Show simple item record

dc.contributor.advisorPlata González, Julio Césarspa
dc.contributor.authorGalvis Zambrano, Laura Melissaspa
dc.contributor.authorAmaris Brujes, Liz Dayanaspa
dc.contributor.authorGaleano Torres, Luis Albertospa
dc.date.accessioned2020-08-31T19:01:04Zspa
dc.date.available2020-08-31T19:01:04Zspa
dc.date.issued2020-07-02spa
dc.identifier.citationGalvis Zambrano, L. M., Amaris Brujes, L. D. y Galeano Torres, L. A. (2020). Sistema de apoyo diagnóstico periodontal con deep learning para las clínicas odontológicas de la Universidad Santo Tomás, 2020: Fase I - Insumos y criterios radiográficos [Tesis de especialización]. Universidad Santo Tomás, Bucaramanga, Colombiaspa
dc.identifier.urihttp://hdl.handle.net/11634/29327
dc.descriptionEl diagnóstico de la periodontitis genera diversidad de criterios que puede llevar a que la decisión del clínico sea subjetiva. El Deep learning como aprendizaje automático es una herramienta computarizada que permiten el manejo de la información en forma veraz rápida y oportuna, además de contar con un alto grado de confiabilidad y precisión, aportando nuevas perspectivas para el diagnóstico, pronostico y la planificación del tratamiento. Desarrollar un sistema para la interpretación radiográfica periapical digitalizada como apoyo al diagnóstico periodontal basado en Deep Learning: Fase I Criterios e insumos radiográficos. La población de estudio conformada por una totalidad de 727 imágenes diagnósticas digitalizadas (radiografías periapicales) almacenadas en centro radiológico de la USTA en los años 2019-2020. Criterios de exclusión: Imágenes radiográficas periapicales elongadas, espacios alveolares que albergan implantes. 727 imágenes extraídas, correspondieron a 72 sujetos, 45 mujeres (62 %) y 27 hombres (38%), El promedio de dientes aportados por persona fue de 24,5 ± 4,4 dientes, de otro lado, la media de pérdida dental fue de 7,3± 3,3 dientes. Las métricas obtenidas son similares a otros estudios, encontramos así, que los insumos generados en la Fase I son correctos para el uso en la Fase II, es decir, para dar continuidad, para lo cual solo se tienen las observaciones generadas en el balance poblacional (en términos de distribución por sexo) y en el tamaño de la muestra (en términos imágenes radiográficas). Este sistema de red neuronal está desarrollado para identificar dientes en su fase inicial y será de gran ayuda al clínico, pudiendo procesar gran número de imágenes con los criterios específicos apoyando en el diagnóstico de manera eficiente.spa
dc.description.abstractThe diagnosis of periodontitis generates a variety of criteria that can lead to the clinician's decision being subjective. Deep learning as machine learning is a computerized tool that allows the information to be handled truthfully, quickly and in a timely manner, in addition to having a high degree of reliability and precision, providing new perspectives for diagnosis, prognosis and treatment planning. To develop a system for digitized periapical radiographic interpretation to support periodontal diagnosis based on Deep Learning: Phase I Radiographic criteria and supplies. The study population made up of a total of 727 digitized diagnostic images (periapical radiographs) stored in the USTA radiological center in the years 2019-2020. Exclusion criteria: Elongated periapical radiographic images, alveolar spaces that house implants. 727 images extracted corresponded to 72 subjects, 45 women (62%) and 27 men (38%). The average number of teeth contributed per person was 24.5 ± 4.4 teeth, on the other hand, the mean of dental loss was 7.3 ± 3.3 teeth. The metrics obtained are similar to other studies, thus we found that the inputs generated in Phase I are correct for use in Phase II, that is, to give continuity, for which only the observations generated in the population balance (in terms of sex distribution) and in the sample size (in terms of radiographic images). This neural network system is developed to identify teeth in their initial phase and will be of great help to the clinician, being able to process many images with specific criteria, supporting the diagnosis efficiently.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.rightsAtribución-SinDerivadas 2.5 Colombia*
dc.rights.urihttp://creativecommons.org/licenses/by-nd/2.5/co/*
dc.titleSistema de apoyo diagnóstico periodontal con deep learning para las clínicas odontológicas de la Universidad Santo Tomás, 2020: Fase I - Insumos y criterios radiográficosspa
dc.typebachelor thesis
dc.description.degreenameEspecialización Periodonciaspa
dc.publisher.programEspecialización Periodonciaspa
dc.publisher.facultyFacultad de Odontologíaspa
dc.subject.keywordBone lossspa
dc.subject.keywordPeriapical radiographyspa
dc.subject.keywordDeep Learningspa
dc.subject.lembClínica dentalspa
dc.subject.lembPeriodonciaspa
dc.subject.lembTecnología dentalspa
dc.subject.lembRadiodiagnósticospa
dc.subject.lembPeriodontitisspa
dc.subject.lembOdontología - Toma de decisionesspa
dc.type.localTesis de pregradospa
dc.rights.localAbierto (Texto Completo)spa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.coverage.campusCRAI-USTA Bucaramangaspa
dc.description.domainhttps://www.ustabuca.edu.co/spa
dc.relation.references1. Hirohata N, Aizawa S. Periodontitis y trastornos sistémicos. Rev Asoc Méd Univ Nihon. 2014; 73:211-218.spa
dc.relation.references2. Laine ML, Moustakis V, Koumakis L, Potamias LB. Modelado de susceptibilidad a periodontitis. J Dent Res. 2013; 92:45–50.spa
dc.relation.references3. Papapanou PN, Sanz M, Buduneli N, Dietrich T, Feres M, Fine DH, et al. Periodontitis: Consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J Clin Periodontol. 2018; 89 Suppl 1:S173-S182.spa
dc.relation.references4. Di Benedetto A, Gigante I, Colucci S, Grano M. Periodontal disease: linking the primary inflammation to bone loss. Clin Dev Immunol [en línea]. 2013. [accesado 5 May 2020]. Disponible en: https://pubmed.ncbi.nlm.nih.gov/23762091/spa
dc.relation.references5. Park WJ, Park JB. History and application of artificial neural networks in dentistry. Eur J Dent.2018; 12(4):594-601.spa
dc.relation.references6. Albus JS. Outline for a theory of intelligence. IEEE Trans Sys Man Cybern. 1991; 21(3):473– 509.spa
dc.relation.references7. Cheng JZ, Ni D, Chou YH, Qin J, Tiu CM, Chang YC, et al. Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans. Sci Rep [en línea]. 2016.spa
dc.relation.references8. Suzuki K. Overview of deep learning in medical imaging. adiol Phys Technol. 2017; 10(3):257– 73.spa
dc.relation.references9. Peres MA, Macpherson LMD, Weyant RJ, Daly B, Venturelli R, Mathur MR, et al. OMS. Oral diseases: a global public health challenge. Lancet [en línea]. 2019.spa
dc.relation.references10. Ministerio de Salud y Protección Social de Colombia. IV Estudio Nacional de Salud Bucal. [en línea]. Bogota. 2014.spa
dc.relation.references11. Tonetti MS, Jepsen S, Otomo J. Impact of the global burden of periodontal diseases on health, nutrition and wellbeing of mankind: a call for global action. J Clin Periodontol. 2017; 44:456–62.spa
dc.relation.references12. Graziani F, Karapetsa D, Alonso B HD. Nonsurgical and surgical treatment of periodontitis: how many options for one disease?. Periodontol 2000. 2017; 75(1):152–88.spa
dc.relation.references13. Martins SH, Novaes AB, Taba M Jr, Palioto DB, Messora MR, Reino DM, et al. Effect of surgical periodontal treatment associated to antimicrobial photodynamic therapy on chronic periodontitis: a randomized controlled clinical trial. J Clin Periodontol. 2017; 44(7):717–728.spa
dc.relation.references14. Ainamo J, Barmes D, Beagrie G, Cutress T, Martin, Sardo J. Development of the World Health Organization (WHO) community periodontal index of treatment needs (CPITN). Int Dent J. 1982;32(3):281–91.spa
dc.relation.references15. Sklan JE, Plassard AJ, Fabbri D, Landman BA. Toward content-based image retrieval with deep convolutional neural networks. Proc SPIE Int Soc Opt Eng [en línea]. 2015.spa
dc.relation.references16. Rajpurkar P, Irvin J, Zhu K, Yang B, Mehta H, Duan T, et al. CheXNet: radiologist-level pneumonia detection on chest X-rays with deep learning. [en línea]. Arxiv E-Print. 2017spa
dc.relation.references17. Rajpurkar P, Hannun AY, Haghpanahi M, Bourn NA. Cardiologist-level arrhythmia detection with convolutional neural networks. Nat Med. 2019;25(1):65-69spa
dc.relation.references18. Garcia-Hernandez JJ, Gomez-Flores, Rubio-Loyola J. Analysis of the impact of digital watermarking on computer-aided diagnosis in medical imaging. Comput Biol Med 20. 2016;68:37–48.spa
dc.relation.references19. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60-88.spa
dc.relation.references20. Kim TS, Obst C, Zehaczek S , Geenen C. Detection of bone loss with different X-ray techniques in periodontal patients. J Periodontol. 2008; ;79(7):1141-1149.spa
dc.relation.references21. Tonetti MS, Greenwell H, Kornman KS. Staging and grading of periodontitis: Framework and proposal of a new classification and case definition. J Clin Periodontol. 2018;45 Suppl 20:S149- S161.spa
dc.relation.references22. Page RC, Eke PI. Case Definitions for use in population-based surveillance of periodontitis. J Periodontol. 2007;78 Suppl 7S:1387-1399.spa
dc.relation.references23. Bashutski JD, Eber RM, Kinney JS, Maitra, S., Braun, T, McCauley, L. The impact of vitamin D status on periodontal surgery outcomes. J Dent Res. 2011;90(8):1007–12.spa
dc.relation.references24. Ramseier CA, Warnakulasuriya S, Needleman IG, et al. Consensus report: 2nd European Workshop on Tobacco Use Prevention and Cessation for Oral Health Professionals. Int Dent J. 2010;60(1):3–6.spa
dc.relation.references25. Caton JG, Armitage G, Berglundh T, Chapple ILC, Jepsen S, Kornman KS, et al. A new classification scheme for periodontal and peri-implant diseases and conditions - Introduction and key changes from the 1999 classification. J Clin Periodontol. 2018;45 Suppl 20:S1-S8.spa
dc.relation.references26. Trombelli L, Farina R, Silva CO, Tatakis DN. Plaque-induced gingivitis: Case definition and diagnostic considerations. J Clin Periodontol. 2018;45 Suppl 20:S44-S67.spa
dc.relation.references27. Chapple ILC, Mealey BL, Van Dyke TE, Bartold PM, Dommisch H, Eickholz P, et al.Periodontal health and gingival diseases and conditions on an intact and a reduced periodontium: Consensus report of workgroup 1 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J Clin Periodontol. 2018;89 Suppl 1:S74-S84spa
dc.relation.references28. Murakami S, Mealey BL, Mariotti A, Chapple ILC. Dental plaque-induced gingival conditions.J Clin Periodontol. 2018;45 Suppl 20:S17-S27.spa
dc.relation.references29. Holmstrup P, Plemons J MJ. Non–plaque‐induced gingival diseases. J Periodontol. 2018;89 Suppl 1:S28-S45spa
dc.relation.references30. Papapanou PN, Sanz M et al. Periodontitis: Consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri‐Implant Diseases and Conditions. J Periodontol. 2018;89 Suppl 1:S173-S182.spa
dc.relation.references31. Friedewald VE, Kornman KS, Beck JD, Genco R, Goldfine A, Libby P, et al. The American Journal of Cardiology and Journal of Periodontology Editors’ Consensus: Periodontitis and Atherosclerotic Cardiovascular Disease. J Periodontol. 2009;80(7):1021-1032.spa
dc.relation.references32. Jepsen S, Caton JG, Albandar JM, Bissada NF, Bouchard P, Cortellini P, et al. Periodontal manifestations of systemic diseases and developmental and acquired conditions: Consensus report of workgroup 3 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J Clin Periodontol. 2018;89 Suppl 1:S237-S248.spa
dc.relation.references33. Albandar JM, Susin C, Hughes FJ. Manifestations of systemic diseases and conditions that affect the periodontal attachment apparatus: Case definitions and diagnostic considerations. J Clin Periodontol. 2018;45 Suppl 20:S171-S189.spa
dc.relation.references34. Herrera D, Retamal‐Valdes B, Alonso B FM. Acute periodontal lesions (periodontal abscesses and necrotizing periodontal diseases) and endo‐periodontal lesions. J Periodontol. 2018;89 Suppl 1:S85-S102.spa
dc.relation.references35. Herrera D, Alonso B, de Arriba L, Santa Cruz I, Serrano C SM. Acute periodontal lesions.Periodontol 2000. 2014;65(1):149-177.spa
dc.relation.references36. Albandar JM, Susin C, Hughes FJ. Manifestations of systemic diseases and conditions that affect the periodontal attachment apparatus: case definitions and diagnostic considerations. J Periodontol. 2018;89 Suppl 1:S183-S203.spa
dc.relation.references37. Herrera D, Roldan S, Sanz M. The periodontal abscess: a review. J Clin Periodontol.2000;27(6):377-386spa
dc.relation.references38. Meng HX. Periodontal abscess. Ann Periodontol. 1999;4(1):79-83.spa
dc.relation.references39. Gill Y SC. Orofacial odontogenic infections: review of microbiology and current treatment. Oral Surg Oral Med Oral Pathol. 1990;70(2):155-158.spa
dc.relation.references40. Karolyi M. Beobachtungen über pyorrhea alveolaris. Osterr Ung Viertel Jahresschr Für Zahnheilkd. 1901;17:279.spa
dc.relation.references41. Stillman P. What is traumatic occlusion and how can it be diagnosed and corrected. J Am Dent Assoc. 1925;12:1330–1338.spa
dc.relation.references42. American Academy of Periodontology. Glossary of periodontal terms. [en línea]. 2001 [accesado 5 May 2020]. Disponible en https://www.perio.orgspa
dc.relation.references43. Fan J, Caton JG. Occlusal trauma and excessive occlusal forces: Narrative review, case definitions, and diagnostic considerations. J Clin Periodontol. 2018 Jun;45:S199–206.spa
dc.relation.references44. Ercoli C, Caton JG. Dental prostheses and tooth-related factors. J Clin Periodontol. 2018;45 Suppl 20:S207-S218.spa
dc.relation.references45. Tonetti MS, Eickholz P, Loos BG, Papapanou P, Van Der U., Armitage G. Principles in prevention of periodontal diseases. J Clin Periodontol. 2015;42:S5–S11.spa
dc.relation.references46. Kassebaum NJ, Bernabe E, Dahiya M, Bhandari B, Murray CJL MW. Global burden of severe periodontitis in 1990–2010: A systematic review and meta‐regression. J Dent Res. 2014;93:1045– 1053spa
dc.relation.references47. Periodontología SA. Resumen y traducción de los documentos de Consenso. 2019.spa
dc.relation.references48. Tonetti MS, Greenwell H, Kornman KS. Staging and grading of periodontitis: Framework and proposal of a new classification and case definition. J Clin Periodontol. 2018 Jun;45:S149–61.spa
dc.relation.references49. Kornman KS, Papapanou PN. Clinical application of the new classification of periodontal diseases: Ground rules, clarifications and “gray zones.” J Periodontol. 2020;91(3):352-360.spa
dc.relation.references50. Corbet EF. Radiographs in periodontal disease diagnosis and management. Aust Dent J.2009;54 Suppl 1:S27-S43.spa
dc.relation.references51. Pepelassi EA, Tsiklakis K, Diamanti-Kipioti . Radiographic detection and assessment of the periodontal endosseous defects. J Clin Periodontol. 2000;27(4):224-230.spa
dc.relation.references52. Jeffcoat MK, Wang IC, Reddy MS. Radiographic diagnosis in periodontics. Periodontol 2000.1995;7:54-68.spa
dc.relation.references53. Ravi V, Lipee P, Rao CVN, Lakshmikanthan L. Direct digital radiography versus conventional radiography - assessment of visibility of file length placed in the root canal: An in vitro study. J Pharm Bioallied Sci. 2012; 4 Suppl:S285-S289.spa
dc.relation.references54. Vázquez J., Errecaborde M, Estévez A, Osende N, Ramírez MJ., Carvajal E. Utilización de la técnica radiográfica de Fitzgerald como método de diagnóstico en implantología oral y periodoncia. Av Odontoestomatol [en linea]. 2009 [accesado 5 May 2020] ; 25( 4 ): 203-208.spa
dc.relation.references55. Murdick R. Sistemas de información administrativa. 2ª ed. Mexico: Prentice Hall. 1989.spa
dc.relation.references56. Institute for Telecommunication Sciences. Federal Standard 1037C. MIL-STD-188. Institute for Telecommunication Sciences; 1999.spa
dc.relation.references57. Longatt F. Introducción a los sistemas de información: Fundamentos. Universidad Politécnica de la fuerza armada. 2007.spa
dc.relation.references58. Gerón A. Hands-on Machine learning with sakit-learn and TensorFlow. O'Reilly Media. 2017.spa
dc.relation.references59. Ekert T, Krois J, Meinhold L, Elhennawy K, Emara R, Golla T, et al. Deep Learning for the Radiographic Detection of Apical Lesions. J Endod. 2019;45(7):917-922.e5.spa
dc.relation.references60. Lin PL, Huang PY, Huang PW. Automatic methods for alveolar bone loss degree measurement in periodontitis periapical radiographs. Comput Methods Programs Biomed. 2017; 148:1–11.spa
dc.relation.references61. Becker AS, Marcon M, Ghafoor S, Wurnig MC, Frauenfelder T, Boss A. Deep Learning in Mammography. Invest Radiol. 2017;52(7):434-440.spa
dc.relation.references62. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115-118spa
dc.relation.references63. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal Fundus Photographs. JAMA. 2016;316(22):2402-2410.spa
dc.relation.references64. Lee J-H, Kim D-H, Jeong S-N, Choi S-H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J Dent. 2018;77:106-111spa
dc.relation.references65. Lee J-H, Kim D, Jeong S-N, Choi S-H. Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm. J Periodontal Implant Sci. 2018;48(2):114-123.spa
dc.relation.references66. Lin PL, Huang PW, Huang PY, Hsu HC. Alveolar bone-loss area localization in periodontitis radiographs based on threshold segmentation with a hybrid feature fused of intensity and the H- value of fractional Brownian motion model. Comput Methods Programs Biomed. 2015;121(3):117-126spa
dc.relation.references67. Greenstein G. Current interpretations of periodontal probing evaluations: diagnostic and therapeutic implications. Compend Contin Educ Dent. 2005;26(6):381-399.spa
dc.relation.references68. Aberin S, Goma J. Detecting periodontal disease using convolutional neural networks. En: IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology,Communication and Control, Environment and Management (HNICEM); Baguio City. 2018; p.1-6.spa
dc.relation.references69. Jeffcoat MK, Page R RM et al. Use of digital radiography to demonstrate the potential of naproxen as an adjunct in the treatment of rapidly progressive periodontitis. Periodontal Res. 1991;26(5):415-421.spa
dc.relation.references70. Hausmann E, Dunford R, Wikesjö U, Christersson L, McHenry K. Progression of untreated periodontitis as assessed by subtraction radiography. J Periodontal Res. 1986;21(6):716-721.spa
dc.relation.references71. Ash M, Lebedeff I. Anatomia anatomía dental, fisiología y oclusión de Wheeler. 6a ed. México, Nueva Editorial Interamericana, 1986.spa
dc.relation.references72. Zhang K, Wu J, Chen H, Lyu P. An effective teeth recognition method using label tree with cascade network structure. Comput Med Imaging Graph. 2018; 68:61-70.spa
dc.relation.references73. Chen H, Zhang K, Lyu P, Li H, Zhang L, Wu J, et al. A deep learning approach to automatic teeth detection and numbering based on object detection in dental periapical films. Sci Rep. 2019;9(1):3840.spa
dc.relation.references74. Hwang JJ, Jung YH, Cho BH, Heo MS. An overview of deep learning in the field of dentistry.Imaging Sci Dent. 2019;49(1):1-7.spa
dc.relation.references75. Rams TE, Listgarten MA, Slots J. Utility of radiographic crestal lamina dura for predicting periodontitis disease-activity. J Clin Periodontol. 1994;21(9):571-576.spa
dc.relation.references76. Hugoson A, Jordan T. Frequency distribution of individuals aged 20–70 years according to severity of periodontal disease. Community Dent Oral Epidemiol. 1982;10(4):187-192spa
dc.relation.references77. Orozco TM. Diagnostico Radiológico Periodontal. Manual de prácticas de periodoncia. 2006.spa
dc.relation.references78. Herbert T. Shillingburg, Jr, Sumiya Hobo, Lowell D. Whitsett, Richard Jacobi SEB. Fundamentos Esenciales en Prótesis Fija. 3a ed. Quitenssense; 2000.spa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.subject.proposalPérdida óseaspa
dc.subject.proposalRadiografía periapicalspa
dc.subject.proposalDeep Learningspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.identifier.instnameinstname:Universidad Santo Tomásspa
dc.type.categoryFormación de Recurso Humano para la Ctel: Trabajo de grado de Especializaciónspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.description.degreelevelEspecializaciónspa
dc.identifier.repourlrepourl:https://repository.usta.edu.cospa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driveinfo:eu-repo/semantics/bachelorThesis


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-SinDerivadas 2.5 Colombia
Except where otherwise noted, this item's license is described as Atribución-SinDerivadas 2.5 Colombia

Indexado por: