Show simple item record

dc.contributor.advisorOrtíz Rico, Andrés Felipe
dc.creatorLiscano Fierro, Juan Manuel
dc.date.accessioned2017-07-19T20:11:17Z
dc.date.available2017-07-19T20:11:17Z
dc.date.created2017
dc.identifier.citationLiscano, J. (2017). Modelos mixtos para datos composicionales: una aplicación con resultados electorales en Colombia. (Trabajo de pregrado). Universidad Santo Tomás. Bogotá, Colombia.
dc.identifier.urihttp://hdl.handle.net/11634/4186
dc.descriptionEl presente trabajo consiste en la aplicación de ciertas herramientas desarrolladas para el análisis de los datos composicionales. El propósito incluye la revisión de los aspectos teóricos; la geometría del simplex, la metodología del log-cociente y aspectos relacionados con las componentes nulas, además del Desarrollo de un ejercicio práctico teniendo en cuenta las metodología__as mencionadas junto con los modelos Estadísticos, tales como regresión Dirichlet, un modelo lineal multivariado y finalmente el modelo mixto Multivariado, que es el eje principal del ejercicio. Se ilustra la aplicación práctica de la teoría haciendo Uso de la información disponible en cuanto a los procesos electorales llevados a cabo en Colombia y otras Variables que dañen la situación económica y política del país. Los resultados de los datos analizados bajo el ajuste del modelo mixto responden de la mejor manera a los valores reales del plebiscito por la paz, identificando como las variables trabajadas intuyen en el Resultado de las votaciones. Sugiriendo que los departamentos con más problemas sociales están más a favor de la paz.spa
dc.description.abstractThe present work consists in the application of certain tools developed for the analysis of the compositional data. The purpose includes the revision of the theoretical aspects; the geometry of the simplex, the log-ratio methodology and aspects related to null components, as well as the development of a practical exercise taking into account the mentioned methodologies along with the statistical models, such as Dirichlet regression, a multivariate linear model and nally the multivariate mixed model, which is the main axis of the exercise. It illustrates the practical application of the theory making use of the available information about the electoral processes carried out in Colombia and other variables that de ne the economic and political situation of the country. The results of the data analyzed under the adjustment of the mixed model respond in the best way to the real values of the plebiscite, identifying how the variables worked in uence the results of the voting. Suggesting that departments with more social problems are more in favor of peace.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.sourceinstname:Universidad Santo Tomásspa
dc.sourcereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.subjectDatos composicionalesspa
dc.subjectTransformacionesspa
dc.subjectModelos estadIsticosspa
dc.subjectProcesos electoralesspa
dc.subjectSimplexspa
dc.titleModelos mixtos para datos composicionales: Una aplicacion con resultados electorales en Colombiaspa
dc.typeinfo:eu-repo/semantics/bachelorThesisspa
dc.creator.degreeProfesional en estadísticaspa
dc.publisher.programPregrado estadísticaspa
dc.publisher.departmentFacultad de estadísticaspa
dc.subject.keywordcompositional data
dc.subject.keywordCompositional data
dc.subject.keywordTransformations
dc.subject.keywordStatistical models
dc.subject.keywordElectoral processes
dc.subject.keywordSimplex
dc.subject.lembElecciones -- Métodos estadísticos -- Colombia
dc.subject.lembAnálisis de regresión -- Casos -- Colombia
dc.subject.lembModelos matemáticos
dc.rights.accesoAbierto (Texto Completo)spa
dc.rights.accesoAbierto (Texto Completo)spa
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersionspa
dc.description.sedeCRAI-USTA Bogotáspa
dc.description.orcidhttps://orcid.org/0000-0001-5272-4447
dc.description.GoogleScholarhttps://scholar.google.es/citations?user=OuVxcUgAAAAJ&hl=es
dc.description.cvlachttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000650579
dc.description.dominiohttp://unidadinvestigacion.usta.edu.co
dc.source.bibliographicCitationAitchison, J. (1986), ‘The statistical analysis of compositional data’.
dc.source.bibliographicCitationAitchison, J., Barcel´o-Vidal, C., Mart´ın-Fern´andez, J. & Pawlowsky-Glahn, V. (2000), ‘Logratio analysis and compositional distance’, Mathematical Geology 32(3), 271–275.
dc.source.bibliographicCitationBarton, K. (2016), MuMIn: Multi-Model Inference. R package version 1.15.6. *https://CRAN.R-project.org/package=MuMIn
dc.source.bibliographicCitationBates, D., M¨achler, M., Bolker, B. & Walker, S. (2015), ‘Fitting linear mixed-effects models using lme4’, Journal of Statistical Software 67(1), 1–48.
dc.source.bibliographicCitationBillheimer, D., Guttorp, P. & Fagan, W. F. (2001), ‘Statistical interpretation of species composition’, Journal of the American statistical Association 96(456), 1205–1214.
dc.source.bibliographicCitationBroyden, C. G. (1970), ‘The convergence of a class of double-rank minimization algorithms 1. general considerations’, IMA Journal of Applied Mathematics 6(1), 76–90.
dc.source.bibliographicCitationBuccianti, A., Montegrossi, G., Tassi, F. & Vaselli, O. (2002), ‘Log-contrast analysis of volcanic fluid composition: a way to check equilibrium conditions’, Terra Nostra, special issue: IAMG 2, 405–410.
dc.source.bibliographicCitationChrist, A. (2009), ‘Mixed effects models and extensions in ecology with r’.
dc.source.bibliographicCitationEgozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G. & Barcelo-Vidal, C. (2003), ‘Isometric logratio transformations for compositional data analysis’, Mathematical Geology 35(3), 279–300.
dc.source.bibliographicCitationFletcher, R. (1970), ‘A new approach to variable metric algorithms’, The computer journal 13(3), 317– 322.
dc.source.bibliographicCitationGoldfarb, D. (1970), ‘A family of variable-metric methods derived by variational means’, Mathematics of computation 24(109), 23–26.
dc.source.bibliographicCitationGueorguieva, R., Rosenheck, R. & Zelterman, D. (2008), ‘Dirichlet component regression and its applications to psychiatric data’, Computational statistics & data analysis 52(12), 5344–5355.
dc.source.bibliographicCitationHenningsen, A. & Toomet, O. (2011), ‘maxlik: A package for maximum likelihood estimation in R’, Computational Statistics 26(3), 443–458. *http://dx.doi.org/10.1007/s00180-010-0217-1
dc.source.bibliographicCitationHijazi, R. H. & Jernigan, R. W. (2009), ‘Modelling compositional data using dirichlet regression models’, Journal of Applied Probability & Statistics 4(1), 77–91.
dc.source.bibliographicCitationMaier, M. J. (2014), Dirichletreg: Dirichlet regression for compositional data in r, Research Report Series/ Department of Statistics and Mathematics 125, WU Vienna University of Economics and Business, Vienna. *http://epub.wu.ac.at/4077/
dc.source.bibliographicCitationMaier, M. J. (2015), DirichletReg: Dirichlet Regression in R. R package version 0.6-3. *http://dirichletreg.r-forge.r-project.org/
dc.source.bibliographicCitationM´arquez, J., Aparicio, F. et al. (2011), ‘Modelos estad´ısticos para sistemas electorales multipartidistas en stata’, Stata Press book chapters .
dc.source.bibliographicCitationPawlowsky-Glahn, V. & Buccianti, A. (2011), Compositional data analysis: Theory and applications, John Wiley & Sons.
dc.source.bibliographicCitationPawlowsky-Glahn, V. & Egozcue, J. J. (2001), ‘Geometric approach to statistical analysis on the simplex’, Stochastic Environmental Research and Risk Assessment 15(5), 384–398.
dc.source.bibliographicCitationPearson, K. (1896), ‘Mathematical contributions to the theory of evolution.–on a form of spurious correlation which may arise when indices are used in the measurement of organs’, Proceedings of the royal society of london 60(359-367), 489–498.
dc.source.bibliographicCitationR Core Team (2016), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. *https://www.R-project.org/
dc.source.bibliographicCitationShanno, D. F. (1970), ‘Conditioning of quasi-newton methods for function minimization’, Mathematics of computation 24(111), 647–656.
dc.source.bibliographicCitationSmithson, M. & Verkuilen, J. (2006), ‘A better lemon squeezer? maximum-likelihood regression with beta-distributed dependent variables.’, Psychological methods 11(1), 54.
dc.source.bibliographicCitationTempl, M., Hron, K. & Filzmoser, P. (2011), robCompositions: an R-package for robust statistical analysis of compositional data, John Wiley and Sons.
dc.source.bibliographicCitationThomas, C. & Aitchison, J. (1998), The use of logratios in subcompositional analysis and geochemical discrimination of metamorphosed limestones from the northeast and central scottish highlands, in ‘Proceedings of IAMG98, The Fourth Annual Conference of the International Association for Mathematical Geology, De Frede, Naples’, pp. 549–554.
dc.source.bibliographicCitationTolosana-Delgado, R., Palomera-Rom´an, R., Gimeno-Torrente, D., Pawlowsky-Glahn, V. & Thi´oHenestrosa, S. (2002), ‘A first approach to the classification of basalts using trace elements’, See Bayer, Burger, and Skala pp. 435–440.
dc.source.bibliographicCitationVan den Boogaart, K. G. & Tolosana-Delgado, R. (2013), Analyzing compositional data with R, Vol. 122, Springer.
dc.source.bibliographicCitationWeltje, G. J. (2002), ‘Quantitative analysis of detrital modes: statistically rigorous confidence regions in ternary diagrams and their use in sedimentary petrology’, Earth-Science Reviews 57(3), 211–253.


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 2.5 Colombia
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 2.5 Colombia