Show simple item record

dc.contributor.advisorSánchez Cepeda, Ángela Patricia
dc.contributor.advisorSáchica Castillo, Ever Humberto
dc.contributor.advisorMontes Malagón, Luz Amanda
dc.contributor.advisorSegura Peña, Sully
dc.contributor.authorTorres Becerra, Daniela Astrid
dc.contributor.authorSandoval Acuña, Leydi Johana
dc.date.accessioned2021-04-09T21:30:49Z
dc.date.available2021-04-09T21:30:49Z
dc.date.issued2021-04-07
dc.identifier.citationTorres, D. Sandoval, L. (2021). Nanoparticulas de óxido de grafeno como agente biocida incrustados en membranas de microfiltración electrohiladas para tratamiento de aguas: una revisión sistemática. Tesis de pregrado, Universidad Santo Tomás, Tunja.spa
dc.identifier.urihttp://hdl.handle.net/11634/33354
dc.descriptionEn los últimos años, ha tenido gran relevancia el uso de nuevos materiales como las nanopartículas (NPs) de óxido de grafeno (GO) en la fabricación de fibras poliméricas compuestas obtenidas por la técnica de electrospinning a escala micro y nanométricas para aplicaciones en la eliminación de microorganismos presentes en el agua. En este estudio, se realizó una metodología de revisión sistemática con el uso del Software Parsifal, mediante 4 fases: planificación, búsqueda de documentos en las bases de datos, extracción de datos y análisis de datos extraídos. La investigación llevo a un total de 906 artículos donde 169 eran duplicados, quedando 737 artículos a los cuales se realizó un filtro de clasificación por exclusión e inclusión: total artículos seleccionados, aceptados, rechazados y duplicados. De acuerdo al formulario e extracción de datos se utilizaron 222 artículos dando respuesta a las preguntas de investigación que se plantearon en esta revisión sistemática. El desarrollo de esta investigación condujo a la identificación de las propiedades de NPs de GO como agentes biocidas de dos casos de estudio de membranas poliméricas desnudas o puras, (matriz polimérica), las cuales fueron modificadas de la siguiente forma: caso 1, membranas de microfiltración (MF) de poliacrilonitrilo (PAN) modificadas con NPs de plata/oxido de grafeno (Ag/GO) vs membranas de Poli (ácido láctico)/poliacrilonitrilo (PLA/PAN) modificadas con nanocristales de celulosa (NCC) y nanocristales de quitina (NCQ). Para el estudio del caso 2, las membranas de MF de Poli (fluoruro de vinilideno) (PVDF) modificadas con NPs de GO vs membranas de Policaprolactama también llamada (poliamida 6) (PA-6) modificadas con NPs de dióxido de titanio (TiO2). Como resultado a estos dos casos de estudio , para el caso 1 , las NPs de Ag/GO vs NCC y NCQ tuvieron una excelente actividad antibacteriana y antiincrustante con una efectividad en la eliminación de microorganismos con las NPs de Ag/GO y una tasa de reducción del 100% para la E. coli y un 87.6 % para el S. aureus, en comparación con los NCQ y NCC, la efectividad en la eliminación bacteriana con los dos nanocristales fue de un 85% para la E. coli por exclusión de tamaño y un 95% con el uso de NCQ. Para el estudio del caso 2, las membranas de MF de (PVDF) modificadas con NPs de GO vs membranas de PA-6 modificadas con NPs de (TiO2), la respuesta fue una tasa de reducción de bacterias con el uso de las NPs de GO en un 100% para la E. coli y un 99% para el S. aureus y con las NPs de TiO2 fue de un 99.99% para el S. aureus después de 6 h de exposición a rayos UV.spa
dc.description.abstractIn recent years, the use of new materials such as graphene oxide (GO) nanoparticles (NPs) has been of great relevance in the manufacture of composite polymeric fibers obtained by the electrospinning technique on a micro and nanometric scale for applications in removal of microorganisms present in the water. In this study, a systematic review methodology was carried out with the use of Parsifal Software, through 4 phases: planning, search for documents in databases, data extraction and analysis of extracted data. The research led to a total of 906 articles where 169 were duplicates, leaving 737 articles to which a classification filter by exclusion and inclusion was performed: total articles selected, accepted, rejected and duplicated. According to the data extraction form, 222 articles were used responding to the research questions posed in this systematic review. The development of this research led to the identification of the properties of GO NPs as biocidal agents of two case studies of bare or pure polymeric membranes (polymeric matrix), which were modified as follows: case 1, membranes of microfiltration (MF) of polyacrylonitrile (PAN) modified with silver NPs / graphene oxide (Ag / GO) vs Poly (lactic acid) / polyacrylonitrile (PLA / PAN) membranes modified with cellulose nanocrystals (NCC) and chitin nanocrystals (NCQ). For the study of case 2, Poly (vinylidene fluoride) (PVDF) MF membranes modified with GO NPs vs polycaprolactam membranes also called (polyamide 6) (PA-6) modified with titanium dioxide NPs (TiO2) As a result of these two study cases, for case 1, the Ag / GO NPs vs NCC and NCQ had excellent antibacterial and antifouling activity with an effectiveness in the elimination of microorganisms with the Ag / GO NPs and a rate of reduction of 100% for E. coli and 87.6% for S. aureus, compared to NCQ and NCC, the effectiveness in bacterial elimination with the two nanocrystals was 85% for E. coli by exclusion of size and 95% with the use of NCQ. For the case study 2, the MF membranes of (PVDF) modified with GO NPs vs PA-6 membranes modified with NPs of (TiO2), the response was a reduction rate of bacteria with the use of the NPs of GO 100% for E. coli and 99% for S. aureus and with the TiO2 NPs it was 99.99% for S. aureus after 6 h of UV exposure.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.titleNanoparticulas de óxido de grafeno como agente biocida incrustados en membranas de microfiltración electrohiladas para tratamiento de aguas: una revisión sistemáticaspa
dc.description.degreenameIngeniero Ambientalspa
dc.publisher.programPregrado de Ingeniería Ambientalspa
dc.publisher.facultyFacultad de Ingeniería Ambientalspa
dc.subject.keywordGraphene oxidespa
dc.subject.keywordElectrospinningspa
dc.subject.keywordNanofibersspa
dc.subject.keywordMicroorganismsspa
dc.subject.keywordPolymersspa
dc.subject.keywordComposite materialsspa
dc.type.localTrabajo de Gradospa
dc.rights.localAbierto (Texto Completo)spa
dc.type.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.coverage.campusCRAI-USTA Tunjaspa
dc.relation.referencesAcosta Castellanos Pedro Mauricio, C. C. (2015). Análisis de interferencia de parámetros físicos del agua, en desinfección por radiación UV. Revista de Tecnología, 105-112.spa
dc.relation.referencesAlejo, J. C. (2011). EVALUACIÓN DE RIESGOS DE STAPHYLOCOCCUS AUREUS ENTEROTOXIGÉNICO EN ALIMENTOS PREPARADOS NO. BOGOTA: Instituto Nacional de Salud.spa
dc.relation.referencesAraque, I. D. (2018). Diagnóstico y propuesta de fitorremediación para el tratamiento de aguas residuales, sector tierra negra. L'esprit Ingénieux, 132-140.spa
dc.relation.referencesCornellio, V. C. (2016). Astaxantina integrada en Nanowhiskas de Quitina: estudio de la degradacion termica. Morelia Mochoacán: privada.spa
dc.relation.referencesBecerra, D. A., & Acuña, L. J. (2021). Montaje Electroespinning. Tunja: Propia.spa
dc.relation.referencesDr. D. García, F. (2017). Mapping sistemáticos de literatura. Caso práctico de planificación usando Parsifal. Mexico: Instituto de ciencias basicas.spa
dc.relation.referencesLina Patricia Vega and Gustavo A. Peñuela, P. (2018). High Frequency Sonochemical Degradation of Benzophenone-3 in Water. Journal of Environmental Engineering.spa
dc.relation.referencesAbd Halim, N. S., Wirzal, M. D. H., Hizam, S. M., Bilad, M. R., Nordin, N. A. H. M., Sambudi, N. S., . . . Yusoff, A. R. M. (2020). Recent Development on Electrospun Nanofiber Membrane for Produced Water Treatment: A review. Journal of Environmental Chemical Engineering, 104613. doi:https://doi.org/10.1016/j.jece.2020.104613spa
dc.relation.referencesAbdulla, N. K., Siddiqui, S. I., Fatima, B., Sultana, R., Tara, N., Hashmi, A. A., . . . Chaudhry, S. A. (2021). Silver based hybrid nanocomposite: A novel antibacterial material for water cleansing. Journal of Cleaner Production, 284. doi: 10.1016/j.jclepro.2020.124746spa
dc.relation.referencesAcosta, H. A., Villada, H. S., & Prieto, P. A. (2006). Envejecimiento de almidones termoplásticos agrios de yuca y nativos de papa por microscopía de fuerza atómica. Información tecnológica, 17(3), 71-78.spa
dc.relation.referencesAdemola Bode-Aluko, C., Pereao, O., Kyaw, H. H., Al-Naamani, L., Al-Abri, M. Z., Tay Zar Myint, M., . . . Dobretsov, S. (2021). Photocatalytic and antifouling properties of electrospun TiO2 polyacrylonitrile composite nanofibers under visible light. Materials Science and Engineering: B, 264, 114913. doi:https://doi.org/10.1016/j.mseb.2020.114913spa
dc.relation.referencesAghapour Aktij, S., Taghipour, A., Rahimpour, A., Mollahosseini, A., & Tiraferri, A. (2020). A critical review on ultrasonic-assisted fouling control and cleaning of fouled membranes. Ultrasonics, 108, 106228. doi:https://doi.org/10.1016/j.ultras.2020.106228spa
dc.relation.referencesAhire, J. J., Neveling, D. P., & Dicks, L. M. T. (2018). Polyacrylonitrile (PAN) nanofibres spun with copper nanoparticles: an anti-Escherichia coli membrane for water treatment. Applied Microbiology and Biotechnology, 102(16), 7171-7181. doi:10.1007/s00253-018-9051-0spa
dc.relation.referencesAhmad, A., qureshi, A. S., Li, L., Bao, J., Jia, X., Xu, Y., & Guo, X. (2016). Antibacterial activity of graphene supported FeAg bimetallic nanocomposites. Colloids and Surfaces B: Biointerfaces, 143, 490-498. doi:https://doi.org/10.1016/j.colsurfb.2016.03.065spa
dc.relation.referencesAijuka, M., Santiago, A. E., Girón, J. A., Nataro, J. P., & Buys, E. M. (2018). Enteroaggregative Escherichia coli is the predominant diarrheagenic E. coli pathotype among irrigation water and food sources in South Africa. International Journal of Food Microbiology, 278, 44-51. doi:https://doi.org/10.1016/j.ijfoodmicro.2018.04.018spa
dc.relation.referencesAkhavan, O., & Ghaderi, E. (2010). Toxicity of Graphene and Graphene Oxide Nanowalls Against Bacteria. Acs Nano, 4(10), 5731-5736. doi:10.1021/nn101390xspa
dc.relation.referencesAl Aani, S., Mustafa, T. N., & Hilal, N. (2020). Ultrafiltration membranes for wastewater and water process engineering: A comprehensive statistical review over the past decade. Journal of Water Process Engineering, 35, 101241. doi:https://doi.org/10.1016/j.jwpe.2020.101241spa
dc.relation.referencesALDANA, A. S., SANDOVAL, E. R., & QUINTERO, A. F. (2005). Aplicación del análisis por calorimetría diferencial de barrido (DSC) para la caracterización de las modificaciones del almidón. Dyna, 72(146), 45-53.spa
dc.relation.referencesAlejo, J., Cortes, M, Correa, D, Cebeiro, K Herrera, J. (2011). EVALUACIÓN DE RIESGOS DE STAPHYLOCOCCUS AUREUS ENTEROTOXIGÉNICO EN ALIMENTOS PREPARADOS NO. BOGOTA: Instituto Nacional de Salud.spa
dc.relation.referencesAmiri, S., Asghari, A., Vatanpour, V., & Rajabi, M. (2020). Fabrication and characterization of a novel polyvinyl alcohol-graphene oxide-sodium alginate nanocomposite hydrogel blended PES nanofiltration membrane for improved water purification. Separation and Purification Technology, 250, 117216. doi:https://doi.org/10.1016/j.seppur.2020.117216spa
dc.relation.referencesAngel, N., Guo, L., Yan, F., Wang, H., & Kong, L. (2020). Effect of processing parameters on the electrospinning of cellulose acetate studied by response surface methodology. Journal of Agriculture and Food Research, 2, 100015. doi:https://doi.org/10.1016/j.jafr.2019.100015spa
dc.relation.referencesAnis, S. F., Hashaikeh, R., & Hilal, N. (2019). Microfiltration membrane processes: A review of research trends over the past decade. Journal of Water Process Engineering, 32, 100941. doi:https://doi.org/10.1016/j.jwpe.2019.100941spa
dc.relation.referencesArenas, G. N., & Cañas, L. A. (2007). Procedimiento para medir ángulos de contacto en sólidos particulados finos. Scientia et technica, 1(36).spa
dc.relation.referencesAshfaq, M. Y., Al-Ghouti, M. A., & Zouari, N. (2020). Functionalization of reverse osmosis membrane with graphene oxide to reduce both membrane scaling and biofouling. Carbon, 166, 374-387. doi:https://doi.org/10.1016/j.carbon.2020.05.017spa
dc.relation.referencesAzizi-Lalabadi, M., Hashemi, H., Feng, J., & Jafari, S. M. (2020). Carbon nanomaterials against pathogens; the antimicrobial activity of carbon nanotubes, graphene/graphene oxide, fullerenes, and their nanocomposites. Advances in Colloid and Interface Science, 284, 102250. doi:https://doi.org/10.1016/j.cis.2020.102250spa
dc.relation.referencesBao, Q., Zhang, D., & Qi, P. (2011). Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection. Journal of Colloid and Interface Science, 360(2), 463-470. doi:10.1016/j.jcis.2011.05.009spa
dc.relation.referencesBao, Q., Zhang, D., & Qi, P. (2011). Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection. Journal of Colloid and Interface Science, 360(2), 463-470. doi:10.1016/j.jcis.2011.05.009spa
dc.relation.referencesBarani, M., Bazgir, S., Keyvan Hosseini, M., & Keyvan Hosseini, P. (2021). Eco-facile application of electrospun nanofibers to the oil-water emulsion separation via coalescing filtration in pilot- scale and beyond. Process Safety and Environmental Protection, 148, 342-357. doi:https://doi.org/10.1016/j.psep.2020.10.015spa
dc.relation.referencesBarco-Bonilla, N., Romero-González, R., Plaza-Bolaños, P., Garrido Frenich, A., & Martínez Vidal, J. L. (2010). Analysis and study of the distribution of polar and non-polar pesticides in wastewater effluents from modern and conventional treatments. Journal of Chromatography A, 1217(50), 7817-7825. doi:https://doi.org/10.1016/j.chroma.2010.10.011spa
dc.relation.referencesBarua, B., & Saha, M. C. (2015). Investigation on jet stability, fiber diameter, and tensile properties of electrospun polyacrylonitrile nanofibrous yarns. Journal of Applied Polymer Science, 132(18). doi:10.1002/app.41918spa
dc.relation.referencesBassyouni, M., Abdel-Aziz, M. H., Zoromba, M. S., Abdel-Hamid, S. M. S., & Drioli, E. (2019). A review of polymeric nanocomposite membranes for water purification. Journal of Industrial and Engineering Chemistry, 73, 19-46. doi:https://doi.org/10.1016/j.jiec.2019.01.045spa
dc.relation.referencesBecerra, D. A. T., & Acuña, L. J. S. (2021). Montaje Electroespinning. Retrieved from Tunja:spa
dc.relation.referencesBenhabiles, M. S., Salah, R., Lounici, H., Drouiche, N., Goosen, M. F. A., & Mameri, N. (2012). Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocolloids, 29(1), 48-56. doi:10.1016/j.foodhyd.2012.02.013spa
dc.relation.referencesBhoj, Y., Tharmavaram, M., & Rawtani, D. (2020). A comprehensive approach to antifouling strategies in desalination, marine environment, and wastewater treatment. Chemical Physics Impact, 100008. doi:https://doi.org/10.1016/j.chphi.2020.100008spa
dc.relation.referencesBjorge, D., Daels, N., De Vrieze, S., Dejans, P., Van Camp, T., Audenaert, W., . . . Van Hulle, S. W. H. (2009). Performance assessment of electrospun nanofibers for filter applications. Desalination, 249(3), 942-948. doi:https://doi.org/10.1016/j.desal.2009.06.064spa
dc.relation.referencesBuruga, K., Song, H., Shang, J., Bolan, N., Jagannathan, T. K., & Kim, K.-H. (2019). A review on functional polymer-clay based nanocomposite membranes for treatment of water. Journal of Hazardous Materials, 379, 120584. doi:https://doi.org/10.1016/j.jhazmat.2019.04.067spa
dc.relation.referencesCassano, A., & Basile, A. (2013). 7 - Integrating different membrane operations and combining membranes with conventional separation techniques in industrial processes. In A. Basile (Ed.), Handbook of Membrane Reactors (Vol. 2, pp. 296-343): Woodhead Publishing.spa
dc.relation.referencesCornellio, V. C. (2016). Astaxantina integrada en Nanowhiskas de Quitina: estudio de la degradacion termica. Morelia Mochoacán: privada.spa
dc.relation.referencesChae, H. R., Lee, J., Lee, C. H., Kim, I. C., & Park, P. K. (2015). Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance. Journal of Membrane Science, 483, 128-135. doi:10.1016/j.memsci.2015.02.045spa
dc.relation.referencesChakraborty, S., & Biswas, M. C. (2020). 3D printing technology of polymer-fiber composites in textile and fashion industry: A potential roadmap of concept to consumer. Composite Structures, 248, 112562. doi:https://doi.org/10.1016/j.compstruct.2020.112562spa
dc.relation.referencesChakraborty, S., & Biswas, M. C. (2020). 3D printing technology of polymer-fiber composites in textile and fashion industry: A potential roadmap of concept to consumer. Composite Structures, 248, 112562. doi:https://doi.org/10.1016/j.compstruct.2020.112562spa
dc.relation.referencesChen, H., Huang, M., Liu, Y., Meng, L., & Ma, M. (2020). Functionalized electrospun nanofiber membranes for water treatment: A review. Science of The Total Environment, 739, 139944. doi:https://doi.org/10.1016/j.scitotenv.2020.139944spa
dc.relation.referencesChen, H., Huang, M., Wang, Z., Gao, P., Cai, T., Song, J., . . . Meng, L. (2020). Enhancing rejection performance of tetracycline resistance genes by a TiO2/AgNPs-modified nanofiber forward osmosis membrane. Chemical Engineering Journal, 382, 123052. doi:https://doi.org/10.1016/j.cej.2019.123052spa
dc.relation.referencesChen, H., Ni, J., Chen, J., Xue, W., Wang, J., Na, H., & Zhu, J. (2015). Activation of corn cellulose with alcohols to improve its dissolvability in fabricating ultrafine fibers via electrospinning. Carbohydrate Polymers, 123, 174-179. doi:https://doi.org/10.1016/j.carbpol.2015.01.023spa
dc.relation.referencesChen, H. Q., Gao, D., Wang, B., Zhao, R. F., Guan, M., Zheng, L. N., . . . Feng, W. Y. (2014). Graphene oxide as an anaerobic membrane scaffold for the enhancement of B. adolescentis proliferation and antagonistic effects against pathogens E-coli and S-aureus. Nanotechnology, 25(16). doi:10.1088/0957-4484/25/16/165101spa
dc.relation.referencesChen, J., Peng, H., Wang, X., Shao, F., Yuan, Z., & Han, H. (2014). Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale, 6(3), 1879-1889. doi:10.1039/c3nr04941hspa
dc.relation.referencesDaels, N., De Vrieze, S., Sampers, I., Decostere, B., Westbroek, P., Dumoulin, A., . . . Van Hulle, S. W. H. (2011). Potential of a functionalised nanofibre microfiltration membrane as an antibacterial water filter. Desalination, 275(1-3), 285-290. doi:10.1016/j.desal.2011.03.012spa
dc.relation.referencesDaels, N., Radoicic, M., Radetic, M., De Clerck, K., & Van Hulle, S. W. H. (2015). Electrospun nanofibre membranes functionalised with TiO<inf>2</inf> nanoparticles: Evaluation of humic acid and bacterial removal from polluted water. Separation and Purification Technology, 149, 488-494. doi:10.1016/j.seppur.2015.06.016spa
dc.relation.referencesDaels, N., Radoicic, M., Radetic, M., Van Hulle, S. W. H., & De Clerck, K. (2014). Functionalisation of electrospun polymer nanofibre membranes with TiO <inf>2</inf> nanoparticles in view of dissolved organic matter photodegradation. Separation and Purification Technology, 133, 282-290. doi:10.1016/j.seppur.2014.06.040spa
dc.relation.referencesDaghrir, R., & Drogui, P. (2013). Tetracycline antibiotics in the environment: a review. Environmental Chemistry Letters, 11(3), 209-227. doi:10.1007/s10311-013-0404-8spa
dc.relation.referencesDasari, A., Quirós, J., Herrero, B., Boltes, K., García-Calvo, E., & Rosal, R. (2012). Antifouling membranes prepared by electrospinning polylactic acid containing biocidal nanoparticles. Journal of Membrane Science, 405-406, 134-140. doi:https://doi.org/10.1016/j.memsci.2012.02.060spa
dc.relation.referencesDeng, D., Aouad, W., Braff, W. A., Schlumpberger, S., Suss, M. E., & Bazant, M. Z. (2015). Water purification by shock electrodialysis: Deionization, filtration, separation, and disinfection. Desalination, 357, 77-83. doi:https://doi.org/10.1016/j.desal.2014.11.011spa
dc.relation.referencesDhanawade, A., Bhosle, R., Jagtap, R., & Sorate, K. A. (2020). Comparative study of lead zirconate titanate ceramic and carbon fiber reinforced polymer composite surfaces machined by abrasive water jet. Materials Today: Proceedings. doi:https://doi.org/10.1016/j.matpr.2020.10.918spa
dc.relation.referencesDing, W., Jin, W., Cao, S., Zhou, X., Wang, C., Jiang, Q., . . . Wang, Q. (2019). Ozone disinfection of chlorine-resistant bacteria in drinking water. Water Research, 160, 339-349. doi:https://doi.org/10.1016/j.watres.2019.05.014spa
dc.relation.referencesCui, J., Li, F., Wang, Y., Zhang, Q., Ma, W., & Huang, C. (2020). Electrospun nanofiber membranes for wastewater treatment applications. Separation and Purification Technology, 250, 117116. doi:https://doi.org/10.1016/j.seppur.2020.117116spa
dc.relation.referencesDong, F., Lin, Q., Li, C., Wang, L., & García, A. (2021). UV/chlorination process of algal-laden water: Algal inactivation and disinfection byproducts attenuation. Separation and Purification Technology, 257, 117896. doi:https://doi.org/10.1016/j.seppur.2020.117896spa
dc.relation.referencesDr. D. García, F. (2017). Mapping sistemáticos de literatura. Caso práctico de planificación usando Parsifal. Mexico: Instituto de ciencias basicasspa
dc.relation.referencesDu, J., Li, N., Tian, Y., Zhang, J., & Zuo, W. (2020). Preparation of PVDF membrane blended with graphene oxide-zinc sulfide (GO-ZnS) nanocomposite for improving the anti-fouling property. Journal of Photochemistry and Photobiology A: Chemistry, 400, 112694. doi:https://doi.org/10.1016/j.jphotochem.2020.112694spa
dc.relation.referencesDubey, S. P., Thakur, V. K., Krishnaswamy, S., Abhyankar, H. A., Marchante, V., & Brighton, J. L. (2017). Progress in environmental-friendly polymer nanocomposite material from PLA: Synthesis, processing and applications. Vacuum, 146, 655-663. doi:10.1016/j.vacuum.2017.07.009spa
dc.relation.referencesDwivedi, M., & Shaw, A. (2021). Implication of cation-proton antiporters (CPA) in human health and diseases causing microorganisms. Biochimie, 182, 85-98. doi:https://doi.org/10.1016/j.biochi.2021.01.004spa
dc.relation.referencesEsfahani, M. R., Aktij, S. A., Dabaghian, Z., Firouzjaei, M. D., Rahimpour, A., Eke, J., . . . Koutahzadeh, N. (2019). Nanocomposite membranes for water separation and purification: Fabrication, modification, and applications. Separation and Purification Technology, 213, 465-499. doi:https://doi.org/10.1016/j.seppur.2018.12.050spa
dc.relation.referencesFahimirad, S., Fahimirad, Z., & Sillanpää, M. (2021). Efficient removal of water bacteria and viruses using electrospun nanofibers. Science of The Total Environment, 751, 141673. doi:https://doi.org/10.1016/j.scitotenv.2020.141673spa
dc.relation.referencesFarah, S., Anderson, D. G., & Langer, R. (2016). Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review. Advanced Drug Delivery Reviews, 107, 367-392. doi:10.1016/j.addr.2016.06.012spa
dc.relation.referencesFeng, W., Zhang, Y.-s., Shao, Y.-w., Huang, T., Zhang, N., Yang, J.-h., . . . Wang, Y. (2021). Coaxial electrospun membranes with thermal energy storage and shape memory functions for simultaneous thermal/moisture management in personal cooling textiles. European Polymer Journal, 145, 110245. doi:https://doi.org/10.1016/j.eurpolymj.2020.110245spa
dc.relation.referencesFirouzjaei, M. D., Seyedpour, S. F., Aktij, S. A., Giagnorio, M., Bazrafshan, N., Mollahosseini, A., . . . Rahimpour, A. (2020). Recent advances in functionalized polymer membranes for biofouling control and mitigation in forward osmosis. Journal of Membrane Science, 596, 117604. doi:https://doi.org/10.1016/j.memsci.2019.117604spa
dc.relation.referencesGallego-Urrea, J. A., Hammes, J., Cornelis, G., & Hassellöv, M. (2016). Coagulation and sedimentation of gold nanoparticles and illite in model natural waters: Influence of initial particle concentration. NanoImpact, 3-4, 67-74. doi:https://doi.org/10.1016/j.impact.2016.10.004spa
dc.relation.referencesGarcía Guirado, C. (2020). Aplicaciones biomédicas del óxido de grafeno.spa
dc.relation.referencesGhosal, K., Agatemor, C., Špitálsky, Z., Thomas, S., & Kny, E. (2019). Electrospinning tissue engineering and wound dressing scaffolds from polymer-titanium dioxide nanocomposites. Chemical Engineering Journal, 358, 1262-1278. doi:https://doi.org/10.1016/j.cej.2018.10.117spa
dc.relation.referencesGoetz, L. A., Jalvo, B., Rosal, R., & Mathew, A. P. (2016). Superhydrophilic anti-fouling electrospun cellulose acetate membranes coated with chitin nanocrystals for water filtration. Journal of Membrane Science, 510, 238-248. doi:https://doi.org/10.1016/j.memsci.2016.02.069spa
dc.relation.referencesGreiner, A., & Wendorff, J. H. (2007). Electrospinning: A fascinating method for the preparation of ultrathin fibres. Angewandte Chemie-International Edition, 46(30), 5670-5703. doi:10.1002/anie.20060464spa
dc.relation.referencesGrylewicz, A., & Mozia, S. (2021). Polymeric mixed-matrix membranes modified with halloysite nanotubes for water and wastewater treatment: A review. Separation and Purification Technology, 256, 117827. doi:https://doi.org/10.1016/j.seppur.2020.117827spa
dc.relation.referencesGuerra, C., Ringuedé, A., Azocar, M. I., Walter, M., Galarce, C., Bedioui, F., . . . Sancy, M. (2021). Corrosion Analysis of AISI 430 Stainless Steel in the presence of Escherichia coli and Staphylococcus aureus. Corrosion Science, 109204. doi:https://doi.org/10.1016/j.corsci.2020.109204spa
dc.relation.referencesGwenzi, W., Musiyiwa, K., & Mangori, L. (2020). Sources, behaviour and health risks of antimicrobial resistance genes in wastewaters: A hotspot reservoir. Journal of Environmental Chemical Engineering, 8(1). doi:10.1016/j.jece.2018.02.028spa
dc.relation.referencesHalley, P. J., & Dorgan, J. R. (2011). Next-generation biopolymers: Advanced functionality and improved sustainability. MRS Bulletin, 36(9), 687-691. doi:10.1557/mrs.2011.180spa
dc.relation.referencesHamdy Makhlouf, A. S., Perez, A., & Guerrero, E. (2020). Chapter 13 - Recent trends in smart polymeric coatings in biomedicine and drug delivery applications. In A. S. H. Makhlouf & N. Y. Abu-Thabit (Eds.), Advances in Smart Coatings and Thin Films for Future Industrial and Biomedical Engineering Applications (pp. 359-381): Elsevier.spa
dc.relation.referencesHan, N., Wang, W., Lv, X., Zhang, W., Yang, C., Wang, M., . . . Zhang, X. (2019a). Highly Efficient Purification of Multicomponent Wastewater by Electrospinning Kidney-Bean-Skin-like Porous H-PPAN/rGO- g-PAO@Ag+/Ag Composite Nanofibrous Membranes. ACS Applied Materials and Interfaces, 11(50), 46920-46929. doi:10.1021/acsami.9b16889spa
dc.relation.referencesHan, N., Wang, W. J., Lv, X. S., Zhang, W. X., Yang, C., Wang, M. L., . . . Zhang, X. X. (2019b). Highly Efficient Purification of Multicomponent Wastewater by Electrospinning Kidney-Bean-Skin-like Porous H-PPAN/rGO-g-PAO@Ag+/Ag Composite Nanofibrous Membranes. Acs Applied Materials & Interfaces, 11(50), 46920-46929. doi:10.1021/acsami.9b16889spa
dc.relation.referencesHavlíček, K., Svobodová, L., Bakalova, T., & Lederer, T. (2020). Influence of electrospinning methods on characteristics of polyvinyl butyral and polyurethane nanofibres essential for biological applications. Materials & Design, 194, 108898. doi:https://doi.org/10.1016/j.matdes.2020.108898spa
dc.relation.referencesHolloway, R. W., Miller-Robbie, L., Patel, M., Stokes, J. R., Munakata-Marr, J., Dadakis, J., & Cath, T. Y. (2016). Life-cycle assessment of two potable water reuse technologies: MF/RO/UV–AOP treatment and hybrid osmotic membrane bioreactors. Journal of Membrane Science, 507, 165-178. doi:https://doi.org/10.1016/j.memsci.2016.01.045spa
dc.relation.referencesHossain, F., Perales-Perez, O. J., Hwang, S., & Román, F. (2014). Antimicrobial nanomaterials as water disinfectant: Applications, limitations and future perspectives. Science of The Total Environment, 466-467, 1047-1059. doi:10.1016/j.scitotenv.2013.08.009spa
dc.relation.referencesHottle, T. A., Bilec, M. M., & Landis, A. E. (2013). Sustainability assessments of bio-based polymers. Polymer Degradation and Stability, 98(9), 1898-1907. doi:https://doi.org/10.1016/j.polymdegradstab.2013.06.016spa
dc.relation.referencesHu, M., Zheng, S. X., & Mi, B. X. (2016). Organic Fouling of Graphene Oxide Membranes and Its Implications for Membrane Fouling Control in Engineered Osmosis. Environmental Science & Technology, 50(2), 685-693. doi:10.1021/acs.est.5b03916spa
dc.relation.referencesHu, X., Yu, Y., Zhou, J., Wang, Y., Liang, J., Zhang, X., . . . Song, L. (2015). The improved oil/water separation performance of graphene oxide modified Al2O3 microfiltration membrane. Journal of Membrane Science, 476, 200-204. doi:https://doi.org/10.1016/j.memsci.2014.11.043spa
dc.relation.referencesHuang, M.-Y., Chen, Y., Yan, X., Guo, X.-J., Dong, L., & Lang, W.-Z. (2020). Two-dimensional Montmorillonite membranes with efficient water filtration. Journal of Membrane Science, 614, 118540. doi:https://doi.org/10.1016/j.memsci.2020.118540spa
dc.relation.referencesIbrahim, H. M., & Klingner, A. (2020). A review on electrospun polymeric nanofibers: Production parameters and potential applications. Polymer Testing, 90, 106647. doi:https://doi.org/10.1016/j.polymertesting.2020.106647spa
dc.relation.referencesIqbal, A. K. M. A., Sakib, N., Iqbal, A. K. M. P., & Nuruzzaman, D. M. (2020). Graphene-based nanocomposites and their fabrication, mechanical properties and applications. Materialia, 12, 100815. doi:https://doi.org/10.1016/j.mtla.2020.100815spa
dc.relation.referencesJalvo, B., Mathew, A. P., & Rosal, R. (2017). Coaxial poly(lactic acid) electrospun composite membranes incorporating cellulose and chitin nanocrystals. Journal of Membrane Science, 544, 261-271. doi:https://doi.org/10.1016/j.memsci.2017.09.033spa
dc.relation.referencesJang, W., Yun, J., Jeon, K., & Byun, H. (2015). PVdF/graphene oxide hybrid membranes via electrospinning for water treatment applications. Rsc Advances, 5(58), 46711-46717. doi:10.1039/c5ra04439aspa
dc.relation.referencesJang, W., Yun, J., Park, Y., Park, I. K., Byun, H., & Lee, C. H. (2020a). Polyacrylonitrile Nanofiber Membrane Modified with Ag/GO Composite for Water Purification System. Polymers, 12(11). doi:10.3390/polym12112441spa
dc.relation.referencesJang, W., Yun, J., Park, Y., Park, I. K., Byun, H., & Lee, C. H. (2020b). Polyacrylonitrile nanofiber membrane modified with ag/go composite for water purification system. Polymers, 12(11), 1-12. doi:10.3390/polym12112441spa
dc.relation.referencesJi, H., Sun, H., & Qu, X. (2016). Antibacterial applications of graphene-based nanomaterials: Recent achievements and challenges. Advanced Drug Delivery Reviews, 105, 176-189. doi:https://doi.org/10.1016/j.addr.2016.04.009spa
dc.relation.referencesJuncos Bombin, A. D., Dunne, N. J., & McCarthy, H. O. (2020). Electrospinning of natural polymers for the production of nanofibres for wound healing applications. Materials Science and Engineering: C, 114, 110994. doi:https://doi.org/10.1016/j.msec.2020.110994spa
dc.relation.referencesKaragoz, S., Kiremitler, N. B., Sakir, M., Salem, S., Onses, M. S., Sahmetlioglu, E., . . . Yilmaz, E. (2020). Synthesis of Ag and TiO2 modified polycaprolactone electrospun nanofibers (PCL/TiO2-Ag NFs) as a multifunctional material for SERS, photocatalysis and antibacterial applications. Ecotoxicology and Environmental Safety, 188, 109856. doi:https://doi.org/10.1016/j.ecoenv.2019.109856spa
dc.relation.referencesKarami, P., Khorshidi, B., McGregor, M., Peichel, J. T., Soares, J. B. P., & Sadrzadeh, M. (2020). Thermally stable thin film composite polymeric membranes for water treatment: A review. Journal of Cleaner Production, 250, 119447. doi:https://doi.org/10.1016/j.jclepro.2019.119447spa
dc.relation.referencesKaur, S., Sundarrajan, S., Rana, D., Sridhar, R., Gopal, R., Matsuura, T., & Ramakrishna, S. (2014). Review: The characterization of electrospun nanofibrous liquid filtration membranes. Journal of Materials Science, 49(18), 6143-6159. doi:10.1007/s10853-014-8308-yspa
dc.relation.referencesKim, H.-C., Choi, B. G., Noh, J., Song, K. G., Lee, S.-h., & Maeng, S. K. (2014). Electrospun nanofibrous PVDF–PMMA MF membrane in laboratory and pilot-scale study treating wastewater from Seoul Zoo. Desalination, 346, 107-114. doi:https://doi.org/10.1016/j.desal.2014.05.005spa
dc.relation.referencesKimura, K., Ogyu, R., Miyoshi, T., & Watanabe, Y. (2015). Transition of major components in irreversible fouling of MBRs treating municipal wastewater. Separation and Purification Technology, 142, 326-331. doi:10.1016/j.seppur.2014.12.030spa
dc.relation.referencesKlemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., & Dorris, A. (2011). Nanocelluloses: A new family of nature-based materials. Angewandte Chemie - International Edition, 50(24), 5438-5466. doi:10.1002/anie.201001273spa
dc.relation.referencesKo, K., Kim, M. J., Lee, J. Y., Kim, W., & Chung, H. (2019). Effects of graphene oxides and silver-graphene oxides on aquatic microbial activity. Science of The Total Environment, 651, 1087-1095. doi:10.1016/j.scitotenv.2018.09.124spa
dc.relation.referencesKochkodan, V., & Hilal, N. (2015). A comprehensive review on surface modified polymer membranes for biofouling mitigation. Desalination, 356, 187-207. doi:10.1016/j.desal.2014.09.015spa
dc.relation.referencesKopp, A., Smeets, R., Gosau, M., Kröger, N., Fuest, S., Köpf, M., . . . Burg, S. (2020). Effect of process parameters on additive-free electrospinning of regenerated silk fibroin nonwovens. Bioactive Materials, 5(2), 241-252. doi:https://doi.org/10.1016/j.bioactmat.2020.01.010spa
dc.relation.referencesLaflamme, O., Sérodes, J.-B., Simard, S., Legay, C., Dorea, C., & Rodriguez, M. J. (2020). Occurrence and fate of ozonation disinfection by-products in two Canadian drinking water systems. Chemosphere, 260, 127660. doi:https://doi.org/10.1016/j.chemosphere.2020.127660spa
dc.relation.referencesLawal, A. T. (2019). Graphene-based nano composites and their applications. A review. Biosensors and Bioelectronics, 141, 111384. doi:https://doi.org/10.1016/j.bios.2019.111384spa
dc.relation.referencesLi, H., & Wang, M. (2021). 18 - Electrospinning and nanofibrous structures for biomedical applications. In A. Osaka & R. Narayan (Eds.), Bioceramics (pp. 401-436): Elsevier.spa
dc.relation.referencesLi, J. H., Zhang, H., Zhang, W., & Liu, W. (2019). Nanofiber membrane of graphene oxide/polyacrylonitrile with highly efficient antibacterial activity. Journal of Biomaterials Science, Polymer Edition, 30(17), 1620-1635. doi:10.1080/09205063.2019.1652793spa
dc.relation.referencesLi, L., Hashaikeh, R., & Arafat, H. A. (2013). Development of eco-efficient micro-porous membranes via electrospinning and annealing of poly (lactic acid). Journal of Membrane Science, 436, 57-67. doi:https://doi.org/10.1016/j.memsci.2013.02.037spa
dc.relation.referencesLi, N., & Yang, H. (2021). Construction of natural polymeric imprinted materials and their applications in water treatment: A review. Journal of Hazardous Materials, 403, 123643. doi:https://doi.org/10.1016/j.jhazmat.2020.123643spa
dc.relation.referencesLi, Q., Mahendra, S., Lyon, D. Y., Brunet, L., Liga, M. V., Li, D., & Alvarez, P. J. J. (2008). Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Research, 42(18), 4591-4602. doi:10.1016/j.watres.2008.08.015spa
dc.relation.referencesLi, S., Kong, L., & Ziegler, G. R. (2020). Electrospinning of octenylsuccinylated starch-pullulan nanofibers from aqueous dispersions. Carbohydrate Polymers, 116933. doi:https://doi.org/10.1016/j.carbpol.2020.116933spa
dc.relation.referencesLi, X., Cai, M., Wang, L., Niu, F., Yang, D., & Zhang, G. (2019). Evaluation survey of microbial disinfection methods in UV-LED water treatment systems. Science of The Total Environment, 659, 1415-1427. doi:https://doi.org/10.1016/j.scitotenv.2018.12.344spa
dc.relation.referencesLiao, Y., Loh, C.-H., Tian, M., Wang, R., & Fane, A. G. (2018). Progress in electrospun polymeric nanofibrous membranes for water treatment: Fabrication, modification and applications. Progress in Polymer Science, 77, 69-94. doi:https://doi.org/10.1016/j.progpolymsci.2017.10.003spa
dc.relation.referencesLiu, C., Shen, J., Liao, C. Z., Yeung, K. W. K., & Tjong, S. C. (2018). Novel electrospun polyvinylidene fluoride-graphene oxide-silver nanocomposite membranes with protein and bacterial antifouling characteristics. Express Polymer Letters, 12(4), 365-382. doi:10.3144/expresspolymlett.2018.31spa
dc.relation.referencesLiu, C., Shen, J., Yeung, K. W. K., & Tjong, S. C. (2017). Development and Antibacterial Performance of Novel Polylactic Acid-Graphene Oxide-Silver Nanoparticle Hybrid Nanocomposite Mats Prepared By Electrospinning. Acs Biomaterials Science & Engineering, 3(3), 471-486. doi:10.1021/acsbiomaterials.6b00766spa
dc.relation.referencesLiu, H., Liu, X., Zhao, F., Liu, Y., Liu, L., Wang, L., . . . Huang, P. (2020). Preparation of a hydrophilic and antibacterial dual function ultrafiltration membrane with quaternized graphene oxide as a modifier. Journal of Colloid and Interface Science, 562, 182-192. doi:https://doi.org/10.1016/j.jcis.2019.12.017spa
dc.relation.referencesLiu, Y., Cheng, P., Guo, Q., Liu, N., Wan, Y., Zhong, W., . . . Wang, D. (2020). Ag nanoparticles decorated PVA-co-PE nanofibrous microfiltration membrane with antifouling surface for efficient sterilization. Composites Communications, 21, 100379. doi:https://doi.org/10.1016/j.coco.2020.100379spa
dc.relation.referencesLiu, Y., Wang, R., Ma, H., Hsiao, B. S., & Chu, B. (2013). High-flux microfiltration filters based on electrospun polyvinylalcohol nanofibrous membranes. Polymer, 54(2), 548-556. doi:https://doi.org/10.1016/j.polymer.2012.11.064spa
dc.relation.referencesLiu, Y., Zhu, J., Zheng, J., Gao, X., Tian, M., Wang, X., . . . Van der Bruggen, B. (2020). Porous organic polymer embedded thin-film nanocomposite membranes for enhanced nanofiltration performance. Journal of Membrane Science, 602, 117982. doi:https://doi.org/10.1016/j.memsci.2020.117982spa
dc.relation.referencesLopez de Dicastillo, C., Garrido, L., Alvarado, N., Romero, J., Palma, J. L., & Galotto, M. J. (2017). Improvement of polylactide properties through cellulose nanocrystals embedded in poly (vinyl alcohol) electrospun nanofibers. Nanomaterials, 7(5), 106spa
dc.relation.referencesLv, H., Cui, S., Yang, Q., Song, X., Wang, D., Hu, J., . . . Liu, Y. (2021). AgNPs-incorporated nanofiber mats: Relationship between AgNPs size/content, silver release, cytotoxicity, and antibacterial activity. Materials Science and Engineering: C, 118, 111331. doi:https://doi.org/10.1016/j.msec.2020.111331spa
dc.relation.referencesLyu, J.-Y., Chen, S., He, W., Zhang, X.-X., Tang, D.-y., Liu, P.-J., & Yan, Q.-L. (2019). Fabrication of high-performance graphene oxide doped PVDF/CuO/Al nanocomposites via electrospinning. Chemical Engineering Journal, 368, 129-137. doi:https://doi.org/10.1016/j.cej.2019.02.170spa
dc.relation.referencesMairinger, T., Loos, M., & Hollender, J. (2021). Characterization of water-soluble synthetic polymeric substances in wastewater using LC-HRMS/MS. Water Research, 190, 116745. doi:https://doi.org/10.1016/j.watres.2020.116745spa
dc.relation.referencesMalwal, D., & Gopinath, P. (2017a). Efficient adsorption and antibacterial properties of electrospun CuO-ZnO composite nanofibers for water remediation. J Hazard Mater, 321, 611-621. doi:10.1016/j.jhazmat.2016.09.050spa
dc.relation.referencesMalwal, D., & Gopinath, P. (2017b). Efficient adsorption and antibacterial properties of electrospun CuO-ZnO composite nanofibers for water remediation. Journal of Hazardous Materials, 321, 611-621. doi:10.1016/j.jhazmat.2016.09.050spa
dc.relation.referencesManals-Cutiño, E., Penedo-Medina, M., & Giralt-Ortega, G. (2011). Análisis termogravimetrico y térmico diferencial de diferentes biomasas vegetales. Tecnología química, 31(2), 180-190spa
dc.relation.referencesMazhar, M. A., Khan, N. A., Ahmed, S., Khan, A. H., Hussain, A., Rahisuddin, . . . Vambol, V. (2020). Chlorination disinfection by-products in municipal drinking water – A review. Journal of Cleaner Production, 273, 123159. doi:https://doi.org/10.1016/j.jclepro.2020.123159spa
dc.relation.referencesMelo, S. F., Neves, S. C., Pereira, A. T., Borges, I., Granja, P. L., Magalhães, F. D., & Gonçalves, I. C. (2020). Incorporation of graphene oxide into poly(ɛ-caprolactone) 3D printed fibrous scaffolds improves their antimicrobial properties. Materials Science and Engineering: C, 109, 110537. doi:https://doi.org/10.1016/j.msec.2019.110537spa
dc.relation.referencesMerchante Ortí, R. (2016). Análisis y optimización de parámetros de proceso para la obtención de fibras poliméricas tipo core-shell mediante electrospinning coaxial. Universitat Politècnica de València.spa
dc.relation.referencesMincea, M., Negrulescu, A., & Ostafe, V. (2012). Preparation, modification, and applications of chitin nanowhiskers: A review. Reviews on Advanced Materials Science, 30(3), 225-242.spa
dc.relation.referencesMoslehi, M., & Mahdavi, H. (2019). Controlled pore size nanofibrous microfiltration membrane via multi-step interfacial polymerization: Preparation and characterization. Separation and Purification Technology, 223, 96-106. doi:https://doi.org/10.1016/j.seppur.2019.04.041spa
dc.relation.referencesMoslehi, M., & Mahdavi, H. (2020). Preparation and Characterization of Electrospun Polyurethane Nanofibrous Microfiltration Membrane. Journal of Polymers and the Environment, 28(10), 2691-2701. doi:10.1007/s10924-020-01801-zspa
dc.relation.referencesMu, Y., Zhu, K., Luan, J., Zhang, S., Zhang, C., Na, R., . . . Wang, G. (2019). Fabrication of hybrid ultrafiltration membranes with improved water separation properties by incorporating environmentally friendly taurine modified hydroxyapatite nanotubes. Journal of Membrane Science, 577, 274-284. doi:https://doi.org/10.1016/j.memsci.2019.01.043spa
dc.relation.referencesMujmule, R. B., Chung, W.-J., & Kim, H. (2020). Chemical fixation of carbon dioxide catalyzed via hydroxyl and carboxyl-rich glucose carbonaceous material as a heterogeneous catalyst. Chemical Engineering Journal, 395, 125164. doi:https://doi.org/10.1016/j.cej.2020.125164spa
dc.relation.referencesMuñoz-Shugulí, C., Vidal, C. P., Cantero-López, P., & Lopez-Polo, J. (2021). Encapsulation of plant extract compounds using cyclodextrin inclusion complexes, liposomes, electrospinning and their combinations for food purposes. Trends in Food Science & Technology, 108, 177-186. doi:https://doi.org/10.1016/j.tifs.2020.12.020spa
dc.relation.referencesMuzzarelli, R. A. A. (2011). Biomedical exploitation of chitin and chitosan via mechano-chemical disassembly, electrospinning, dissolution in imidazolium ionic liquids, and supercritical drying. Marine Drugs, 9(9), 1510-1533. doi:10.3390/md9091510spa
dc.relation.referencesNadell, C. D., Drescher, K., & Foster, K. R. (2016). Spatial structure, cooperation and competition in biofilms. Nature Reviews Microbiology, 14(9), 589-600. doi:10.1038/nrmicro.2016.84spa
dc.relation.referencesNahim-Granados, S., Rivas-Ibáñez, G., Antonio Sánchez Pérez, J., Oller, I., Malato, S., & Polo-López, M. I. (2020). Synthetic fresh-cut wastewater disinfection and decontamination by ozonation at pilot scale. Water Research, 170, 115304. doi:https://doi.org/10.1016/j.watres.2019.115304spa
dc.relation.referencesNasir, A. M., Awang, N., Jaafar, J., Ismail, A. F., Othman, M. H. D., A. Rahman, M., . . . Mat Yajid, M. A. (2021). Recent progress on fabrication and application of electrospun nanofibrous photocatalytic membranes for wastewater treatment: A review. Journal of Water Process Engineering, 40, 101878. doi:https://doi.org/10.1016/j.jwpe.2020.101878spa
dc.relation.referencesNataraj, S. K., Yang, K. S., & Aminabhavi, T. M. (2012). Polyacrylonitrile-based nanofibers—A state-of-the-art review. Progress in Polymer Science, 37(3), 487-513. doi:https://doi.org/10.1016/j.progpolymsci.2011.07.001spa
dc.relation.referencesNguyen, S. T., & Roddick, F. A. (2013). Pre-treatments for removing colour from secondary effluent: Effectiveness and influence on membrane fouling in subsequent microfiltration. Separation and Purification Technology, 103, 313-320. doi:10.1016/j.seppur.2012.10.011spa
dc.relation.referencesNzima, B., Adegoke, A. A., Ofon, U. A., Al-Dahmoshi, H. O. M., Saki, M., Ndubuisi-Nnaji, U. U., & Inyang, C. U. (2020). Resistotyping and extended-spectrum beta-lactamase genes among Escherichia coli from wastewater treatment plants and recipient surface water for reuse in South Africa. New Microbes and New Infections, 38, 100803. doi:https://doi.org/10.1016/j.nmni.2020.100803spa
dc.relation.referencesOgunsona, E. O., Muthuraj, R., Ojogbo, E., Valerio, O., & Mekonnen, T. H. (2020). Engineered nanomaterials for antimicrobial applications: A review. Applied Materials Today, 18, 100473. doi:https://doi.org/10.1016/j.apmt.2019.100473spa
dc.relation.referencesOyedeji, A. B., Green, E., Adebiyi, J. A., Ogundele, O. M., Gbashi, S., Adefisoye, M. A., . . . Adebo, O. A. (2021). Metabolomic approaches for the determination of metabolites from pathogenic microorganisms: A review. Food Research International, 140, 110042. doi:https://doi.org/10.1016/j.foodres.2020.110042spa
dc.relation.referencesPan, N., Wei, Y., Zuo, M., Li, R., Ren, X., & Huang, T.-S. (2020). Antibacterial poly (ε-caprolactone) fibrous membranes filled with reduced graphene oxide-silver. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 603, 125186. doi:https://doi.org/10.1016/j.colsurfa.2020.125186spa
dc.relation.referencesPant, H. R., Pandeya, D. R., Nam, K. T., Baek, W.-i., Hong, S. T., & Kim, H. Y. (2011). Photocatalytic and antibacterial properties of a TiO2/nylon-6 electrospun nanocomposite mat containing silver nanoparticles. Journal of Hazardous Materials, 189(1), 465-471. doi:https://doi.org/10.1016/j.jhazmat.2011.02.062spa
dc.relation.referencesParadela, L. S., & Sánchez-Gálvez, V. (1991). Comportamiento a tracción de cementos reforzados con fibras de vidrio. Informes de la construcción, 43(413), 77-89.spa
dc.relation.referencesPardhi, D. M., Şen Karaman, D., Timonen, J., Wu, W., Zhang, Q., Satija, S., . . . Rosenholm, J. M. (2020). Anti-bacterial activity of inorganic nanomaterials and their antimicrobial peptide conjugates against resistant and non-resistant pathogens. International Journal of Pharmaceutics, 586, 119531. doi:https://doi.org/10.1016/j.ijpharm.2020.119531spa
dc.relation.referencesPark, J.-A., Nam, A., Kim, J.-H., Yun, S.-T., Choi, J.-W., & Lee, S.-H. (2018). Blend-electrospun graphene oxide/Poly(vinylidene fluoride) nanofibrous membranes with high flux, tetracycline removal and anti-fouling properties. Chemosphere, 207, 347-356. doi:https://doi.org/10.1016/j.chemosphere.2018.05.096spa
dc.relation.referencesPark, J. A., Cho, K. Y., Han, C. H., Nam, A., Kim, J. H., Lee, S. H., & Choi, J. W. (2019). Quaternized Amphiphilic Block Copolymers/Graphene Oxide and a Poly(vinyl alcohol) Coating Layer on Graphene Oxide/Poly(vinylidene fluoride) Electrospun Nanofibers for Superhydrophilic and Antibacterial Properties. Scientific Reports, 9. doi:10.1038/s41598-018-36479-wspa
dc.relation.referencesPark, S. J., Kim, S. B., & Kim, K. W. (2010). Analysis of bacterial cell properties and transport in porous media. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 45(6), 682-691. doi:10.1080/10934521003648867spa
dc.relation.referencesPenagos, J. I. C. (2013). Caracterización de materiales a través de medidas de microscopía electrónica de barrido (SEM). Elementos, 3(3), 133-146spa
dc.relation.referencesPinto, A. M., Gonçalves, I. C., & Magalhães, F. D. (2013). Graphene-based materials biocompatibility: A review. Colloids and Surfaces B: Biointerfaces, 111, 188-202. doi:https://doi.org/10.1016/j.colsurfb.2013.05.022spa
dc.relation.referencesPlutzer, J., & Karanis, P. (2016). Neglected waterborne parasitic protozoa and their detection in water. Water Research, 101, 318-332. doi:https://doi.org/10.1016/j.watres.2016.05.085spa
dc.relation.referencesQasim, M., Darwish, N. N., Mhiyo, S., Darwish, N. A., & Hilal, N. (2018). The use of ultrasound to mitigate membrane fouling in desalination and water treatment. Desalination, 443, 143-164. doi:https://doi.org/10.1016/j.desal.2018.04.007spa
dc.relation.referencesQayum, A., Wei, J., Li, Q. N., Chen, D. R., Jiao, X. L., & Xia, Y. G. (2019). Efficient decontamination of multi-component wastewater by hydrophilic electrospun PAN/AgBr/Ag fibrous membrane. Chemical Engineering Journal, 361, 1255-1263. doi:10.1016/j.cej.2018.12.161spa
dc.relation.referencesRazakandrainibe, R., Kubina, S., Costa, D., Robinson, G., La Carbona, S., Aubert, D., . . . Chalmers, R. M. (2020). Evaluation of a modified method for the detection of Cryptosporidium oocysts on spinach leaves. Food and Waterborne Parasitology, 21, e00097. doi:https://doi.org/10.1016/j.fawpar.2020.e00097spa
dc.relation.referencesRazavizadeh, B. M., & Niazmand, R. (2020). Characterization of polyamide-6/ propolis blended electrospun fibers. Heliyon, 6(8), e04784. doi:https://doi.org/10.1016/j.heliyon.2020.e04784spa
dc.relation.referencesRyu, S.-Y., Chung, J. W., & Kwak, S.-Y. (2015). Dependence of photocatalytic and antimicrobial activity of electrospun polymeric nanofiber composites on the positioning of Ag–TiO2 nanoparticles. Composites Science and Technology, 117, 9-17. doi:https://doi.org/10.1016/j.compscitech.2015.05.014spa
dc.relation.referencesSaleh, T. A., Parthasarathy, P., & Irfan, M. (2019). Advanced functional polymer nanocomposites and their use in water ultra-purification. Trends in Environmental Analytical Chemistry, 24, e00067. doi:https://doi.org/10.1016/j.teac.2019.e00067spa
dc.relation.referencesSalman, K. D., & Razlan, Z. M. (2018). Polyamide Nanofibers Reinforced Titanium Nanoparticles Composites for hydrophobic surfaces. Paper presented at the IOP Conference Series: Materials Science and Engineering.spa
dc.relation.referencesSamadian, H., Maleki, H., Allahyari, Z., & Jaymand, M. (2020). Natural polymers-based light-induced hydrogels: Promising biomaterials for biomedical applications. Coordination Chemistry Reviews, 420, 213432. doi:https://doi.org/10.1016/j.ccr.2020.213432spa
dc.relation.referencesSánchez, L. D., Rodriguez, L., & López, M. (2013). Electrospinning: la era de las nanofibras. Revista Iberoamericana de polímeros, 14(1), 10-27.spa
dc.relation.referencesSbahi, S., Ouazzani, N., Latrach, L., Hejjaj, A., & Mandi, L. (2020). Predicting the concentration of total coliforms in treated rural domestic wastewater by multi-soil-layering (MSL) technology using artificial neural networks. Ecotoxicology and Environmental Safety, 204, 111118. doi:https://doi.org/10.1016/j.ecoenv.2020.111118spa
dc.relation.referencesSchiffman, J. D., Blackford, A. C., Wegst, U. G. K., & Schauer, C. L. (2011). Carbon black immobilized in electrospun chitosan membranes. Carbohydrate Polymers, 84(4), 1252-1257. doi:10.1016/j.carbpol.2011.01.013spa
dc.relation.referencesSchijven, J., Teunis, P., Suylen, T., Ketelaars, H., Hornstra, L., & Rutjes, S. (2019). QMRA of adenovirus in drinking water at a drinking water treatment plant using UV and chlorine dioxide disinfection. Water Research, 158, 34-45. doi:https://doi.org/10.1016/j.watres.2019.03.090spa
dc.relation.referencesSeong, D. B., Son, Y.-R., & Park, S.-J. (2018). A study of reduced graphene oxide/leaf-shaped TiO2 nanofibers for enhanced photocatalytic performance via electrospinning. Journal of Solid State Chemistry, 266, 196-204. doi:https://doi.org/10.1016/j.jssc.2018.06.003spa
dc.relation.referencesShalaby, T., Hamad, H., Ibrahim, E., Mahmoud, O., & Al-Oufy, A. (2018). Electrospun nanofibers hybrid composites membranes for highly efficient antibacterial activity. Ecotoxicology and Environmental Safety, 162, 354-364. doi:https://doi.org/10.1016/j.ecoenv.2018.07.016spa
dc.relation.referencesSheikh, M., Pazirofteh, M., Dehghani, M., Asghari, M., Rezakazemi, M., Valderrama, C., & Cortina, J.-L. (2020). Application of ZnO nanostructures in ceramic and polymeric membranes for water and wastewater technologies: A review. Chemical Engineering Journal, 391, 123475. doi:https://doi.org/10.1016/j.cej.2019.123475spa
dc.relation.referencesShende, P., & Gupta, H. (2020). Formulation and comparative characterization of nanoparticles of curcumin using natural, synthetic and semi-synthetic polymers for wound healing. Life Sciences, 253, 117588. doi:https://doi.org/10.1016/j.lfs.2020.117588spa
dc.relation.referencesShi, L., Chen, J., Teng, L., Wang, L., Zhu, G., Liu, S., . . . Ren, L. (2016). The Antibacterial Applications of Graphene and Its Derivatives. Small, 12(31), 4165-4184. doi:https://doi.org/10.1002/smll.201601841spa
dc.relation.referencesShi, Q., Chen, Z., Liu, H., Lu, Y., Li, K., Shi, Y., . . . Hu, H.-Y. (2021). Efficient synergistic disinfection by ozone, ultraviolet irradiation and chlorine in secondary effluents. Science of The Total Environment, 758, 143641. doi:https://doi.org/10.1016/j.scitotenv.2020.143641spa
dc.relation.referencesShi, Q., Zhou, C., Yue, Y., Guo, W., Wu, Y., & Wu, Q. (2012). Mechanical properties and in vitro degradation of electrospun bio-nanocomposite mats from PLA and cellulose nanocrystals. Carbohydrate Polymers, 90(1), 301-308. doi:10.1016/j.carbpol.2012.05.042spa
dc.relation.referencesŚmiałek, M., Kowalczyk, J., & Koncicki, A. (2020). Influence of vaccination of broiler chickens against Escherichia coli with live attenuated vaccine on general properties of E. coli population, IBV vaccination efficiency, and production parameters—a field experiment. Poultry Science, 99(11), 5452-5460. doi:https://doi.org/10.1016/j.psj.2020.08.039spa
dc.relation.referencesSoares, R. M. D., Siqueira, N. M., Prabhakaram, M. P., & Ramakrishna, S. (2018). Electrospinning and electrospray of bio-based and natural polymers for biomaterials development. Materials Science and Engineering: C, 92, 969-982. doi:https://doi.org/10.1016/j.msec.2018.08.004spa
dc.relation.referencesSousi, M., Liu, G., Salinas-Rodriguez, S. G., Chen, L., Dusseldorp, J., Wessels, P., . . . van der Meer, W. (2020). Multi-parametric assessment of biological stability of drinking water produced from groundwater: Reverse osmosis vs. conventional treatment. Water Research, 186, 116317. doi:https://doi.org/10.1016/j.watres.2020.116317spa
dc.relation.referencesSun, B., Long, Y. Z., Zhang, H. D., Li, M. M., Duvail, J. L., Jiang, X. Y., & Yin, H. L. (2014). Advances in three-dimensional nanofibrous macrostructures via electrospinning. Progress in Polymer Science, 39(5), 862-890. doi:https://doi.org/10.1016/j.progpolymsci.2013.06.002spa
dc.relation.referencesSun, L., Hu, S. J., & Freiheit, T. (2021). Feature-based quality classification for ultrasonic welding of carbon fiber reinforced polymer through Bayesian regularized neural network. Journal of Manufacturing Systems, 58, 335-347. doi:https://doi.org/10.1016/j.jmsy.2020.12.016spa
dc.relation.referencesSun, M., & Li, J. (2018). Graphene oxide membranes: Functional structures, preparation and environmental applications. Nano Today, 20, 121-137. doi:https://doi.org/10.1016/j.nantod.2018.04.007spa
dc.relation.referencesSundaran, S. P., Reshmi, C. R., Sagitha, P., Manaf, O., & Sujith, A. (2019). Multifunctional graphene oxide loaded nanofibrous membrane for removal of dyes and coliform from water. Journal of Environmental Management, 240, 494-503. doi:https://doi.org/10.1016/j.jenvman.2019.03.105spa
dc.relation.referencesSzewczyk, P. K., & Stachewicz, U. (2020). The impact of relative humidity on electrospun polymer fibers: From structural changes to fiber morphology. Advances in Colloid and Interface Science, 286, 102315. doi:https://doi.org/10.1016/j.cis.2020.102315spa
dc.relation.referencesTachaboonyakiat, W., Sukpaiboon, E., & Pinyakong, O. (2014). Development of an antibacterial chitin betainate wound dressing. Polymer Journal, 46(8), 505-510. doi:10.1038/pj.2014.47spa
dc.relation.referencesTaghizadeh, A., Taghizadeh, M., Jouyandeh, M., Yazdi, M. K., Zarrintaj, P., Saeb, M. R., . . . Gupta, V. K. (2020). Conductive polymers in water treatment: A review. Journal of Molecular Liquids, 312, 113447. doi:https://doi.org/10.1016/j.molliq.2020.113447spa
dc.relation.referencesThakur, R., Rane, A. V., Harris, G., & Thakur, S. (2020). Chapter 14 - Government initiatives and policies for water conservation and wastewater treatment in South Africa and indigenous knowledge. In P. Singh, Y. Milshina, K. Tian, D. Gusain, & J. P. Bassin (Eds.), Water Conservation and Wastewater Treatment in BRICS Nations (pp. 285-293): Elsevier.spa
dc.relation.referencesTiwari, S. K., & Venkatraman, S. S. (2012). Importance of viscosity parameters in electrospinning: Of monolithic and core-shell fibers. Materials Science and Engineering C, 32(5), 1037-1042. doi:10.1016/j.msec.2012.02.019spa
dc.relation.referencesTran, C., & Kalra, V. (2013). Fabrication of porous carbon nanofibers with adjustable pore sizes as electrodes for supercapacitors. Journal of Power Sources, 235, 289-296. doi:https://doi.org/10.1016/j.jpowsour.2013.01.080spa
dc.relation.referencesTu, Y., Lv, M., Xiu, P., Huynh, T., Zhang, M., Castelli, M., . . . Zhou, R. (2013). Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nature Nanotechnology, 8(8), 594-601. doi:10.1038/nnano.2013.125spa
dc.relation.referencesTucker, N., Stanger, J. J., Staiger, M. P., Razzaq, H., & Hofman, K. (2012). The History of the Science and Technology of Electrospinning from 1600 to 1995. Journal of Engineered Fibers and Fabrics, 7, 63-73.spa
dc.relation.referencesUpadhyaya, L., Oliveira, B., Pereira, V. J., Barreto Crespo, M. T., Crespo, J. G., Quemener, D., & Semsarilar, M. (2020). Nanocomposite membranes from nano-particles prepared by polymerization induced self-assembly and their biocidal activity. Separation and Purification Technology, 251, 117375. doi:https://doi.org/10.1016/j.seppur.2020.117375spa
dc.relation.referencesVan der Bruggen, B. (2018). Chapter 2 - Microfiltration, ultrafiltration, nanofiltration, reverse osmosis, and forward osmosis. In P. Luis (Ed.), Fundamental Modelling of Membrane Systems (pp. 25-70): Elsevier.spa
dc.relation.referencesWang, G., Yu, D., Kelkar, A. D., & Zhang, L. (2017). Electrospun nanofiber: Emerging reinforcing filler in polymer matrix composite materials. Progress in Polymer Science, 75, 73-107. doi:https://doi.org/10.1016/j.progpolymsci.2017.08.002spa
dc.relation.referencesWang, K., Wu, J., Zhu, M., Zheng, Y.-Z., & Tao, X. (2020). Highly effective pH-universal removal of tetracycline hydrochloride antibiotics by UiO-66-(COOH)2/GO metal–organic framework composites. Journal of Solid State Chemistry, 284, 121200. doi:https://doi.org/10.1016/j.jssc.2020.121200spa
dc.relation.referencesWang, L., Ali, J., Zhang, C., Mailhot, G., & Pan, G. (2020). Simultaneously enhanced photocatalytic and antibacterial activities of TiO2/Ag composite nanofibers for wastewater purification. Journal of Environmental Chemical Engineering, 8(1), 102104. doi:https://doi.org/10.1016/j.jece.2017.12.057spa
dc.relation.referencesWang, Q. Q., Du, Y. Z., Feng, Q., Huang, F. L., Lu, K. Y., Liu, J. Y., & Wei, Q. F. (2013). Nanostructures and Surface Nanomechanical Properties of Polyacrylonitrile/Graphene Oxide Composite Nanofibers by Electrospinning. Journal of Applied Polymer Science, 128(2), 1152-1157. doi:10.1002/app.38273spa
dc.relation.referencesWang, R., Liu, Y., Li, B., Hsiao, B. S., & Chu, B. (2012). Electrospun nanofibrous membranes for high flux microfiltration. Journal of Membrane Science, 392-393, 167-174. doi:https://doi.org/10.1016/j.memsci.2011.12.019spa
dc.relation.referencesWang, X.-X., Yu, G.-F., Zhang, J., Yu, M., Ramakrishna, S., & Long, Y.-Z. (2021). Conductive polymer ultrafine fibers via electrospinning: Preparation, physical properties and applications. Progress in Materials Science, 115, 100704. doi:https://doi.org/10.1016/j.pmatsci.2020.100704spa
dc.relation.referencesWang, X., & Nakane, K. (2021). Formation and morphological variation of electrospun cellulose acetate nanofibers via dual-bath immersion electrospinning. Materials Letters, 284, 128968. doi:https://doi.org/10.1016/j.matlet.2020.128968spa
dc.relation.referencesWang, X., Zhang, K., Zhu, M., Hsiao, B. S., & Chu, B. (2008). Enhanced mechanical performance of self-bundled electrospun fiber yarns via post-treatments. Macromolecular Rapid Communications, 29(10), 826-831. doi:10.1002/marc.200700873spa
dc.relation.referencesWang, X. H., Han, Q. S., Yu, N., Wang, T., Wang, C., & Yang, R. (2018). GO-AgCl/Ag nanocomposites with enhanced visible light-driven catalytic properties for antibacterial and biofilm-disrupting applications. Colloids and Surfaces B-Biointerfaces, 162, 296-305. doi:10.1016/j.colsurfb.2017.11.060spa
dc.relation.referencesWang, Z., Ma, J., Tang, C. Y., Kimura, K., Wang, Q., & Han, X. (2014). Membrane cleaning in membrane bioreactors: A review. Journal of Membrane Science, 468, 276-307. doi:https://doi.org/10.1016/j.memsci.2014.05.060spa
dc.relation.referencesWang, Z., Zou, W., Liu, L., Wang, M., Li, F., & Shen, W. (2021). Characterization and bacteriostatic effects of β-cyclodextrin/quercetin inclusion compound nanofilms prepared by electrospinning. Food Chemistry, 338, 127980. doi:https://doi.org/10.1016/j.foodchem.2020.127980spa
dc.relation.referencesWarsinger, D. M., Chakraborty, S., Tow, E. W., Plumlee, M. H., Bellona, C., Loutatidou, S., . . . Lienhard, J. H. (2018). A review of polymeric membranes and processes for potable water reuse. Progress in Polymer Science, 81, 209-237. doi:https://doi.org/10.1016/j.progpolymsci.2018.01.004spa
dc.relation.referencesWei, R., Ge, F., Huang, S., Chen, M., & Wang, R. (2011). Occurrence of veterinary antibiotics in animal wastewater and surface water around farms in Jiangsu Province, China. Chemosphere, 82(10), 1408-1414. doi:10.1016/j.chemosphere.2010.11.067spa
dc.relation.referencesWen, Y., Kok, M. D. R., Tafoya, J. P. V., Sobrido, A. B. J., Bell, E., Gostick, J. T., . . . Jervis, R. (2021). Electrospinning as a route to advanced carbon fibre materials for selected low-temperature electrochemical devices: A review. Journal of Energy Chemistry, 59, 492-529. doi:https://doi.org/10.1016/j.jechem.2020.11.014spa
dc.relation.referencesWeschenfelder, S. E., Fonseca, M. J. C., & Borges, C. P. (2021). Treatment of produced water from polymer flooding in oil production by ceramic membranes. Journal of Petroleum Science and Engineering, 196, 108021. doi:https://doi.org/10.1016/j.petrol.2020.108021spa
dc.relation.referencesWu, S., & Soucek, M. D. (1998). Kinetic modelling of crosslinking reactions for cycloaliphatic epoxides with hydroxyl- and carboxyl-functionalized acrylic copolymers: 1. pH and temperature effects. Polymer, 39(23), 5747-5759. doi:https://doi.org/10.1016/S0032-3861(98)00077-9spa
dc.relation.referencesWu, Y., He, G., Wu, X., Yuan, Q., Gong, X., Zhen, D., & Sun, B. (2019). Confinement of functionalized graphene oxide in sulfonated poly (ether ether ketone) nanofibers by coaxial electrospinning for polymer electrolyte membranes. International Journal of Hydrogen Energy, 44(14), 7494-7504. doi:https://doi.org/10.1016/j.ijhydene.2019.01.281spa
dc.relation.referencesWu, Y., Li, C., Meng, M., Lv, P., Liu, X., & Yan, Y. (2019). Fabrication and evaluation of GO/TiO2-based molecularly imprinted nanocomposite membranes by developing a reformative filtering strategy: Application to selective adsorption and separation membrane. Separation and Purification Technology, 212, 245-254. doi:https://doi.org/10.1016/j.seppur.2018.11.042spa
dc.relation.referencesXie, L., Shu, Y., Hu, Y., Cheng, J., & Chen, Y. (2020). SWNTs-PAN/TPU/PANI composite electrospun nanofiber membrane for point-of-use efficient electrochemical disinfection: New strategy of CNT disinfection. Chemosphere, 251, 126286. doi:https://doi.org/10.1016/j.chemosphere.2020.126286spa
dc.relation.referencesXu, J. (2019). Reverse microbial etiology: A research field for predicting and preventing emerging infectious diseases caused by an unknown microorganism. Journal of Biosafety and Biosecurity, 1(1), 19-21. doi:https://doi.org/10.1016/j.jobb.2018.12.005spa
dc.relation.referencesYang, S., Deng, W., Liu, S., Yu, X., Mustafa, G. R., Chen, S., . . . Zou, L. (2020). Presence of heavy metal resistance genes in Escherichia coli and Salmonella isolates and analysis of resistance gene structure in E. coli E308. Journal of Global Antimicrobial Resistance, 21, 420-426. doi:https://doi.org/10.1016/j.jgar.2020.01.009spa
dc.relation.referencesYang, Y., Zhang, Z., He, Y., Wang, Z., Zhao, Y., & Sun, L. (2018). Fabrication of Ag@TiO2 electrospinning nanofibrous felts as SERS substrate for direct and sensitive bacterial detection. Sensors and Actuators B: Chemical, 273, 600-609. doi:https://doi.org/10.1016/j.snb.2018.05.129spa
dc.relation.referencesYu, F., Ma, J., & Han, S. (2014). Adsorption of tetracycline from aqueous solutions onto multi-walled carbon nanotubes with different oxygen contents. Scientific Reports, 4. doi:10.1038/srep05326spa
dc.relation.referencesYu, X., & Manthiram, A. (2021). A review of composite polymer-ceramic electrolytes for lithium batteries. Energy Storage Materials, 34, 282-300. doi:https://doi.org/10.1016/j.ensm.2020.10.006spa
dc.relation.referencesZahedi, A., Ryan, U., Rawlings, V., Greay, T., Hancock, S., Bruce, M., & Jacobson, C. (2020). Cryptosporidium and Giardia in dam water on sheep farms – An important source of transmission? Veterinary Parasitology, 288, 109281. doi:https://doi.org/10.1016/j.vetpar.2020.109281spa
dc.relation.referencesZapata, D., Pujol, R., & Coda, F. (2012). Polímeros biodegradables: una alternativa de futuro a la sostenibilidad de medio ambiente. Técnica industrial, 297, 76-80.spa
dc.relation.referencesZeng, Z., Yu, D., He, Z., Liu, J., Xiao, F. X., Zhang, Y., . . . Tan, T. T. Y. (2016). Graphene Oxide Quantum Dots Covalently Functionalized PVDF Membrane with Significantly-Enhanced Bactericidal and Antibiofouling Performances. Scientific Reports, 6. doi:10.1038/srep20142spa
dc.relation.referencesZhang, M., Nguyen, Q. T., & Ping, Z. (2009). Hydrophilic modification of poly (vinylidene fluoride) microporous membrane. Journal of Membrane Science, 327(1), 78-86. doi:https://doi.org/10.1016/j.memsci.2008.11.020spa
dc.relation.referencesZhang, P., Fang, C., Rajabzadeh, S., Liu, W., Jia, Y., Shen, Q., . . . Matsuyama, H. (2020). Effect of polymer molecular weight on structure and performance of PVDF hollow fiber membranes prepared via TIPS process with co-extrusion of solvent using triple orifice spinneret. Journal of Membrane Science, 118854. doi:https://doi.org/10.1016/j.memsci.2020.118854spa
dc.relation.referencesZhang, S., Tang, X., Zheng, H., Wang, D., Xie, Z., Ding, W., & Zheng, X. (2021). Combination of bacitracin-based flocculant and surface enhanced Raman scattering labels for flocculation, identification and sterilization of multiple bacteria in water treatment. Journal of Hazardous Materials, 407, 124389. doi:https://doi.org/10.1016/j.jhazmat.2020.124389spa
dc.relation.referencesZhang, W., He, Z., Han, Y., Jiang, Q., Zhan, C., Zhang, K., . . . Zhang, R. (2020). Structural design and environmental applications of electrospun nanofibers. Composites Part A: Applied Science and Manufacturing, 137, 106009. doi:https://doi.org/10.1016/j.compositesa.2020.106009spa
dc.relation.referencesZhang, Y., Wang, H., Li, Y., Wang, B., Huang, J., Deng, S., . . . Wang, Y. (2020). Removal of micropollutants by an electrochemically driven UV/chlorine process for decentralized water treatment. Water Research, 183, 116115. doi:https://doi.org/10.1016/j.watres.2020.116115spa
dc.relation.referencesZhao, X., Su, Y., Chen, W., Peng, J., & Jiang, Z. (2012). Grafting perfluoroalkyl groups onto polyacrylonitrile membrane surface for improved fouling release property. Journal of Membrane Science, 415-416, 824-834. doi:10.1016/j.memsci.2012.05.075spa
dc.relation.referencesZhou, C., Chu, R., Wu, R., & Wu, Q. (2011). Electrospun polyethylene oxide/cellulose nanocrystal composite nanofibrous mats with homogeneous and heterogeneous microstructures. Biomacromolecules, 12(7), 2617-2625. doi:10.1021/bm200401pspa
dc.relation.referencesZhu, J., Hou, J., Zhang, Y., Tian, M., He, T., Liu, J., & Chen, V. (2018). Polymeric antimicrobial membranes enabled by nanomaterials for water treatment. Journal of Membrane Science, 550, 173-197. doi:https://doi.org/10.1016/j.memsci.2017.12.071spa
dc.relation.referencesZhu, S., & Nie, L. (2020). Progress in fabrication of one-dimensional catalytic materials by electrospinning technology. Journal of Industrial and Engineering Chemistry. doi:https://doi.org/10.1016/j.jiec.2020.09.016spa
dc.subject.proposalóxido de grafenospa
dc.subject.proposalElectrospinningspa
dc.subject.proposalNanofibrasspa
dc.subject.proposalMicroorganismosspa
dc.subject.proposalPolímerosspa
dc.subject.proposalMateriales compuestosspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.identifier.instnameinstname:Universidad Santo Tomásspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.description.degreelevelPregradospa
dc.identifier.repourlrepourl:https://repository.usta.edu.cospa


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC0 1.0 Universal
Except where otherwise noted, this item's license is described as CC0 1.0 Universal

Indexado por: