Show simple item record

Discoloration of alizarin red on thin films of Fe (III)-tetracarboxyphenyl porphyrin deposited on silicon oxide

dc.creatorDiaz-Uribe, Carlosspa
dc.creatorVera, Kevinspa
dc.creatorVega, Darianaspa
dc.date2020-07-17spa
dc.identifierhttp://revistas.ustabuca.edu.co/index.php/ITECKNE/article/view/2429spa
dc.identifier10.15332/iteckne.v17i1.2429spa
dc.descriptionEl rojo de alizarina es un colorante de antraquinona soluble en agua que se usa ampliamente en la industria textil como agente de tinción y se considera uno de los contaminantes más recalcitrantes y duraderos. La reacción de Fenton puede usarse para destruir una amplia variedad de compuestos orgánicos: un ion ferroso reacciona con el peróxido de hidrógeno (H2O2) para formar un radical hidroxilo (HO•) que es un poderoso agente oxidante. La velocidad de esta reacción podría aumentarse cuando se expone a la luz UV-Vis, este método se conoce como proceso de Foto-Fenton y constituye una alternativa atractiva a los procesos de oxidación avanzada. En este trabajo se estudió la decoloración fotocatalítica del colorante rojo de alizarina mediante un proceso Foto-Fenton heterogéneo inducido por luz visible; para tal fin, se utilizaron películas delgadas de tetra(4-carboxifenil) porfirina de hierro (III) adsorbidas sobre dióxido de silicio. La caracterización del catalizador fue realizada por UV-Vis, reflectancia difusa e IR-FT. Los ensayos fueron realizados a tres (3) valores de pH 1.0, 3.0 y 5.0; finalmente, se utilizó el modelo cinético descrito por Langmuir-Hinshelwood para obtener los parámetros cinéticos del proceso de fotodecoloración. Los resultados mostraron que la mayor decoloración del rojo de alizarina se presentó a un pH de 1.0; además, el modelo de pseudo-primer orden aplicado permitió obtener la constante de velocidad (k) del proceso de decoloración encontrando que el mayor valor de k fue 1.1x10-2 min-1. Los radicales hidroxilo se detectaron por atrapamiento químico a través de fluorescencia indirecta del ácido 2-hidroxitereftálico. Los procesos de foto-Fenton basados en sistemas de catálisis heterogénea resuelven parte de estos problemas ambientales, proporcionando una fácil separación y recuperación del catalizador de las aguas residuales tratadas, en el que no es corrosivo y, además, es ecológico.spa
dc.descriptionAlizarin Red is a water soluble anthraquinone dye used extensively in the textile industry as a staining agent and is considered to be one of the most recalcitrant and durable pollutants. Fenton reaction can be used to destroy a wide variety of organic compounds: a ferrous ion reacts with hydrogen peroxide (H2O2) to form hydroxyl radical (HO•) which is a powerful oxidizing agent. The rate of this reaction could be increased when exposed o UV–vis light, this method is known as photo-assisted Fenton process and constitutes an attractive alternative of advance oxidation process. In this work, we studied the alizarin red dye photocatalytic discoloration through heterogeneous Photo-Fenton process induced by visible light; we used tetra (4-carboxyphenyl) porphyrin iron (III) adsorbed on silicon dioxide thin films. The characterization of the catalyst was carried out by UV-Vis, diffuse reflectance and IR-FT; The tests were carried out at three (3) pH values 1.0, 3.0 and 5.0; finally, the kinetic model described by Langmuir-Hinshelwood was used to obtain kinetic parameters for photo-discoloration process. The results showed that at pH = 1.0 highest alizarin red photo-discoloration percentage was reported; furthermore, after applied the pseudo-first order model, we obtained rate constants (k) for discoloration process that finds the highest k value was 1.1x10-2 min-1. The hydroxyl radicals were detected by chemical trapping through indirect fluorescence of the 2-hydroxyterephthalic acid. Photo-Fenton processes based on heterogeneous catalysis systems solve part of these environmental problems providing an easy separation and recovery of the catalyst from the treated wastewater, wherein it is noncorrosive, and, besides, it is environmentally friendly.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherUniversidad Santo Tomás. Seccional Bucaramangaeng
dc.relationhttp://revistas.ustabuca.edu.co/index.php/ITECKNE/article/view/2429/1766spa
dc.relation/*ref*/D. Vega, K. Vera, C. Diaz-Uribe, “Fotodegradación de rojo de alizarina con películas delgadas de tetracarboxifenilporfirina de hierro (III) adsorbida sobre dióxido de silicio,” (Tesis de pregrado). Universidad del Atlántico. Barranquilla, Colombia. 2016.spa
dc.relation/*ref*/P. Carneiro, G. Umbuzeiro, D. Oliveira and M. Zanoni, “Assessment of water contamination caused by a mutagenic textile effluent/dye house effluent bearing disperse dyes”. J. Hazard. Mat. vol. 174, pp. 694-699, 2010. DOI: 10.1016/j.jhazmat.2009.09.106spa
dc.relation/*ref*/S. Kansal, R. Lamba, S. Metha and A. Umar, “Photocatalytic degradation of Alizarin Red S using simply synthesized ZnO nanoparticles”. Mat. Lett. vol. 106, pp. 385-389, 2013. DOI: 10.1016/j.matlet.2013.05.074spa
dc.relation/*ref*/S. Sharma and A. Bhattacharya, “Drinking water contamination and treatment techniques”. App. Wat. Sci. vol. 7, pp. 1043-1067, 2017. DOI: 10.1007/s13201-016-0455-7spa
dc.relation/*ref*/B. Pava-Gómez, X. Vargas-Ramírez and C.E. Diaz-Uribe, “Physicochemical study of adsorption and photodegradation processes of methylene blue on copper-doped TiO2 films”. J. Photochem. Photobiol A: Chem. vol. 360, pp. 13-15, 2018. DOI: 0.1016/j.jphotochem.2018.04.022spa
dc.relation/*ref*/C. Diaz-Uribe, F. Martínez and W, Vallejo, “Synthesis and characterization of TiO2 thin films doped with copper to be used in photocatalysis” Revista Iteckne. vol. 10 (1), pp. 16-20, 2013. DOI: 10.15332/iteckne.v10i1.188spa
dc.relation/*ref*/W. Vallejo, C.E. Diaz-Uribe C.E. and A. Cantillo, “Methylene blue photocatalytic degradation under visible irradiation on TiO2 thin films sensitized with Cu and Zn tetracarboxy-phthalocyanines”. J. Photochem. Photobiol A: Chem. vol. 299, pp. 80-86, 2015. DOI: 10.1016/j.jphotochem.2014.11.009spa
dc.relation/*ref*/M. Cheng, G. Zeng, D. Huang, C. Lai, P. Xu, C. Zhang and Y. Liu, “Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: A review”. Chem. Eng. J. vol. 284, pp. 582-598, 2016. DOI: 10.1016/j.cej.2015.09.001spa
dc.relation/*ref*/R. Lloyda, P. Hannaa and R. Masona, “The Origin of the Hydroxyl Radical Oxygen in the Fenton Reaction”. Free Rad. Biol. Med. vol. 22, pp. 885-888, 1997. DOI: 10.1016/s0891-5849(96)00432-7spa
dc.relation/*ref*/B. Southworth and B. Voelker, “Hydroxyl Radical Production via the Photo-Fenton Reaction in the Presence of Fulvic Acid”. Environ. Sci. Technol. vol. 37 (6), pp. 1130-1136, 2013. DOI: 10.1021/es020757lspa
dc.relation/*ref*/C. Diaz-Uribe, W. Vallejo and J. Miranda, “Photo-Fenton oxidation of phenol with Fe(III)-tetra-4-carboxyphenylporphyrin/SiO2 assisted with visible light”. J. Photochem. Photobiol A: Chem. vol. 294, pp. 75-80, 2014. DOI: 0.1016/j.jphotochem.2014.08.004spa
dc.relation/*ref*/C. Diaz-Uribe, E. Puello and W. Vallejo, “Particle size distributions by dynamic light scattering of copper (II) tetracarboxyphenilporphyrn anchored on titanium dioxide”. Revista Iteckne. vol. 10(2), pp. 224-228. 2013. DOI: 10.15332/iteckne.v10i2.400spa
dc.relation/*ref*/A. Adler, F. Longo, J. Finarelli, J. Goldmacher, J. Assour and L. Korsakoff, “A simplified synthesis for mesotetraphenylporphine”. J. Org. Chem. vol. 32(2), pp. 476, 1967. DOI: 10.1021/jo01288a053spa
dc.relation/*ref*/A. Adler, F. Longo, F. Kampas and J. Kim, “Oxygen Reduction on Transition-Metal Porphyrins in Acid Electrolyte II. Stability”. J. Inorg. Nucl. Chem. 32, 2443, 1970. DOI: 10.1002/bbpc.19810850917spa
dc.relation/*ref*/T. López, T. López-Gaona and R. Gómez, “Synthesis, Characterization and Activity of Ru/SiO2 Catalysts Prepared By the Sol-Gel Method”. J. Non-Cryst. Solids. 10(2-3), 170-174, 1989. DOI: 10.1016/0022-3093(89)90253-6spa
dc.relation/*ref*/K. Ishibashi, A. Fujishima, T. Watanabe, and K. Hashimoto, “Quantum yields of active oxidative species formed on TiO2 photocatalyst”. J. Photochem. Photobiol A: Chem. vol. 134, pp. 139-42, 2000. DOI: 10.1016/S1010-6030(00)00264-1spa
dc.relation/*ref*/M. Gouterman, G.H. Wagnière and L.C. Snyder, “Spectra of porphyrins. Part II. Four orbital model, J. Mol. Spectrosc.”, vol. 11, pp. 108-127, 1963. DOI: 10.1016/0022-2852(63)90011-0spa
dc.relation/*ref*/W. Zheng, N. Shan, L. Yu and X. Wang, “UV-visible, fluorescence and EPR properties of porphyrins and metalloporphyrins”, Dyes Pigmen. vol. 77, pp. 153-157, 2008. DOI: 10.1016/j.dyepig.2007.04.007spa
dc.relation/*ref*/M. Assis, R. John and L. Smith, “Hydrocarbon oxidation with iodosylbenzene catalysed by the sterically hindered iron(III) 5-(pentafluorophenyl)-10,15,20-tris(2,6-dichlorophenyl)porphyrin in homogeneous solution and covalently bound to silica”, J. Chem. Soc., Perkin Trans. vol. 2, pp. 2221-2226, 1998. DOI: 10.1039/A804679Dspa
dc.relation/*ref*/C.E. Diaz-Uribe, M. C. Daza, E. A. Páez-Mozo, F. Martínez O., C. L.B. Guedes and E. Di Mauro, “Visible light singlet oxygen production with tetra(4-carboxyphenyl) porphyrin/SiO2”. J. Photochem. Photobiol. A: Chem. vol. 259, pp. 47-52, 2013. DOI: 10.1016/j.jphotochem.2013.03.005spa
dc.relation/*ref*/M. Trytek, M. Majdan, A. Lipke and J. Fiedurek, “Sol–gel immobilization of octaethylporphine and hematoporphyrin for biomimetic photooxidation of α-pinene”, J. Catal. vol. 286, pp. 193-205, 2012. DOI: 10.1016/j.jcat.2011.11.005spa
dc.relation/*ref*/I.K. Konstantinou and T.A. Albanis, “TiO2 assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations A review”. Appl. Catal. B Environ. vol. 49, pp. 1-14, 2013. DOI: 10.1016/j.apcatb.2003.11.010spa
dc.relation/*ref*/M. Loukidou, Karapantsios T.D., Zouboulis, A.I. and Matis, K.A, “Diffusion Kinetic Study of Chromium(VI) Biosorption by Aeromonas caviae. Nd”. Eng. Chem. Res., vol. 43 (7), pp. 1748-1755, 2004. DOI: 10.1021/ie034132nspa
dc.relation/*ref*/C. Quiñones, J. Ayala and W. Vallejo, “Methylene blue photoelectrodegradation under UV irradiation on Au/Pd-modified TiO2 films”. Appl. Surf. Sci. vol. 257, pp. 367-371, 2010. DOI: 10.1016/j.apsusc.2010.06.079spa
dc.relation/*ref*/P. Zucca, C. Vinci, F. Sollai, A. Rescigno and E. Sanjust, “Degradation of Alizarin Red S under mild experimental conditions by immobilized 5,10,15,20-tetrakis(4-sulfonatophenyl)porphine–Mn(III) as a biomimetic peroxidase-like catalyst”. J. Mol. Cat. A: Chem. vol. 288 (1-2), pp. 97-102, 2008. DOI: 10.1016/j.molcata.2008.04.001spa
dc.rightsCopyright (c) 2020 ITECKNEeng
dc.sourceITECKNE; Vol 17, No 1 (2020); 49-55eng
dc.sourceITECKNE; Vol 17, No 1 (2020); 49-55spa
dc.source2339-3483spa
dc.source1692-1798spa
dc.titleFotodecoloración de rojo de alizarina con películas delgadas de tetracarboxifenilporfirina de hierro (III) adsorbida sobre dióxido de siliciospa
dc.titleDiscoloration of alizarin red on thin films of Fe (III)-tetracarboxyphenyl porphyrin deposited on silicon oxideeng
dc.typeinfo:eu-repo/semantics/articlespa
dc.typeinfo:eu-repo/semantics/publishedVersionspa
dc.subject.proposalPorfirina; foto-Fenton; radical hidroxilo; rojo de alizarina; luz visible; catálisisspa
dc.subject.proposalPorphyrin; photo-fenton hydroxyl radical; alizarin red dye; visible light; catalysiseng


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Indexado por: