Show simple item record

dc.contributor.advisorAcevedo Pabón, Paola Andrea
dc.contributor.advisorRangel Villegas, Carol Jhulieth
dc.contributor.authorRomero Mora, Miguel Angel
dc.contributor.authorRodríguez Reyes, Valentina
dc.date.accessioned2021-05-05T19:54:08Z
dc.date.available2021-05-05T19:54:08Z
dc.date.issued2021-05-05
dc.identifier.citationRomero Mora, M. A. & Rodríguez Reyes, V. (2021). Evaluación técnica y ambiental de la influencia de la temperatura en la producción de biohidrógeno en procesos de fermentación oscura de biomasa residual a gran escala. [Trabajo de pregrado, Universidad Santo Tomás]. Repositorio Institucional.spa
dc.identifier.urihttp://hdl.handle.net/11634/33993
dc.descriptionLa producción de biohidrógeno a partir de biomasa residual ha sido tema de interés en los últimos años, debido a la necesidad de fomentar la investigación y desarrollo de las energías renovables. Por tal razón, el presente estudio se centra en evaluar el efecto de dos temperaturas bajo las cuales se desarrolló la fermentación oscura, que es la ruta más efectiva para la degradación de la biomasa residual con miras a la obtención de biohidrógeno. Con base en información derivada de una simulación en AspenPlus del macroproyecto “Evaluación de rutas de aprovechamiento de biomasa residual bajo el esquema de biorrefinerías”, se desarrolló una evaluación técnica y ambiental de fermentación oscura a 35 y 45 °C mediante dos balances de masa y energía enfocados a la producción de biohidrógeno y el digestato resultante. A partir de los resultados obtenidos, se estableció que a 35 °C se obtiene un mayor rendimiento de producción energética. Del mismo modo, siguiendo la metodología propuesta en la ISO 14040:2006 para el Análisis de Ciclo de Vida, simulado en el software SimaPro, se identificaron el calentamiento global (GW), la escasez de agua (WS) y la degradación abiótica por el uso de combustibles fósiles (ADFF), como las categorías de impacto ambiental donde se presenta una mayor contribución de efectos ambientales adversos. Es preciso mencionar que la continuidad en la investigación es importante para garantizar el pleno desarrollo de las tecnologías que permitan llevar a cabo la generación de energía a través del aprovechamiento de biomasa residual.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.titleEvaluación técnica y ambiental de la influencia de la temperatura en la producción de biohidrógeno en procesos de fermentación oscura de biomasa residual a gran escalaspa
dc.typebachelor thesis
dc.description.degreenameIngeniero Ambientalspa
dc.publisher.programPregrado de Ingeniería Ambientalspa
dc.publisher.facultyFacultad de Ingeniería Ambientalspa
dc.subject.keywordEnvironmental impactspa
dc.subject.keywordISO 14040: 2006 standardspa
dc.subject.keywordEnergy productionspa
dc.subject.keywordResidual biomassspa
dc.subject.keywordEnvironmental carespa
dc.subject.keywordBiomassspa
dc.subject.keywordBiohydrogenspa
dc.subject.keywordTemperaturespa
dc.subject.lembBiomasa residualspa
dc.subject.lembProducción energéticaspa
dc.subject.lembNorma ISO 14040:2006spa
dc.subject.lembImpacto ambientalspa
dc.type.localTesis de pregradospa
dc.rights.localAbierto (Texto Completo)spa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.coverage.campusCRAI-USTA Bogotáspa
dc.contributor.orcidhttps://orcid.org/0000-0002-1549-3819spa
dc.contributor.orcidhttps://orcid.org/0000-0002-4764-9793spa
