa
dc.relation.referencesFelca, A. T. A., Barros, R. M., Tiago Filho, G. L., dos Santos, Ivan Felipe Silva, & Ribeiro, E. M. (2018). Analysis of biogas produced by the anaerobic digestion of sludge generated at wastewater treatment plants in the south of minas gerais, brazil as a potential energy source doispa
dc.relation.referencesPraspaliauskas, M., & Pedišius, N. (2017). A review of sludge characteristics in lithuania's wastewater treatment plants and perspectives of its usage in thermal processesspa
dc.relation.referencesPan, J., Cai, H., Zhang, Z., Liu, H., Li, R., Mao, H., . . . Zhai, L. (2018). Comparative evaluation of the use of acidic additives on sewage sludge composting quality improvement, nitrogen conservation, and greenhouse gas reductionspa
dc.relation.referencesBolaños-Benítez, V., McDermott, F., Gill, L., & Knappe, J. (2020). Engineered silver nanoparticle (ag-NP) behaviour in domestic on-site wastewater treatment plants and in sewage sludge amended-soilsspa
dc.relation.referencesJiménez-Silva, V. A., Santoyo-Tepole, F., Ruiz-Ordaz, N., & Galíndez-Mayer, J. (2019). Study of the ibuprofen impact on wastewater treatment mini-plants with bioaugmented sludgespa
dc.relation.referencesMartín, J., Camacho-Muñoz, D., Santos, J. L., Aparicio, I., & Alonso, E. (2012). Occurrence of pharmaceutical compounds in wastewater and sludge from wastewater treatment plants: Removal and ecotoxicological impact of wastewater discharges and sludge disposalspa
dc.relation.referencesEdo, C., González-Pleiter, M., Leganés, F., Fernández-Piñas, F., & Rosal, R. (2020). Fate of microplastics in wastewater treatment plants and their environmental dispersion with effluent and sludgespa
dc.relation.referencesZhai, W., Qin, T., Li, L., Guo, T., Yin, X., Khan, M. I., . . . Xu, J. (2020). Abundance and diversity of microbial arsenic biotransformation genes in the sludge of full-scale anaerobic digesters from a municipal wastewater treatment plantspa
dc.relation.referencesZheng, G., Wang, T., Niu, M., Chen, X., Liu, C., Wang, Y., & Chen, T. (2018). Biodegradation of nonylphenol during aerobic composting of sewage sludge under two intermittent aeration treatments in a full-scale plantspa
dc.relation.referencesZheng, G., Yu, B., Wang, Y., Ma, C., & Chen, T. (2020). Removal of triclosan during wastewater treatment process and sewage sludge composting—A case study in the middle reaches of the yellow riverspa
dc.relation.referencesZhang, H., Rigamonti, L., Visigalli, S., Turolla, A., Gronchi, P., & Canziani, R. (2019). Environmental and economic assessment of electro-dewatering application to sewage sludge: A case study of an italian wastewater treatment plantspa
dc.relation.referencesRuya, P. M., Purwadi, R., & Lim, S. S. (2020). Supercritical water gasification of sewage sludge for power generation– thermodynamic study on auto-thermal operation using aspen plusspa
dc.relation.referencesOlivier, J., Conrardy, J., Mahmoud, A., & Vaxelaire, J. (2015). Electro-dewatering of wastewater sludge: An investigation of the relationship between filtrate flow rate and electric currentspa
dc.relation.referencesVisigalli, S., Turolla, A., Gronchi, P., & Canziani, R. (2017). Performance of electro-osmotic dewatering on different types of sewage sludgespa
dc.relation.referencesDíaz, I., Díaz-Curbelo, A., Pérez-Lemus, N., Fdz-Polanco, F., & Pérez-Elvira, S. I. (2020). Traceability of organic contaminants in the sludge line of wastewater treatment plants: A comparison study among schemes incorporating thermal hydrolysis treatment and the conventional anaerobic digestionspa
dc.relation.referencesLi, L., Ai, J., Zhang, W., Peng, S., Dong, T., Deng, Y., . . . Wang, D. (2020). Relationship between the physicochemical properties of sludge-based carbons and the adsorption capacity of dissolved organic matter in advanced wastewater treatment: Effects of chemical conditioningspa
dc.relation.referencesTaboada-Santos, A., Lema, J. M., & Carballa, M. (2019). Energetic and economic assessment of sludge thermal hydrolysis in novel wastewater treatment plant configurationsspa
dc.relation.referencesLim, S., Jeon, W., Lee, J., Lee, K., & Kim, N. (2002). Engineering properties of water/wastewater-treatment sludge modified by hydrated lime, fly ash and loessspa
dc.relation.referencesChen, L., Zhu, W., Lin, N., Mu, B., Fan, X., Wang, C., . . . Zhong, J. (2020). Mechanism of separation and removal of water from dewatered sludge using L-DME to dissolve hydrophilic organic matterspa
dc.relation.referencesGrassi, P., Drumm, F. C., Georgin, J., Franco, D. S. P., Foletto, E. L., Dotto, G. L., & Jahn, S. L. (2020). Water treatment plant sludge as iron source to catalyze a heterogeneous photo-fenton reactionspa
dc.relation.referencesGłąb, T., Żabiński, A., Sadowska, U., Gondek, K., Kopeć, M., Mierzwa-Hersztek, M., . . . Stanek-Tarkowska, J. (2020a). Fertilization effects of compost produced from maize, sewage sludge and biochar on soil water retention and chemical propertiesspa
dc.relation.referencesBadza, T., Tesfamariam, E. H., & Cogger, C. G. (2020). Agricultural use suitability assessment and characterization of municipal liquid sludge: Based on south africa surveyspa
dc.relation.referencesZhang, W., Peng, Y., Zhang, L., Li, X., & Zhang, Q. (2020). Simultaneous partial nitritation and denitritation coupled with polished anammox for advanced nitrogen removal from low C/N domestic wastewater at low dissolved oxygen conditionsspa
dc.relation.referencesYu, Z., Yousaf, K., Ahmad, M., Yousaf, M., Gao, Q., & Chen, K. (2020). Efficient pyrolysis of ginkgo biloba leaf residue and pharmaceutical sludge (mixture) with high production of clean energy: Process optimization by particle swarm optimization and gradient boosting decision tree algorithmspa
dc.relation.referencesZhong, R., Wang, C., Zhang, Z., Liu, Q., & Cai, Z. (2020). PCDD/F levels and phase distributions in a full-scale municipal solid waste incinerator with co-incinerating sewage sludgespa
dc.relation.referencesZhao, J., Li, B., Wei, X., Zhang, Y., & Li, T. (2020). Slagging characteristics caused by alkali and alkaline earth metals during municipal solid waste and sewage sludge co-incinerationspa
dc.relation.referencesWang, Y., Liu, Y., Yang, W., Zhao, Q., & Dai, Y. (2020). Evaluation of combustion properties and pollutant emission characteristics of blends of sewage sludge and biomassspa
dc.relation.referencesZha, J., Huang, Y., Clough, P. T., Dong, L., Xu, L., Liu, L., . . . Yu, M. (2020). Desulfurization using limestone during sludge incineration in a fluidized bed furnace: Increased risk of particulate matter and heavy metal emissionsspa
dc.relation.referencesHao, X., Chen, Q., van Loosdrecht, Mark C. M., Li, J., & Jiang, H. (2020). Sustainable disposal of excess sludge: Incineration without anaerobic digestionspa
dc.relation.referencesSchnell, M., Horst, T., & Quicker, P. (2020a). Thermal treatment of sewage sludge in germany: A reviewspa
dc.relation.referencesBohórquez González, K., Pacheco, E., Guzmán, A., Avila Pereira, Y., Cano Cuadro, H., & Valencia, J. A. F. (2020). Use of sludge ash from drinking water treatment plant in hydraulic mortarsspa
dc.relation.referencesGodoy, Luis Gabriel Graupner de, Rohden, A. B., Garcez, M. R., Costa, E. B. d., Da Dalt, S., & Andrade, Jairo José de Oliveira. (2019). Valorization of water treatment sludge waste by application as supplementary cementitious materialspa
dc.relation.referencesLiu, Y., Zhuge, Y., Chow, C. W. K., Keegan, A., Li, D., Pham, P. N., . . . Siddique, R. (2020). Properties and microstructure of concrete blocks incorporating drinking water treatment sludge exposed to early-age carbonation curingspa
dc.relation.referencesLiu, X., Shi, J., Zhao, Y., Li, Z., & Zhang, J. (2012). Experimental research on lime drying process of mechanical dewatered sludge from a wastewater treatment plant in beijingspa
dc.relation.referencesDi Maria, F., & Micale, C. (2017). Energetic potential of the co-digestion of sludge with bio-waste in existing wastewater treatment plant digesters: A case study of an italian provincespa
dc.relation.referencesBedoya, K., Hoyos, O., Zurek, E., Cabarcas, F., & Alzate, J. F. (2020). Annual microbial community dynamics in a full-scale anaerobic sludge digester from a wastewater treatment plant in colombiaspa
dc.relation.referencesWang, Y., Feng, S., Bai, X., Zhao, J., & Xia, S. (2016). Scum sludge as a potential feedstock for biodiesel production from wastewater treatment plantsspa
dc.relation.referencesDi Fraia, S., Macaluso, A., Massarotti, N., & Vanoli, L. (2019). Energy, exergy and economic analysis of a novel geothermal energy system for wastewater and sludge treatmentspa
dc.relation.referencesLam, C. M., Hsu, S., Alvarado, V., & Li, W. M. (2020). Integrated life-cycle data envelopment analysis for techno-environmental performance evaluation on sludge-to-energy systemsspa
dc.relation.referencesBakshi, M., Liné, C., Bedolla, D. E., Stein, R. J., Kaegi, R., Sarret, G., . . . Larue, C. (2019). Assessing the impacts of sewage sludge amendment containing nano-TiO2 on tomato plants: A life cycle studyspa
dc.relation.referencesMohammadi, A., Sandberg, M., Venkatesh, G., Eskandari, S., Dalgaard, T., Joseph, S., & Granström, K. (2019). Environmental performance of end-of-life handling alternatives for paper-and-pulp-mill sludge: Using digestate as a source of energy or for biochar productionspa
dc.relation.referencesBlanco, G., Santalla, E., Cordoba, V., Levy, A., (2017).Generacion de electricidada partir del bios capturado de residuos urbanos; Bonco interoamericano del desarrollo.spa
dc.relation.referencesSerrato, C., Cepeda, V. (2016)Metodologia para el calculo de energía extraida a partir de la biomasa en el departamento de cundinamarca; universidad distrital francisco jose de caldasspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.subject.proposalTecnologias limpiasspa
dc.subject.proposalBiogasspa
dc.subject.proposalLodosspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.identifier.instnameinstname:Universidad Santo Tomásspa
dc.type.categoryFormación de Recurso Humano para la Ctel: Trabajo de grado de Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.description.degreelevelPregradospa
dc.identifier.repourlrepourl:https://repository.usta.edu.cospa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driveinfo:eu-repo/semantics/bachelorThesis


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-CompartirIgual 2.5 Colombia
Except where otherwise noted, this item's license is described as Atribución-CompartirIgual 2.5 Colombia

Indexado por: