dc.contributor.advisor | Plata González, Julio César | spa |
dc.contributor.author | Galvis Zambrano, Laura Melissa | spa |
dc.contributor.author | Amaris Brujes, Liz Dayana | spa |
dc.contributor.author | Galeano Torres, Luis Alberto | spa |
dc.date.accessioned | 2020-08-31T19:01:04Z | spa |
dc.date.available | 2020-08-31T19:01:04Z | spa |
dc.date.issued | 2020-07-02 | spa |
dc.identifier.citation | Galvis Zambrano, L. M., Amaris Brujes, L. D. y Galeano Torres, L. A. (2020). Sistema de apoyo diagnóstico periodontal con deep learning para las clínicas odontológicas de la Universidad Santo Tomás, 2020: Fase I - Insumos y criterios radiográficos [Tesis de especialización]. Universidad Santo Tomás, Bucaramanga, Colombia | spa |
dc.identifier.uri | http://hdl.handle.net/11634/29327 | |
dc.description | El diagnóstico de la periodontitis genera diversidad de criterios que puede llevar a que la decisión del clínico sea subjetiva. El Deep learning como aprendizaje automático es una herramienta computarizada que permiten el manejo de la información en forma veraz rápida y oportuna, además de contar con un alto grado de confiabilidad y precisión, aportando nuevas perspectivas para el diagnóstico, pronostico y la planificación del tratamiento. Desarrollar un sistema para la interpretación radiográfica periapical digitalizada como apoyo al diagnóstico periodontal basado en Deep Learning: Fase I Criterios e insumos radiográficos. La población de estudio conformada por una totalidad de 727 imágenes diagnósticas digitalizadas (radiografías periapicales) almacenadas en centro radiológico de la USTA en los años 2019-2020. Criterios de exclusión: Imágenes radiográficas periapicales elongadas, espacios alveolares que albergan implantes. 727 imágenes extraídas, correspondieron a 72 sujetos, 45 mujeres (62 %) y 27 hombres (38%), El promedio de dientes aportados por persona fue de 24,5 ± 4,4 dientes, de otro lado, la media de pérdida dental fue de 7,3± 3,3 dientes. Las métricas obtenidas son similares a otros estudios, encontramos así, que los insumos generados en la Fase I son correctos para el uso en la Fase II, es decir, para dar continuidad, para lo cual solo se tienen las observaciones generadas en el balance poblacional (en términos de distribución por sexo) y en el tamaño de la muestra (en términos imágenes radiográficas). Este sistema de red neuronal está desarrollado para identificar dientes en su fase inicial y será de gran ayuda al clínico, pudiendo procesar gran número de imágenes con los criterios específicos apoyando en el diagnóstico de manera eficiente. | spa |
dc.description.abstract | The diagnosis of periodontitis generates a variety of criteria that can lead to the clinician's decision being subjective. Deep learning as machine learning is a computerized tool that allows the information to be handled truthfully, quickly and in a timely manner, in addition to having a high degree of reliability and precision, providing new perspectives for diagnosis, prognosis and treatment planning. To develop a system for digitized periapical radiographic interpretation to support periodontal diagnosis based on Deep Learning: Phase I Radiographic criteria and supplies. The study population made up of a total of 727 digitized diagnostic images (periapical radiographs) stored in the USTA radiological center in the years 2019-2020. Exclusion criteria: Elongated periapical radiographic images, alveolar spaces that house implants. 727 images extracted corresponded to 72 subjects, 45 women (62%) and 27 men (38%). The average number of teeth contributed per person was 24.5 ± 4.4 teeth, on the other hand, the mean of dental loss was 7.3 ± 3.3 teeth. The metrics obtained are similar to other studies, thus we found that the inputs generated in Phase I are correct for use in Phase II, that is, to give continuity, for which only the observations generated in the population balance (in terms of sex distribution) and in the sample size (in terms of radiographic images). This neural network system is developed to identify teeth in their initial phase and will be of great help to the clinician, being able to process many images with specific criteria, supporting the diagnosis efficiently. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.publisher | Universidad Santo Tomás | spa |
dc.rights | Atribución-SinDerivadas 2.5 Colombia | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nd/2.5/co/ | * |
dc.title | Sistema de apoyo diagnóstico periodontal con deep learning para las clínicas odontológicas de la Universidad Santo Tomás, 2020: Fase I - Insumos y criterios radiográficos | spa |
dc.type | bachelor thesis | |
dc.description.degreename | Especialización Periodoncia | spa |
dc.publisher.program | Especialización Periodoncia | spa |
dc.publisher.faculty | Facultad de Odontología | spa |
dc.subject.keyword | Bone loss | spa |
dc.subject.keyword | Periapical radiography | spa |
dc.subject.keyword | Deep Learning | spa |
dc.subject.lemb | Clínica dental | spa |
dc.subject.lemb | Periodoncia | spa |
dc.subject.lemb | Tecnología dental | spa |
dc.subject.lemb | Radiodiagnóstico | spa |
dc.subject.lemb | Periodontitis | spa |
dc.subject.lemb | Odontología - Toma de decisiones | spa |
dc.type.local | Tesis de pregrado | spa |
dc.rights.local | Abierto (Texto Completo) | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.coverage.campus | CRAI-USTA Bucaramanga | spa |
dc.description.domain | https://www.ustabuca.edu.co/ | spa |
dc.relation.references | 1. Hirohata N, Aizawa S. Periodontitis y trastornos sistémicos. Rev Asoc Méd Univ Nihon. 2014; 73:211-218. | spa |
dc.relation.references | 2. Laine ML, Moustakis V, Koumakis L, Potamias LB. Modelado de susceptibilidad a periodontitis. J Dent Res. 2013; 92:45–50. | spa |
dc.relation.references | 3. Papapanou PN, Sanz M, Buduneli N, Dietrich T, Feres M, Fine DH, et al. Periodontitis: Consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J Clin Periodontol. 2018; 89 Suppl 1:S173-S182. | spa |
dc.relation.references | 4. Di Benedetto A, Gigante I, Colucci S, Grano M. Periodontal disease: linking the primary inflammation to bone loss. Clin Dev Immunol [en línea]. 2013. [accesado 5 May 2020]. Disponible en: https://pubmed.ncbi.nlm.nih.gov/23762091/ | spa |
dc.relation.references | 5. Park WJ, Park JB. History and application of artificial neural networks in dentistry. Eur J Dent.2018; 12(4):594-601. | spa |
dc.relation.references | 6. Albus JS. Outline for a theory of intelligence. IEEE Trans Sys Man Cybern. 1991; 21(3):473– 509. | spa |
dc.relation.references | 7. Cheng JZ, Ni D, Chou YH, Qin J, Tiu CM, Chang YC, et al. Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans. Sci Rep [en línea]. 2016. | spa |
dc.relation.references | 8. Suzuki K. Overview of deep learning in medical imaging. adiol Phys Technol. 2017; 10(3):257– 73. | spa |
dc.relation.references | 9. Peres MA, Macpherson LMD, Weyant RJ, Daly B, Venturelli R, Mathur MR, et al. OMS. Oral diseases: a global public health challenge. Lancet [en línea]. 2019. | spa |
dc.relation.references | 10. Ministerio de Salud y Protección Social de Colombia. IV Estudio Nacional de Salud Bucal. [en línea]. Bogota. 2014. | spa |
dc.relation.references | 11. Tonetti MS, Jepsen S, Otomo J. Impact of the global burden of periodontal diseases on health, nutrition and wellbeing of mankind: a call for global action. J Clin Periodontol. 2017; 44:456–62. | spa |
dc.relation.references | 12. Graziani F, Karapetsa D, Alonso B HD. Nonsurgical and surgical treatment of periodontitis: how many options for one disease?. Periodontol 2000. 2017; 75(1):152–88. | spa |
dc.relation.references | 13. Martins SH, Novaes AB, Taba M Jr, Palioto DB, Messora MR, Reino DM, et al. Effect of surgical periodontal treatment associated to antimicrobial photodynamic therapy on chronic periodontitis: a randomized controlled clinical trial. J Clin Periodontol. 2017; 44(7):717–728. | spa |
dc.relation.references | 14. Ainamo J, Barmes D, Beagrie G, Cutress T, Martin, Sardo J. Development of the World Health Organization (WHO) community periodontal index of treatment needs (CPITN). Int Dent J. 1982;32(3):281–91. | spa |
dc.relation.references | 15. Sklan JE, Plassard AJ, Fabbri D, Landman BA. Toward content-based image retrieval with deep convolutional neural networks. Proc SPIE Int Soc Opt Eng [en línea]. 2015. | spa |
dc.relation.references | 16. Rajpurkar P, Irvin J, Zhu K, Yang B, Mehta H, Duan T, et al. CheXNet: radiologist-level pneumonia detection on chest X-rays with deep learning. [en línea]. Arxiv E-Print. 2017 | spa |
dc.relation.references | 17. Rajpurkar P, Hannun AY, Haghpanahi M, Bourn NA. Cardiologist-level arrhythmia detection with convolutional neural networks. Nat Med. 2019;25(1):65-69 | spa |
dc.relation.references | 18. Garcia-Hernandez JJ, Gomez-Flores, Rubio-Loyola J. Analysis of the impact of digital watermarking on computer-aided diagnosis in medical imaging. Comput Biol Med 20. 2016;68:37–48. | spa |
dc.relation.references | 19. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60-88. | spa |
dc.relation.references | 20. Kim TS, Obst C, Zehaczek S , Geenen C. Detection of bone loss with different X-ray techniques in periodontal patients. J Periodontol. 2008; ;79(7):1141-1149. | spa |
dc.relation.references | 21. Tonetti MS, Greenwell H, Kornman KS. Staging and grading of periodontitis: Framework and proposal of a new classification and case definition. J Clin Periodontol. 2018;45 Suppl 20:S149- S161. | spa |
dc.relation.references | 22. Page RC, Eke PI. Case Definitions for use in population-based surveillance of periodontitis. J Periodontol. 2007;78 Suppl 7S:1387-1399. | spa |
dc.relation.references | 23. Bashutski JD, Eber RM, Kinney JS, Maitra, S., Braun, T, McCauley, L. The impact of vitamin D status on periodontal surgery outcomes. J Dent Res. 2011;90(8):1007–12. | spa |
dc.relation.references | 24. Ramseier CA, Warnakulasuriya S, Needleman IG, et al. Consensus report: 2nd European Workshop on Tobacco Use Prevention and Cessation for Oral Health Professionals. Int Dent J. 2010;60(1):3–6. | spa |
dc.relation.references | 25. Caton JG, Armitage G, Berglundh T, Chapple ILC, Jepsen S, Kornman KS, et al. A new classification scheme for periodontal and peri-implant diseases and conditions - Introduction and key changes from the 1999 classification. J Clin Periodontol. 2018;45 Suppl 20:S1-S8. | spa |
dc.relation.references | 26. Trombelli L, Farina R, Silva CO, Tatakis DN. Plaque-induced gingivitis: Case definition and diagnostic considerations. J Clin Periodontol. 2018;45 Suppl 20:S44-S67. | spa |
dc.relation.references | 27. Chapple ILC, Mealey BL, Van Dyke TE, Bartold PM, Dommisch H, Eickholz P, et al.Periodontal health and gingival diseases and conditions on an intact and a reduced periodontium: Consensus report of workgroup 1 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J Clin Periodontol. 2018;89 Suppl 1:S74-S84 | spa |
dc.relation.references | 28. Murakami S, Mealey BL, Mariotti A, Chapple ILC. Dental plaque-induced gingival conditions.J Clin Periodontol. 2018;45 Suppl 20:S17-S27. | spa |
dc.relation.references | 29. Holmstrup P, Plemons J MJ. Non–plaque‐induced gingival diseases. J Periodontol. 2018;89 Suppl 1:S28-S45 | spa |
dc.relation.references | 30. Papapanou PN, Sanz M et al. Periodontitis: Consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri‐Implant Diseases and Conditions. J Periodontol. 2018;89 Suppl 1:S173-S182. | spa |
dc.relation.references | 31. Friedewald VE, Kornman KS, Beck JD, Genco R, Goldfine A, Libby P, et al. The American Journal of Cardiology and Journal of Periodontology Editors’ Consensus: Periodontitis and Atherosclerotic Cardiovascular Disease. J Periodontol. 2009;80(7):1021-1032. | spa |
dc.relation.references | 32. Jepsen S, Caton JG, Albandar JM, Bissada NF, Bouchard P, Cortellini P, et al. Periodontal manifestations of systemic diseases and developmental and acquired conditions: Consensus report of workgroup 3 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J Clin Periodontol. 2018;89 Suppl 1:S237-S248. | spa |
dc.relation.references | 33. Albandar JM, Susin C, Hughes FJ. Manifestations of systemic diseases and conditions that affect the periodontal attachment apparatus: Case definitions and diagnostic considerations. J Clin Periodontol. 2018;45 Suppl 20:S171-S189. | spa |
dc.relation.references | 34. Herrera D, Retamal‐Valdes B, Alonso B FM. Acute periodontal lesions (periodontal abscesses and necrotizing periodontal diseases) and endo‐periodontal lesions. J Periodontol. 2018;89 Suppl 1:S85-S102. | spa |
dc.relation.references | 35. Herrera D, Alonso B, de Arriba L, Santa Cruz I, Serrano C SM. Acute periodontal lesions.Periodontol 2000. 2014;65(1):149-177. | spa |
dc.relation.references | 36. Albandar JM, Susin C, Hughes FJ. Manifestations of systemic diseases and conditions that affect the periodontal attachment apparatus: case definitions and diagnostic considerations. J Periodontol. 2018;89 Suppl 1:S183-S203. | spa |
dc.relation.references | 37. Herrera D, Roldan S, Sanz M. The periodontal abscess: a review. J Clin Periodontol.2000;27(6):377-386 | spa |
dc.relation.references | 38. Meng HX. Periodontal abscess. Ann Periodontol. 1999;4(1):79-83. | spa |
dc.relation.references | 39. Gill Y SC. Orofacial odontogenic infections: review of microbiology and current treatment. Oral Surg Oral Med Oral Pathol. 1990;70(2):155-158. | spa |
dc.relation.references | 40. Karolyi M. Beobachtungen über pyorrhea alveolaris. Osterr Ung Viertel Jahresschr Für Zahnheilkd. 1901;17:279. | spa |
dc.relation.references | 41. Stillman P. What is traumatic occlusion and how can it be diagnosed and corrected. J Am Dent Assoc. 1925;12:1330–1338. | spa |
dc.relation.references | 42. American Academy of Periodontology. Glossary of periodontal terms. [en línea]. 2001 [accesado 5 May 2020]. Disponible en https://www.perio.org | spa |
dc.relation.references | 43. Fan J, Caton JG. Occlusal trauma and excessive occlusal forces: Narrative review, case definitions, and diagnostic considerations. J Clin Periodontol. 2018 Jun;45:S199–206. | spa |
dc.relation.references | 44. Ercoli C, Caton JG. Dental prostheses and tooth-related factors. J Clin Periodontol. 2018;45 Suppl 20:S207-S218. | spa |
dc.relation.references | 45. Tonetti MS, Eickholz P, Loos BG, Papapanou P, Van Der U., Armitage G. Principles in prevention of periodontal diseases. J Clin Periodontol. 2015;42:S5–S11. | spa |
dc.relation.references | 46. Kassebaum NJ, Bernabe E, Dahiya M, Bhandari B, Murray CJL MW. Global burden of severe periodontitis in 1990–2010: A systematic review and meta‐regression. J Dent Res. 2014;93:1045– 1053 | spa |
dc.relation.references | 47. Periodontología SA. Resumen y traducción de los documentos de Consenso. 2019. | spa |
dc.relation.references | 48. Tonetti MS, Greenwell H, Kornman KS. Staging and grading of periodontitis: Framework and proposal of a new classification and case definition. J Clin Periodontol. 2018 Jun;45:S149–61. | spa |
dc.relation.references | 49. Kornman KS, Papapanou PN. Clinical application of the new classification of periodontal diseases: Ground rules, clarifications and “gray zones.” J Periodontol. 2020;91(3):352-360. | spa |
dc.relation.references | 50. Corbet EF. Radiographs in periodontal disease diagnosis and management. Aust Dent J.2009;54 Suppl 1:S27-S43. | spa |
dc.relation.references | 51. Pepelassi EA, Tsiklakis K, Diamanti-Kipioti . Radiographic detection and assessment of the periodontal endosseous defects. J Clin Periodontol. 2000;27(4):224-230. | spa |
dc.relation.references | 52. Jeffcoat MK, Wang IC, Reddy MS. Radiographic diagnosis in periodontics. Periodontol 2000.1995;7:54-68. | spa |
dc.relation.references | 53. Ravi V, Lipee P, Rao CVN, Lakshmikanthan L. Direct digital radiography versus conventional radiography - assessment of visibility of file length placed in the root canal: An in vitro study. J Pharm Bioallied Sci. 2012; 4 Suppl:S285-S289. | spa |
dc.relation.references | 54. Vázquez J., Errecaborde M, Estévez A, Osende N, Ramírez MJ., Carvajal E. Utilización de la técnica radiográfica de Fitzgerald como método de diagnóstico en implantología oral y periodoncia. Av Odontoestomatol [en linea]. 2009 [accesado 5 May 2020] ; 25( 4 ): 203-208. | spa |
dc.relation.references | 55. Murdick R. Sistemas de información administrativa. 2ª ed. Mexico: Prentice Hall. 1989. | spa |
dc.relation.references | 56. Institute for Telecommunication Sciences. Federal Standard 1037C. MIL-STD-188. Institute for Telecommunication Sciences; 1999. | spa |
dc.relation.references | 57. Longatt F. Introducción a los sistemas de información: Fundamentos. Universidad Politécnica de la fuerza armada. 2007. | spa |
dc.relation.references | 58. Gerón A. Hands-on Machine learning with sakit-learn and TensorFlow. O'Reilly Media. 2017. | spa |
dc.relation.references | 59. Ekert T, Krois J, Meinhold L, Elhennawy K, Emara R, Golla T, et al. Deep Learning for the Radiographic Detection of Apical Lesions. J Endod. 2019;45(7):917-922.e5. | spa |
dc.relation.references | 60. Lin PL, Huang PY, Huang PW. Automatic methods for alveolar bone loss degree measurement in periodontitis periapical radiographs. Comput Methods Programs Biomed. 2017; 148:1–11. | spa |
dc.relation.references | 61. Becker AS, Marcon M, Ghafoor S, Wurnig MC, Frauenfelder T, Boss A. Deep Learning in Mammography. Invest Radiol. 2017;52(7):434-440. | spa |
dc.relation.references | 62. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115-118 | spa |
dc.relation.references | 63. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal Fundus Photographs. JAMA. 2016;316(22):2402-2410. | spa |
dc.relation.references | 64. Lee J-H, Kim D-H, Jeong S-N, Choi S-H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J Dent. 2018;77:106-111 | spa |
dc.relation.references | 65. Lee J-H, Kim D, Jeong S-N, Choi S-H. Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm. J Periodontal Implant Sci. 2018;48(2):114-123. | spa |
dc.relation.references | 66. Lin PL, Huang PW, Huang PY, Hsu HC. Alveolar bone-loss area localization in periodontitis radiographs based on threshold segmentation with a hybrid feature fused of intensity and the H- value of fractional Brownian motion model. Comput Methods Programs Biomed. 2015;121(3):117-126 | spa |
dc.relation.references | 67. Greenstein G. Current interpretations of periodontal probing evaluations: diagnostic and therapeutic implications. Compend Contin Educ Dent. 2005;26(6):381-399. | spa |
dc.relation.references | 68. Aberin S, Goma J. Detecting periodontal disease using convolutional neural networks. En: IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology,Communication and Control, Environment and Management (HNICEM); Baguio City. 2018; p.1-6. | spa |
dc.relation.references | 69. Jeffcoat MK, Page R RM et al. Use of digital radiography to demonstrate the potential of naproxen as an adjunct in the treatment of rapidly progressive periodontitis. Periodontal Res. 1991;26(5):415-421. | spa |
dc.relation.references | 70. Hausmann E, Dunford R, Wikesjö U, Christersson L, McHenry K. Progression of untreated periodontitis as assessed by subtraction radiography. J Periodontal Res. 1986;21(6):716-721. | spa |
dc.relation.references | 71. Ash M, Lebedeff I. Anatomia anatomía dental, fisiología y oclusión de Wheeler. 6a ed. México, Nueva Editorial Interamericana, 1986. | spa |
dc.relation.references | 72. Zhang K, Wu J, Chen H, Lyu P. An effective teeth recognition method using label tree with cascade network structure. Comput Med Imaging Graph. 2018; 68:61-70. | spa |
dc.relation.references | 73. Chen H, Zhang K, Lyu P, Li H, Zhang L, Wu J, et al. A deep learning approach to automatic teeth detection and numbering based on object detection in dental periapical films. Sci Rep. 2019;9(1):3840. | spa |
dc.relation.references | 74. Hwang JJ, Jung YH, Cho BH, Heo MS. An overview of deep learning in the field of dentistry.Imaging Sci Dent. 2019;49(1):1-7. | spa |
dc.relation.references | 75. Rams TE, Listgarten MA, Slots J. Utility of radiographic crestal lamina dura for predicting periodontitis disease-activity. J Clin Periodontol. 1994;21(9):571-576. | spa |
dc.relation.references | 76. Hugoson A, Jordan T. Frequency distribution of individuals aged 20–70 years according to severity of periodontal disease. Community Dent Oral Epidemiol. 1982;10(4):187-192 | spa |
dc.relation.references | 77. Orozco TM. Diagnostico Radiológico Periodontal. Manual de prácticas de periodoncia. 2006. | spa |
dc.relation.references | 78. Herbert T. Shillingburg, Jr, Sumiya Hobo, Lowell D. Whitsett, Richard Jacobi SEB. Fundamentos Esenciales en Prótesis Fija. 3a ed. Quitenssense; 2000. | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.subject.proposal | Pérdida ósea | spa |
dc.subject.proposal | Radiografía periapical | spa |
dc.subject.proposal | Deep Learning | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad Santo Tomás | spa |
dc.identifier.instname | instname:Universidad Santo Tomás | spa |
dc.type.category | Formación de Recurso Humano para la Ctel: Trabajo de grado de Especialización | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.description.degreelevel | Especialización | spa |
dc.identifier.repourl | repourl:https://repository.usta.edu.co | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.drive | info:eu-repo/semantics/bachelorThesis | |