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=uBreqmgAAAAJ&hl=esspa
dc.contributor.cvlachttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001028111spa
dc.description.domainhttp://unidadinvestigacion.usta.edu.cospa
dc.relation.references[1] S.Z. Baykara, “Hydrogen: a brief overview on its sources, production and environmental impact”, International Journal of Hydrogen Energy, vol. 43, pp. 10605–10614. 2018. Available: https://dx.doi.org/10.1016/j.ijhydene.2018.02.022 DOI: 10.1016/j.ijhydene.2018.02.022spa
dc.relation.references[2] W. Cieciura-Włoch et al, “Biohydrogen production from fruit and vegetable waste, sugar beet pulp and corn silage via dark fermentation”, Renewable Energy, vol. 153, pp. 1226–1237, 2020. Available: https://dx.doi.org/10.1016/j.renene.2020.02.085. DOI: 10.1016/j.renene.2020.02.085spa
dc.relation.references[3] T. Keskin et al, “Determining the effect of trace elements on biohydrogen production from fruit and vegetable wastes”, International Journal of Hydrogen Energy, vol. 43, pp. 10666-10677. 2018. Available: https://dx.doi.org/10.1016/j.ijhydene.2018.01.028 DOI: 10.1016/j.ijhydene.2018.01.028spa
dc.relation.references[4] C. Sawatdeenarunat et al., “Anaerobic biorefinery: Current status, challenges, and opportunities,” Bioresource Technology vol. 215, pp. 304–313. 2016. Available: https://dx.doi.org/10.1016/j.biortech.2016.03.074 DOI: 10.1016/j.biortech.2016.03.074spa
dc.relation.references[5] M. R. Atelge et al, "Anaerobic co-digestion of oil-extracted spent coffee grounds with various wastes: Experimental and kinetic modeling studies," Bioresource Technology, vol. 322, pp. 124470, 2021. Available: http://dx.doi.org/10.1016/j.biortech.2020.124470. DOI: 10.1016/j.biortech.2020.124470spa
dc.relation.references[6] Weiland, P. “Biogas production: current state and perspectives”, Applied Microbiology and Biotechnology, vol. 85, pp. 849–860, 2010. Available: https://dx.doi.org/10.1007/s00253-09- 2246-7 DOI: 10.1007/s00253-09-2246-7spa
dc.relation.references[7] M. A. Hernández, “Evaluación de rutas de aprovechamiento de biomasa residual bajo el esquema de biorrefinerías”. Colciencias, 2016.spa
dc.relation.references[8] Q. Zhang, J. Hu, and D.-J. Lee, “Biogas from anaerobic digestion processes: Research updates”, Renewable Energy, vol. 98, pp. 108–119, 2016. Available: https://dx.doi.org/10.1016/j.renene.2016.02.029. DOI: 10.1016/j.renene.2016.02.029spa
dc.relation.references[9] K. Urbaniec et al. “Biomass residues as raw material for dark hydrogen fermentation – A review,” vol. 40, no. 9, pp. 3648–3658, Mar. 2015. Available: https://dx.doi.org/10.1016/j.ijhydene.2015.01.073 DOI: 10.1016/j.ijhydene.2015.01.073spa
dc.relation.references[10] R. Łukajtis et al. “Hydrogen production from biomass using dark fermentation,” Renewable and Sustainable Energy Review vol. 91. pp. 665–694, 2018. Available: https://dx.doi.org/10.1016/j.rser.2018.04.043 DOI: 10.1016/j.rser.2018.04.043spa
dc.relation.references[11] J. Rajesh Banu et al. "Industrial wastewater to biohydrogen: Possibilities towards successful biorefinery route," Bioresource Technology, vol. 298, pp. 122378, 2020. Available: https://dx.doi.org/10.1016/j.biortech.2019.122378 DOI: 10.1016/j.biortech.2019.122378spa
dc.relation.references[12] A. Schievano et al. "Dark fermentation, anaerobic digestion and microbial fuel cells: An integrated system to valorize swine manure and rice bran," Waste Management (Elmsford), vol. 56, pp. 519-529, 2016. Available: https://www.ncbi.nlm.nih.gov/pubmed/27406307 . DOI: 10.1016/j.wasman.2016.07.001spa
dc.relation.references[13] E. Castelló et al. "Stability problems in the hydrogen production by dark fermentation: Possible causes and solutions," Renewable and Sustainable Energy Reviews, vol. 119, pp. 109602, 2020. Available: https://doi.org/10.1016/j.rser.2019.109602 DOI: 10.1016/j.rser.2019.109602spa
dc.relation.references[14] S. Dahiya et al. "Renewable hydrogen production by dark-fermentation: Current status, challenges and perspectives," Bioresource Technology., vol. 321, pp. 124354, 2021. Available: https://dx.doi.org/10.1016/j.biortech.2020.124354 DOI: 10.1016/j.biortech.2020.124354.spa
dc.relation.references[15] M. A. Hernández et al. "Use of coffee mucilage as a new substrate for hydrogen production in anaerobic co-digestion with swine manure," Bioresource Technology, vol. 168, (SI), pp. 112- 118, 2014. Available: http://dx.doi.org/10.1016/j.biortech.2014.02.101 DOI: 10.1016/j.biortech.2014.02.101.spa
dc.relation.references[16] M. Hernandez et al. “Assessment of the Biohydrogen Production Potential of Different Organic Residues In Colombia: Cocoa Waste, Pig Manure and Coffee Mucilage”, Chemical Engineering Transactions, vol. 65, pp. 247-252, Jun. 2018. Available: https://dx.doi.org/10.3303/CET1865042 DOI: 10.3303/CET1865042.spa
dc.relation.references[17] Gonzales RR et al. “Optimization of dilute acid and enzymatic hydrolysis for dark fermentative hydrogen production from the empty fruit bunch of oil palm”, International Journal of Hydrogen Energy, vol. 44, pp. 2191–2202, 2019. Available: https://doi.org/10.1016/j.ijhydene.2018.08.022. DOI: 10.1016/j.ijhydene.2018.08.022.spa
dc.relation.references[18] Arreola-Vargas J. et al. “Sequential hydrolysis of oat straw and hydrogen production from hydrolysates: role of hydrolysates constituents”. International Journal of Hydrogen Energy, vol. 40, pp. 10756-10765, 2015. Available: https://doi.org/10.1016/j.ijhydene.2015.05.200. DOI: 10.1016/j.ijhydene.2015.05.200.spa
dc.relation.references[19] Farghaly, A. et al. “Inoculation of paperboard mill sludge versus mixed culture bacteria for hydrogen production from paperboard mill wastewater”. Environmental Science and Pollution Research, vol. 23, pp. 3834–3846, 2016. Available: https://doi.org/10.1007/s11356-015-5652-7. DOI: 10.1007/s11356-015-5652-7spa
dc.relation.references[20] Poontaweegeratigarn, T. et al. “Hydrogen production from alcohol wastewater by upflow anaerobic sludge blanket reactors under mesophilic temperature”. International Scholarly and Scientific Research and Innovation, vol. 6, pp. 293-296, 2012. Available: https://doi.org/10.5281/zenodo.1076096 DOI: 10.5281/zenodo.1076096.spa
dc.relation.references[21] Kumar, G. et al. “A comprehensive overview on light independent fermentative hydrogen production from wastewater feedstock and possible integrative options”. Energy Conversion and Management, vol. 141, pp. 390–402, 2017. Available: https://dx.doi.org/10.1016/j.enconman.2016.09.087. DOI: 10.1016/j.enconman.2016.09.087.spa
dc.relation.references[22] Poladyan A et al. “Hydrogen production by Escherichia coli using brewery waste: optimal pretreatment of waste and role of different hydrogenases”. Renew Energy, vol. 115, pp. 931-936, 2018. Available: https://dx.doi.org/10.1016/j.renene.2017.09.022. DOI: 10.1016/j.renene.2017.09.022.spa
dc.relation.references[23] Moodley P. et al. “Comparative study of three optimized acid-based pretreatments for sugar recovery from sugarcane leaf waste: a sustainable feedstock for biohydrogen production”. Engineering Science and Technology an International Journal, vol. 21, pp. 107-116, 2018. Available: https://dx.doi.org/10.1016/j.jestch.2017.11.010. DOI: 10.1016/j.jestch.2017.11.010.spa
dc.relation.references[24] Reddy K. et al.“Biohydrogen production from sugarcane bagasse hydrolysate: effects of pH, S/X, Fe2+, and magnetite nanoparticles”. Environmental Science and Pollution Research, vol. 24, pp. 8790- 8804, 2017. Available: https://dx.doi.org/10.1007/s11356-017-8560-1. DOI: 10.1007/s11356-017-8560-1.spa
dc.relation.references[25] Rorke D. et al, “Biohydrogen process development on waste sorghum (Sorghum bicolor) leaves: optimization of saccharification, hydrogen production and preliminary scale up”. International Journal of Hydrogen Energy, vol. 41, pp. 12941- 12952, 2016. Available: https://dx.doi.org/10.1016/j.ijhydene.2016.06.112. DOI: 10.1016/j.ijhydene.2016.06.112.spa
dc.relation.references[26] Tandon M. et al. “Enterobacter ludwigii strain IF2SW-B4 isolated for bio-hydrogen production from rice bran and de-oiled rice bran”. Environmental Technology and Innovation, vol. 10, pp. 345- 354, 2018. Available: https://dx.doi.org/10.1016/j.eti.2018.03.008. DOI: 10.1016/j.eti.2018.03.008.spa
dc.relation.references[27] K. Rambabu et al, "Augmented biohydrogen production from rice mill wastewater through nano-metal oxides assisted dark fermentation," Bioresourse Technology., vol. 319, pp. 124243, 2021. Available: http://dx.doi.org/10.1016/j.biortech.2020.124243 DOI: 10.1016/j.biortech.2020.124243.spa
dc.relation.references[28] D. Mu et al, "Simultaneous biohydrogen production from dark fermentation of duckweed and waste utilization for microalgal lipid production," Bioresourse Technology., vol. 302, pp. 122879, 2020. Available: http://dx.doi.org/10.1016/j.biortech.2020.122879 DOI: 10.1016/j.biortech.2020.122879.spa
dc.relation.references[29] S. A. Lateef et al, "Biohydrogen production from co-digestion of cow manure and waste milk under thermophilic temperature," Bioresource Technology, vol. 110, pp. 251-257, 2012. Available: http://dx.doi.org/10.1016/j.biortech.2012.01.102. DOI: 10.1016/j.biortech.2012.01.102.spa
dc.relation.references[30] Rangel, Carol J. et al. “Hydrogen production by dark fermentation process from pig manure, cocoa mucilage and coffee mucilage”, Biomass Conv. Bioref. 2020. Available: https://dx.doi.org/10.1007/s13399-020-00618-z DOI: /10.1007/s13399-020-00618-z.spa
dc.relation.references[31] Zhang Y, et al “Effect of temperature and iron concentration on the growth and hydrogen production of mixed bacteria”. International Journey of Hydrogen Energy. ol 31 pp. 441-446. 2006. Available: http://dx.doi.org/10.1016/j.ijhydene.2005.05.006 DOI: 10.1016/j.ijhydene.2005.05.006spa
dc.relation.references[32] Yokoyama H et al. “Effect of fermentation temperature on hydrogen production from cow waste slurry by using anaerobic microflora within the slurry”. Applied Microbiology and Biotechnology vol. 74, pp. 474–483. 2007. Available: http://dx.doi.org/10.1007/s00253-006- 0647-4 DOI: 10.1007/s00253-006-0647-4.spa
dc.relation.references[33] Fang HHP et al. “Effect of pH on hydrogen production from glucose by a mixed culture”. Bioresource Technology. 2002; vol 82, pp. 87–93. 2007. Available: https://dx.doi.org/10.1016/S0960-8524(01)00110-9 DOI: 10.1016/S0960-8524(01)00110-9.spa
dc.relation.references[34] Ginkel SV et al. “Biohydrogen production as a function of pH and substrate concentration”. Environmental Science and Technology vol 35: pp. 4726–4730. 2001. Available: https://dx.doi.org/10.1021/es001979r DOI: 10.1021/es001979r.spa
dc.relation.references[35] Temudo MF et al. “Influence of the pH on (open) mixed culture fermentation of glucose: a chemostat study”. Biotechnology and Bioengineering vol 98, pp. 69–79. 2007. Available: http://dx.doi.org/10.1002/bit.21412 DOI: 10.1002/bit.21412.spa
dc.relation.references[36] Lin CY et al. “Fermentative hydrogen production from wastewaters: a review and prognosis”. International Journey of Hydrogen Energy. vol 37, pp. :15632–15642. 2012. Available: http://dx.doi.org/10.1016/j.ijhydene.2012.02.072 DOI: 10.1016/j.ijhydene.2012.02.072.spa
dc.relation.references[37] Chen CC et al. “Fermentative hydrogen production at high sulfate concentration”. International Journey of Hydrogen Energy. vol 33, pp. :1573–1578. 2008. Available: http://dx.doi.org/10.1016/j.ijhydene.2007.09.042 DOI: 10.1016/j.ijhydene.2007.09.042.spa
dc.relation.references[38] Wu SY et al. “Hydrogen production with immobilized sewage sludge in three phase fluidized bed bioreactors”. Biotechnology Progress. vol. 19, pp. 828–832. 2003. Available: http://dx.doi.org/10.1021/bp0201354 DOI: 10.1021/bp0201354.spa
dc.relation.references[39] Zhu J et al. “Swine manure fermentation for hydrogen production. Bioresource Technology vol 100, pp. 5472–54727. 2009. Available: http://dx.doi.org/10. 1016/j.biortech.2008.11.045 DOI: 10. 1016/j.biortech.2008.11.045.spa
dc.relation.references[40] Zahedi S et al. “Hydrogen production from the organic fraction of municipal solid waste in anaerobic thermophilic acidogenesis: influence of organic loading rate and microbial content of the solid waste”. Bioresource Technology. 2013. vol 129, pp. 85–91. Available: http://dx.doi.org/10.1016/j.biortech.2012.11.003 DOI: 10.1016/j.biortech.2012.11.003.spa
dc.relation.references[41] Massanet-Nicolau J et al. “Production of hydrogen from sewage biosolids in a continuously fed bioreactor: effect of hydraulic retention time and sparging”. International Journey of Hydrogen Energy. 2010. Available: http://dx.doi.org/10.1016/j.ijhydene.2009.10.076 DOI: 10.1016/j.ijhydene.2009.10.076.spa
dc.relation.references[42] Mandal B, et al. “Improvement of biohydrogen production under decreased partial pressure of H2 by Enterobacter cloacae”. Biotechnology Letters vol 28, pp. 831–835. 2006. http://dx.doi.org/10.1007/s10529-006-9008-8 DOI: 10.1007/s10529-006-9008-8.spa
dc.relation.references[43] Prabakar et al, "Advanced biohydrogen production using pretreated industrial waste: Outlook and prospects," Renewable and Sustainable Energy Reviews., vol. 96, pp. 306-324, 2018. Available: https://doi.org/10.1016/j.rser.2018.08.006 DOI: 10.1016/j.rser.2018.08.006.spa
dc.relation.references[44] Linder, T. “Making the case for edible microorganisms as an integral part of a more sustainable and resilient food production system”. Food Security Journal., vol. 11, pp. 265–278, 2019. Available: https://doi.org/10.1007/s12571-019-00912-3 DOI: 10.1007/s12571-019- 00912-3.spa
dc.relation.references[45] R. Rafieenia et al. "Dark fermentation metabolic models to study strategies for hydrogen consumers inhibition," Bioresource Technology, vol. 267, pp. 445-457, 2018. Available: http://dx.doi.org/10.1016/j.biortech.2018.07.054 . DOI: 10.1016/j.biortech.2018.07.054.spa
dc.relation.references[46] F. D. Faloye, et al. "Optimization of biohydrogen inoculum development via a hybrid pH and microwave treatment technique – Semi pilot scale production assessment," International Journal of Hydrogen Energy, vol. 39, (11), pp. 5607-5616, 2014. Available: http://dx.doi.org/10.1016/j.ijhydene.2014.01.163 . DOI: 10.1016/j.ijhydene.2014.01.163.spa
dc.relation.references[47] Kitashima, M. et al. “Flexible plastic bioreactors for photobiological hydrogen production by hydrogenase-deficient cyanobacteria”. Bioscience, biotechnology and biochemistry., vol. 76, pp. 831-833, 2012. Available: https://doi.org/10.1271/bbb.110808 DOI: 10.1271/bbb.110808spa
dc.relation.references[48] Instituto Colombiano Agropecuario – ICA. “Censo Pecuario Nacional” [Online]. Available: https://www.ica.gov.co/areas/pecuaria/servicios/epidemiologia-veterinaria/censos-2016/censo- 2018.aspx.spa
dc.relation.references[49] Agronet. “Café: Evaluaciones agropecuarias municipales”. [Online] Available: https://www.agronet.gov.co/Documents/Caf%C3%A9.pdf.spa
dc.relation.references[50] Agronet. “Cacao: Evaluaciones agropecuarias municipales”. [Online] Available: https://www.agronet.gov.co/Documents/Cacao.pdfspa
dc.relation.references[51] A. P. Becerra-Quiróz, et al. “Sostenibilidad del aprovechamiento del bagazo de caña de azúcar en el Valle del Cauca, Colombia”, Ingeniería Solidaria, vol. 12, n.° 20, pp. 133-149, oct. 2016. Available: http://dx.doi.org/10.16925/in.v12i20.1548 DOI: 10.16925/in.v12i20.1548spa
dc.relation.references[52] C. J. Rangel Villegas, "Evaluación de un esquema de biorefinería mediante fermentación oscura a partir de biomasa residual de Santander". Universidad EAN, Bogotá D.C., 2021.spa
dc.relation.references[53] E. Cerdá, “Cambio climático y energía: Una visión a nivel global”, Papeles de Europa, vol. I, no 31, pp. 1-17, 2018. Available: https://doi.org/10.5209/PADE.61486 DOI: 10.5209/PADE.61486.spa
dc.relation.references[54] B. Paul, et al, "Primacy of ecological engineering tools for combating eutrophication: An ecohydrological assessment pathway," Science of The Total Environment, vol. 762, pp. 143171, 2021. Available: https://doi.org/10.1016/j.scitotenv.2020.143171 DOI: 10.1016/j.scitotenv.2020.143171spa
dc.relation.references[55] Environmental Protection Agency, “Effects of the Acid Rain” EPA, 4 Mayo 2020. [Online]. Available: https://www.epa.gov/acidrain/effects-acid-rainspa
dc.relation.references[56] Ministerio de Ciencia - España, “Impactos ambientales de la producción de electricidad”, [Online]. Available: http://proyectoislarenovable.iter.es/wp- content/uploads/2014/05/17_Estudio_Impactos_MA_mix_electrico_APPA.pdfspa
dc.relation.references[57] B. Khoshnevisan et al, "Environmental life cycle assessment of different biorefinery platforms valorizing municipal solid waste to bioenergy, microbial protein, lactic and succinic acid," Renewable and Sustainable Energy Reviews, vol. 117, pp. 109493, 2020. Available: https://doi.org/10.1016/j.rser.2019.109493 DOI: 10.1016/j.rser.2019.109493spa
dc.relation.references[58] F. Gorini et al, "Hydrogen sulfide and cardiovascular disease: Doubts, clues, and interpretation difficulties from studies in geothermal areas," Sci. Total Environ., vol. 743, pp. 140818, 2020. Available: https://doi.org/10.1016/j.scitotenv.2020.140818 DOI: 10.1016/j.scitotenv.2020.140818spa
dc.relation.references[59] J. Du et al, "Simulated sulfuric and nitric acid rain inhibits leaf breakdown in streams: A microcosm study with artificial reconstituted fresh water," Ecotoxicology and Environmental Safety, vol. 196, pp. 110535, 2020. Available: https://doi.org/10.1016/j.ecoenv.2020.110535 DOI: /10.1016/j.ecoenv.2020.110535.spa
dc.relation.references[60] J. P. Riffo Rivas, "Análisis de ciclo de vida para una planta de tratamiento de aguas residuales: Potencial de calentamiento global generado por PTAR Talagante", Universidad de Chile, Santiago de Chile, 2017. Available: http://repositorio.uchile.cl/handle/2250/148239spa
dc.relation.references[61] M. Davis et al, "Assessment of renewable energy transition pathways for a fossil fuel- dependent electricity-producing jurisdiction," Energy for Sustainable Development, vol. 59, pp. 243-261, 2020. Available: https://doi.org/10.1016/j.esd.2020.10.011 DOI: 10.1016/j.esd.2020.10.011.spa
dc.relation.references[62] Y. Liu et al, "Review of waste biorefinery development towards a circular economy: From the perspective of a life cycle assessment," Renewable & Sustainable Energy Reviews, vol. 139, pp. 110716, 2021. Available: http://dx.doi.org/10.1016/j.rser.2021.110716 DOI: 10.1016/j.rser.2021.110716.spa
dc.relation.references[63] S. Prasad et al, "Sustainable utilization of crop residues for energy generation: A life cycle assessment (LCA) perspective," Bioresource Technology, vol. 303, (C), pp. 122964, 2020. Available: http://dx.doi.org/10.1016/j.biortech.2020.122964 DOI: 10.1016/j.biortech.2020.122964.spa
dc.relation.references[64] A. Patel et al, "Valorization of volatile fatty acids derived from low-cost organic waste for lipogenesis in oleaginous microorganisms-A review," Bioresource Technology., vol. 321, pp. 124457, 2021. Available: https://doi.org/10.1016/j.biortech.2020.124457 DOI: 10.1016/j.biortech.2020.124457.spa
dc.relation.references[65] Hauschild, M. Z., Rosenbaum, R. K., & Olsen, S. I. “Life cycle assessment”. Springer International Publishing, 2018. Available: https://doi. org/10.1007/978-3-319-56475-3 DOI: 10.1007/978-3-319-56475-3.spa
dc.relation.references[66] Haya, E. “Análisis de ciclo de vida”. Escuela de Organización Industrial. España, 2016.spa
dc.relation.references[67] Antón Vallejo, M. A. “Utilización del Análisis del ciclo de vida en la evaluación del impacto ambiental del cultivo bajo invernadero mediterráneo”. Universitat Politècnica de Catalunya, 2004. Available: http://hdl.handle.net/2117/94137spa
dc.contributor.corporatenameUniversidad Santo Tomásspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.subject.proposalTemperaturaspa
dc.subject.proposalBiohidrógenospa
dc.subject.proposalBiomasaspa
dc.subject.proposalCuidado del medio ambientespa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.identifier.instnameinstname:Universidad Santo Tomásspa
dc.type.categoryFormación de Recurso Humano para la Ctel: Trabajo de grado de Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driveinfo:eu-repo/semantics/bachelorThesis


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 2.5 Colombia
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 2.5 Colombia

Indexado por: