Show simple item record

dc.contributor.advisorLópez Vaca, Oscar Rodrigo
dc.contributor.authorPiñeros Rubio, Fabian Andres
dc.date.accessioned2021-04-23T14:54:32Z
dc.date.available2021-04-23T14:54:32Z
dc.date.issued2021-04-22
dc.identifier.citationPineros Rubio, F. A. (2021). Propuesta de metodología de diseño guiado por computador para manufactura aditiva de componentes mecánicos empleando FDM. [Trabajo de pregrado, Universidad Santo Tomás]. Repositorio Institucionalspa
dc.identifier.urihttp://hdl.handle.net/11634/33738
dc.descriptionEste trabajo de grado se enfoca en el desarrollo e implementación de una metodología de diseño guiada por computador para manufactura aditiva empleando FDM, a lo largo de este trabajo se hace uso de diversos programas, tales como: Solid Edge, para el diseño conceptual; ANSYS Workbench para la definición de condiciones de carga en el diseño, FEM (Análisis de elementos finitos) y optimización topológica mediante estructuras tipo Lattice ; ANSYS Additive utilizado en la simulación de impresión para el análisis de esfuerzos residuales y distorsiones geométricas; por ultimo Ultimaker CURA, utilizado en la simulación de impresión para costes y tiempos. Dentro de los resultados obtenidos, se evidenció que la variación entre posiciones de impresión tiene incidencia en variables tales como: distorsiones geométricas, esfuerzos residuales, costos y tiempos de impresión. En primer lugar, se observa que mediante la optimización de un elemento, la cantidad de material utilizado en la impresión se reduce hasta en un 20%, sin embargo, aumenta el tiempo en un 38%, con las variaciones mencionadas se obtiene como resultado una reducción del 6.66% en el coste total; Por otra parte, la aplicación de esta metodología demostró que el correcto posicionamiento de impresión logra reducir los esfuerzos residuales en un 45%, las distorsiones geométricas en un 46% y los costes generales de impresión en un 15.52%.spa
dc.description.abstractThis degree work focuses on the development and implementation of a computer-guided design methodology for additive manufacturing using FDM. Throughout this work, various programs are used, such as: Solid Edge, for conceptual design; ANSYS Workbench for the definition of loading conditions in the design, FEM (Finite Element Analysis) and topological optimization using Lattice-type structures; ANSYS Additive used in printing simulation for the analysis of residual stresses and geometric distortions; Lastly, Ultimaker CURA, used in the simulation of printing for costs and times. Among the results obtained, it was evidenced that the variation between printing positions has an impact on variables such as: geometric distortions, residual stresses, costs and printing times. In the first place, it is observed that by optimizing an element, the amount of material used in printing is reduced by up to 20%, however, time is increased by 38%, with the aforementioned variations a result is obtained 6.66% reduction in total cost; On the other hand, the application of this methodology showed that correct printing positioning reduces residual stresses by 45%, geometric distortions by 46% and general printing costs by 15.52%.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.titlePropuesta de metodología de diseño guiado por computador para manufactura aditiva de componentes mecánicos empleando FDMspa
dc.description.degreenameIngeniero Mecánicospa
dc.publisher.programPregrado Ingeniería Mecánicaspa
dc.publisher.facultyFacultad de Ingeniería Mecánicaspa
dc.subject.keywordTopological Optimization,spa
dc.subject.keywordFDMspa
dc.subject.keywordFEMspa
dc.subject.keywordLattice structuresspa
dc.subject.keywordResidual stressesspa
dc.subject.keywordGeometric Distortionsspa
dc.subject.lembMecánica de materialesspa
dc.subject.lembMateriales industrialesspa
dc.subject.lembProcesos de manufacturaspa
dc.type.localTrabajo de gradospa
dc.rights.localAbierto (Texto Completo)spa
dc.type.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.coverage.campusCRAI-USTA Bogotáspa
dc.contributor.googlescholarhttps://scholar.google.es/citations?user=V0oEE7cAAAAJ&hl=esspa
dc.contributor.cvlachttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000531359spa
dc.description.domainhttp://unidadinvestigacion.usta.edu.cospa
dc.relation.referencesASTM International and ISO, “INTERNATIONAL STANDARD ISO / ASTM Additive manufacturing — General principles — Requirements for purchased AM parts,” vol. 2016, 2017.spa
dc.relation.referencesM. J. Cotteleer, “3D opportunity: Additive manufacturing paths to performance, innovation, and growth,” SIMT Addit. Manuf. Symp., p. 23, 2014, [Online]. Available: http://simt.com/uploads/4881/SIMT_AM_Conference_Keynote.pdf.spa
dc.relation.referencesJ. C. Ruiz-Morales et al., “Three dimensional printing of components and functional devices for energy and environmental applications,” Energy Environ. Sci., vol. 10, no. 4, pp. 846–859, 2017, doi: 10.1039/c6ee03526d.spa
dc.relation.referencesQ. Yang, P. Zhang, L. Cheng, Z. Min, M. Chyu, and A. C. To, “Finite element modeling and validation of thermomechanical behavior of Ti-6Al-4V in directed energy deposition additive manufacturing,” Addit. Manuf., vol. 12, pp. 169–177, 2016, doi: 10.1016/j.addma.2016.06.012.spa
dc.relation.referencesE. Obandia de Escobar, “Simulation Solution for Metal Additive Manufacturing,” in Simulation Solution for Metal Additive Manufacturing, 2019, p. Pag 22.spa
dc.relation.referencesS. Ford and M. Despeisse, “Additive manufacturing and sustainability: an exploratory study of the advantages and challenges,” J. Clean. Prod., vol. 137, pp. 1573–1587, 2016, doi: 10.1016/j.jclepro.2016.04.150.spa
dc.relation.referencesJ. O. Milewski, Additive Manufacturing of Metas; From Fundamental Technology to Rocket Nozzles, Medical Implants, and Custom Jewlery, vol. 163. Cham, Switzerland: Cham, Switzerland, 2017.spa
dc.relation.referencesD. R. Veit, D. P. Lacerda, M. Isabel, W. Motta, and A. Dresch, “New Global Perspectives on Industrial Engineering and Management,” 2019, doi: 10.1007/978-3-319-93488-4.spa
dc.relation.referencesW. E. Frazier, “Metal additive manufacturing: A review,” J. Mater. Eng. Perform., vol. 23, no. 6, pp. 1917–1928, 2014, doi: 10.1007/s11665-014-0958-z.spa
dc.relation.referencesI. Gibson, D. Rosen, and B. Stucker, Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing, second edition. 2015.spa
dc.relation.referencesO. A. Mohamed, S. H. Masood, and J. L. Bhowmik, “Optimization of fused deposition modeling process parameters: a review of current research and future prospects,” Adv. Manuf., vol. 3, no. 1, pp. 42–53, 2015, doi: 10.1007/s40436-014-0097-7.spa
dc.relation.referencesB. Utela, D. Storti, R. Anderson, and M. Ganter, “A review of process development steps for new material systems in three dimensional printing (3DP),” J. Manuf. Process., vol. 10, no. 2, pp. 96–104, 2008, doi: 10.1016/j.jmapro.2009.03.002.spa
dc.relation.referencesH. Bikas, P. Stavropoulos, and G. Chryssolouris, “Additive manufacturing methods and modeling approaches: A critical review,” Int. J. Adv. Manuf. Technol., vol. 83, no. 1–4, pp. 389–405, 2016, doi: 10.1007/s00170-015-7576-2.spa
dc.relation.referencesT. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q. Nguyen, and D. Hui, “Additive manufacturing (3D printing): A review of materials, methods, applications and challenges,” Compos. Part B Eng., vol. 143, no. December 2017, pp. 172–196, 2018, doi: 10.1016/j.compositesb.2018.02.012.spa
dc.relation.referencesG. Strano, L. Hao, R. M. Everson, and K. E. Evans, “A new approach to the design and optimisation of support structures in additive manufacturing,” Int. J. Adv. Manuf. Technol., vol. 66, no. 9–12, pp. 1247–1254, 2013, doi: 10.1007/s00170-012-4403-x.spa
dc.relation.referencesJ. Narasimha Reddy, “Solutions Manual to An introduction to the finite element method‎,” p. 766, 2006, [Online]. Available: http://books.google.com/books?id=R4rEQgAACAAJ&printsec=frontcover.spa
dc.relation.references] B. E. Carroll, T. A. Palmer, and A. M. Beese, “Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing,” Acta Mater., vol. 87, pp. 309–320, 2015, doi: 10.1016/j.actamat.2014.12.054.spa
dc.relation.referencesX. Wang, M. Jiang, Z. Zhou, J. Gou, and D. Hui, “3D printing of polymer matrix composites: A review and prospective,” Compos. Part B Eng., vol. 110, pp. 442–458, 2017, doi: 10.1016/j.compositesb.2016.11.034.spa
dc.relation.referencesW. Oropallo and L. A. Piegl, “Ten challenges in 3D printing,” Eng. Comput., vol. 32, no. 1, pp. 135–148, 2016, doi: 10.1007/s00366-015-0407-0.spa
dc.relation.referencesC. Li, Z. Y. Liu, X. Y. Fang, and Y. B. Guo, “Residual Stress in Metal Additive Manufacturing,” Procedia CIRP, vol. 71, pp. 348–353, 2018, doi: 10.1016/j.procir.2018.05.039.spa
dc.relation.referencesWohlers Associate, “Wohlers Report 2015 – History of Additive Manufacturing,” p. 34, 2015, [Online]. Available:spa
dc.relation.referencesM. P. Bendsøe, Optimization of Structural Topology, Shape, and Material. 1995.spa
dc.relation.referencesM. M. Francois et al., “Modeling of additive manufacturing processes for metals: Challenges and opportunities,” Curr. Opin. Solid State Mater. Sci., vol. 21, no. 4, pp. 198–206, 2017, doi: 10.1016/j.cossms.2016.12.001.spa
dc.relation.referencesA. S. Wu, D. W. Brown, M. Kumar, G. F. Gallegos, and W. E. King, “An Experimental Investigation into Additive Manufacturing-Induced Residual Stresses in 316L Stainless Steel,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 45, no. 13, pp. 6260–6270, 2014, doi: 10.1007/s11661-014-2549-x.spa
dc.relation.referencesR. Martukanitz et al., “Toward an integrated computational system for describing the additive manufacturing process for metallic materials,” Addit. Manuf., vol. 1, pp. 52–63, 2014, doi: 10.1016/j.addma.2014.09.002.spa
dc.relation.referencesJ. D. López-Castro, A. Marchal, L. González, and J. Botana, “Topological optimization and manufacturing by Direct Metal Laser Sintering of an aeronautical part in 15-5PH stainless steel,” Procedia Manuf., vol. 13, pp. 818–824, 2017, doi: 10.1016/j.promfg.2017.09.121.spa
dc.relation.referencesW. H. Kan, Y. Nadot, M. Foley, L. Ridosz, G. Proust, and J. M. Cairney, “Factors that affect the properties of additively-manufactured AlSi10Mg: Porosity versus microstructure,” Addit. Manuf., vol. 29, p. 100805, 2019, doi: 10.1016/j.addma.2019.100805.spa
dc.relation.referencesÉ. Medina, “Impresoras 3D en Colombia - Archivo Digital de Noticias de Colombia y el Mundo desde 1.990 - eltiempo.com.” https://www.eltiempo.com/archivo/documento/CMS-14248317 (accessed Feb. 28, 2021).spa
dc.relation.referencesD. Thomas, “Breaking the mold,” Archit. Dig., vol. 77, no. 4, pp. 120–123, 2020.spa
dc.relation.referencesP. Bosetti, “Framing a Lighter, Stronger Race Car,” no. 1, pp. 58–60, 2019.spa
dc.relation.referencesL. Geekie, “Including Simulation in the Additive Manufacturing Workflow,” vol. 8, no. 3, pp. 132–138, 2019.spa
dc.contributor.corporatenameUniversidad Santo Tomasspa
dc.subject.proposalFDMspa
dc.subject.proposalFEMspa
dc.subject.proposalDiseño Ispa
dc.subject.proposalDistorsiones geométricasspa
dc.subject.proposalEsfuerzos residualesspa
dc.subject.proposalEstructuras latticespa
dc.subject.proposalOptimización topológicaspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.identifier.instnameinstname:Universidad Santo Tomásspa
dc.type.categoryFormación de Recurso Humano para la Ctel: Trabajo de grado de Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.description.degreelevelPregradospa
dc.identifier.repourlrepourl:https://repository.usta.edu.cospa


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 2.5 Colombia
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 2.5 Colombia

Indexado por: