dc.contributor.advisor | Mateus Rojas, Armando | |
dc.contributor.advisor | Amaya, Sindy Paola | |
dc.contributor.advisor | Gelvez Lizarazo, Oscar Mauricio | |
dc.contributor.author | Agudelo Díaz, Juan Sebastián | |
dc.contributor.author | Cardoza Olano, Oscar Andrés | |
dc.date.accessioned | 2022-09-16T22:56:50Z | |
dc.date.available | 2022-09-16T22:56:50Z | |
dc.date.issued | 2022-09-15 | |
dc.identifier.citation | Agudelo Díaz, J. S. y Cardoza Olano, O. A. (2022). Emulación de la fisiología respiratoria del pulmón empleando un sistema embebido. [Trabajo de grado, Universidad Santo Tomás]. Repositorio institucional. | spa |
dc.identifier.uri | http://hdl.handle.net/11634/47184 | |
dc.description | El presente proyecto describe la fisiología respiratoria del pulmón empleando un sistema embebido con el fin de realizar diagnósticos en personas y detectar si tienen o sufren de alguna insuficiencia respiratoria. Para lograr este resultado, se investigó el funcionamiento completo del sistema respiratorio del cuerpo humano para analizar qué variables se acomodaban mejor a la idea del proyecto y con base en eso generar el modelo matemático que describa ese funcionamiento.
El proceso inició adaptando las ecuaciones matemáticas que mejor describen el flujo del sistema respiratorio relacionando el intercambio de gases, el cual es la base del sistema, para luego realizar el proceso de discretización de las ecuaciones con el fin de programarlas en los entornos de desarrollo y lenguajes de programación que se utilizaron y observar los resultados en los
diferentes entornos simulados.
Por último, se planteó una interfaz amigable al usuario, realizada en LabVIEW, con el fin de manipular variables dependiendo el entorno o ambiente donde se quiera simular que se encuentra una persona, y observar la salida de presión alveolar tanto para el oxigeno como para el dióxido de carbono y de esta manera detectar si esta persona presenta parámetros respiratorios normales o sufre de alguna insuficiencia respiratoria. | spa |
dc.description.abstract | This project describes the respiratory physiology of the lung using an embedded system in order to make diagnoses in people and detect if they have or suffer from any respiratory insufficiency. To achieve this result, the complete functioning of the respiratory system of the human body was investigated to analyze which variables were best suited to the idea of the project and based on that, generate the mathematical model that describes that functioning.
The process began by adapting the mathematical equations that best describe the flow of the respiratory system relating gas exchange, which is the basis of the system, to then carry out the discretization process of the equations in order to program them in development environments and programming languages that were used and observe the results in the
different simulated environments.
Finally, a user-friendly interface was proposed, made in LabVIEW, in order to manipulate variables depending on the environment or environment where you want to simulate that a person is, and observe the alveolar pressure output for both oxygen and carbon dioxide. carbon dioxide and in this way detect if this person has normal respiratory parameters or suffers from any respiratory insufficiency. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.publisher | Universidad Santo Tomás | spa |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Colombia | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | * |
dc.title | Emulación de la fisiología respiratoria del pulmón empleando un sistema embebido. | spa |
dc.description.degreename | Ingeniero Electronico | spa |
dc.publisher.program | Pregrado Ingeniería Electrónica | spa |
dc.publisher.faculty | Facultad de Ingeniería Electrónica | spa |
dc.subject.keyword | Emulation | spa |
dc.subject.keyword | Respiratory Physiology | spa |
dc.subject.keyword | Embedded System | spa |
dc.subject.keyword | Lung | spa |
dc.subject.lemb | Ingeniería electrónica | spa |
dc.subject.lemb | Respiración | spa |
dc.subject.lemb | Fisiología | spa |
dc.type.local | Trabajo de grado | spa |
dc.rights.local | Abierto (Texto Completo) | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.coverage.campus | CRAI-USTA Bogotá | spa |
dc.contributor.cvlac | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001765795 | spa |
dc.contributor.cvlac | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001766937 | spa |
dc.relation.references | Benedetta Biagioni et al. “The rising of allergic respiratory diseases in a changing world: from climate change to migration”. In: Expert Review of Respiratory Medicine 14.10 (2020). PMID: 32662693, pp. 973–986. DOI: 10 . 1080 / 17476348 . 2020 . 1794829. eprint: https://doi.org/10.1080/17476348.2020.1794829. URL: https://doi. org/10.1080/17476348.2020.1794829. | spa |
dc.relation.references | Yinghan Chan et al. “Nutraceuticals: unlocking newer paradigms in the mitigation of inflammatory lung diseases”. In: Critical Reviews in Food Science and Nutrition 0.0 (2021). PMID: 34613853, pp. 1–31. DOI: 10.1080/10408398.2021.1986467. eprint: https: //doi.org/10.1080/10408398.2021.1986467. URL: https://doi.org/10. 1080/10408398.2021.1986467. | spa |
dc.relation.references | Panaiotis Finamore, Simone Scarlata, and Raffaele Antonelli Incalzi. “Breath analysis in respiratory diseases: state-of-the-art and future perspectives”. In: Expert Review of Molecu- lar Diagnostics 19.1 (2019). PMID: 30575423, pp. 47–61. DOI: 10.1080/14737159.2019. 1559052. eprint: https://doi.org/10.1080/14737159.2019.1559052. URL: https://doi.org/10.1080/14737159.2019.1559052. | spa |
dc.relation.references | Panaiotis Finamore, Simone Scarlata, and Raffaele Antonelli Incalzi. “Breath analysis in respiratory diseases: state-of-the-art and future perspectives”. In: Expert Review of Molecu- lar Diagnostics 19.1 (2019). PMID: 30575423, pp. 47–61. DOI: 10.1080/14737159.2019. 1559052. eprint: https://doi.org/10.1080/14737159.2019.1559052. URL: https://doi.org/10.1080/14737159.2019.1559052. | spa |
dc.relation.references | Panaiotis Finamore, Simone Scarlata, and Raffaele Antonelli Incalzi. “Breath analysis in respiratory diseases: state-of-the-art and future perspectives”. In: Expert Review of Molecu- lar Diagnostics 19.1 (2019). PMID: 30575423, pp. 47–61. DOI: 10.1080/14737159.2019. 1559052. eprint: https://doi.org/10.1080/14737159.2019.1559052. URL: https://doi.org/10.1080/14737159.2019.1559052. | spa |
dc.relation.references | Jorge Fernando Máspero, Nancy Nardacchione, and Damián Marino. “Intervención am- biental en las enfermedades respiratorias”. In: ISSN 1669-9106 123 MEDICINA (Buenos Aires) 79 (2 2019). | spa |
dc.relation.references | Jorge Fernando Máspero, Nancy Nardacchione, and Damián Marino. “Intervención am- biental en las enfermedades respiratorias”. In: ISSN 1669-9106 123 MEDICINA (Buenos Aires) 79 (2 2019). | spa |
dc.relation.references | Organización Mundial de la Salud. “Preguntas y respuestas sobre la enfermedad por COVID-19”. In: Organización Mundial de la Salud (2020). URL: https : / / www . who . int/es/emergencies/diseases/novel- coronavirus- 2019/advice- for- public/q-a-coronaviruses. | spa |
dc.relation.references | Kostantinos Kostopanagiotou et al. “COVID-19-related end stage lung disease: two dis- tinct phenotypes”. In: Annals of Medicine 54.1 (2022). PMID: 35168461, pp. 588–590. DOI: 10 . 1080 / 07853890 . 2022 . 2039954. eprint: https : / / doi . org / 10 . 1080 / 07853890.2022.2039954. URL: https://doi.org/10.1080/07853890.2022. 2039954. | spa |
dc.relation.references | Kostantinos Kostopanagiotou et al. “COVID-19-related end stage lung disease: two dis- tinct phenotypes”. In: Annals of Medicine 54.1 (2022). PMID: 35168461, pp. 588–590. DOI: 10 . 1080 / 07853890 . 2022 . 2039954. eprint: https : / / doi . org / 10 . 1080 / 07853890.2022.2039954. URL: https://doi.org/10.1080/07853890.2022. 2039954. | spa |
dc.relation.references | Naciones Unidas. Las muertes por COVID-19 sumarían 15 millones entre 2020 y 2021 | Noti- cias ONU. 2022. URL: https://news.un.org/es/story/2022/05/1508172. | spa |
dc.relation.references | Naciones Unidas. Las muertes por COVID-19 sumarían 15 millones entre 2020 y 2021 | Noti- cias ONU. 2022. URL: https://news.un.org/es/story/2022/05/1508172. | spa |
dc.relation.references | OMS. Enfermedad por el coronavirus (COVID-19): Vacunas. 2022. URL: https://www.who. int/es/emergencies/diseases/novel-coronavirus-2019/question-and- answers-hub/q-a-detail/coronavirus-disease-(covid-19)-vaccines? adgroupsurvey=%5C%7Badgroupsurvey%5C%7D. | spa |
dc.relation.references | OMS. Enfermedad por el coronavirus (COVID-19): Vacunas. 2022. URL: https://www.who. int/es/emergencies/diseases/novel-coronavirus-2019/question-and- answers-hub/q-a-detail/coronavirus-disease-(covid-19)-vaccines? adgroupsurvey=%5C%7Badgroupsurvey%5C%7D. | spa |
dc.relation.references | Mónica Arreola. Cultivo de células humanas con organ-on-a-chip | Tecnológico de Monterrey. 2018. URL: https://tec.mx/es/noticias/nacional/institucion/cultivo- de-celulas-humanas-con-organ-chip (visited on 04/13/2020). | spa |
dc.relation.references | Mónica Arreola. Cultivo de células humanas con organ-on-a-chip | Tecnológico de Monterrey. 2018. URL: https://tec.mx/es/noticias/nacional/institucion/cultivo- de-celulas-humanas-con-organ-chip (visited on 04/13/2020). | spa |
dc.relation.references | Xiaochen Li et al. “Trends and risk factors of mortality and disability adjusted life years for chronic respiratory diseases from 1990 to 2017: Systematic analysis for the Global Burden of Disease Study 2017”. In: The BMJ 368 (2020). ISSN: 17561833. DOI: 10.1136/ bmj.m234. | spa |
dc.relation.references | Habib Allah Shahriyari et al. “Air pollution and human health risks: mechanisms and clinical manifestations of cardiovascular and respiratory diseases”. In: Toxin Reviews 41 (2 2022). ISSN: 15569551. DOI: 10.1080/15569543.2021.1887261. | spa |
dc.relation.references | María T. De Ossa, John E. Londoño, and Alejandro Valencia-Arias. “Modelo de Trans- ferencia Tecnológica desde la Ingeniería Biomédica: un estudio de caso”. In: Informacion Tecnologica (2018). ISSN: 07180764. DOI: 10.4067/S0718-07642018000100010. | spa |
dc.relation.references | Universidad Santo Tomás. Proyección Social USTA COLOMBIA. Tech. rep. Bogotá, D. C., Colombia: Universidad Santo Tómas. URL: http://www.usta.edu.co (visited on 04/07/2020). | spa |
dc.relation.references | Universidad Santo Tomás. Proyección Social USTA COLOMBIA. Tech. rep. Bogotá, D. C., Colombia: Universidad Santo Tómas. URL: http://www.usta.edu.co (visited on 04/07/2020). | spa |
dc.relation.references | Ilka Wagner et al. “Skin and hair-on-a-chip: Hair and skin assembly versus native skin maintenance in a chip-based perfusion system”. In: BMC Proceedings (2013). ISSN: 1753- 6561. DOI: 10.1186/1753-6561-7-s6-p93. | spa |
dc.relation.references | Asad A. Ahmad et al. “Optimization of 3-D organotypic primary colonic cultures for organ-on-chip applications”. In: Journal of Biological Engineering (2014). ISSN: 17541611. DOI: 10.1186/1754-1611-8-9. | spa |
dc.relation.references | Hao-Hsiang Hsu et al. “A method to determine and simulate the permeation through a gel matrix in a multi-organ-chip”. In: BMC Proceedings (2015). ISSN: 1753-6561. DOI: 10.1186/1753-6561-9-s9-p77. | spa |
dc.relation.references | Michael Poznic. “Modeling Organs with Organs on Chips: Scientific Representation and Engineering Design as Modeling Relations”. In: Philosophy and Technology (2016). ISSN: 22105441. DOI: 10.1007/s13347-016-0225-3. | spa |
dc.relation.references | Aslam Abbasi Akhtar et al. Organoid and Organ-on-a-Chip Systems: New Paradigms for Mod- eling Neurological and Gastrointestinal Disease. 2017. DOI: 10.1007/s40778-017-0080- x. | spa |
dc.relation.references | Laszlo Hajba and Andras Guttman. “Continuous-Flow-Based Microfluidic Systems for Therapeutic Monoclonal Antibody Production and Organ-on-a-Chip Drug Testing”. In: Journal of Flow Chemistry (2017). ISSN: 20630212. DOI: 10.1556/1846.2017.00014. | spa |
dc.relation.references | Laszlo Hajba and Andras Guttman. “Continuous-Flow-Based Microfluidic Systems for Therapeutic Monoclonal Antibody Production and Organ-on-a-Chip Drug Testing”. In: Journal of Flow Chemistry (2017). ISSN: 20630212. DOI: 10.1556/1846.2017.00014. | spa |
dc.relation.references | Mirza Ali Mofazzal Jahromi et al. Microfluidic Brain-on-a-Chip: Perspectives for Mimicking Neural System Disorders. 2019. DOI: 10.1007/s12035-019-01653-2. | spa |
dc.relation.references | Jesus Shrestha et al. “Lung-on-a-chip: the future of respiratory disease models and phar- macological studies”. In: Critical Reviews in Biotechnology 40.2 (2020). PMID: 31906727, pp. 213–230. DOI: 10 . 1080 / 07388551 . 2019 . 1710458. eprint: https : / / doi . org/10.1080/07388551.2019.1710458. URL: https://doi.org/10.1080/ 07388551.2019.1710458. | spa |
dc.relation.references | Husam Y. Al-Hetari et al. “A Mathematical Model of Lung Functionality using Pres- sure Signal for Volume-Controlled Ventilation”. In: 2020 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS). 2020, pp. 135–140. DOI: 10.1109/ I2CACIS49202.2020.9140092. | spa |
dc.relation.references | Yeeun Bak et al. “Exacerbation of Mycobacterium avium pulmonary infection by co- morbid allergic asthma is associated with diminished mycobacterium-specific Th17 re- sponses”. In: Virulence 12.1 (2021). PMID: 34605365, pp. 2546–2561. DOI: 10 . 1080 / 21505594 . 2021 . 1979812. eprint: https : / / doi . org / 10 . 1080 / 21505594 . 2021.1979812. URL: https://doi.org/10.1080/21505594.2021.1979812. | spa |
dc.relation.references | Mary Bates. “Fighting COVID-19 With Lung-Chips”. In: IEEE Pulse 12.3 (2021), pp. 6–10. ISSN: 2154-2317. DOI: 10.1109/MPULS.2021.3078598. | spa |
dc.relation.references | Yarub Al-Douri et al. “Nanomaterial-based biosensors for COVID-19 detection”. In: Crit- ical Reviews in Solid State and Materials Sciences 0.0 (2021), pp. 1–24. DOI: 10 . 1080 / 10408436 . 2021 . 1989665. eprint: https : / / doi . org / 10 . 1080 / 10408436 . 2021.1989665. URL: https://doi.org/10.1080/10408436.2021.1989665.Yarub Al-Douri et al. “Nanomaterial-based biosensors for COVID-19 detection”. In: Crit- ical Reviews in Solid State and Materials Sciences 0.0 (2021), pp. 1–24. DOI: 10 . 1080 / 10408436 . 2021 . 1989665. eprint: https : / / doi . org / 10 . 1080 / 10408436 . 2021.1989665. URL: https://doi.org/10.1080/10408436.2021.1989665. | spa |
dc.relation.references | Kun-Yao Lin, Yen-Hsun Tsai, and Yu-Cheng Fan. “A Model-Based Convolutional Neu- ral Network for Covid-19 and Related Lung Diseases Prediction with Graphical Inter- face Operation and Chip Design”. In: 2021 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia). 2021, pp. 1–4. DOI: 10.1109/ICCE- Asia53811.2021. 9641902. | spa |
dc.relation.references | Casper Falster et al. “Lung ultrasound may be a valuable aid in decision making for patients admitted with COVID-19 disease”. In: European Clinical Respiratory Journal 8.1 (2021), p. 1909521. DOI: 10.1080/20018525.2021.1909521. eprint: https://doi. org/10.1080/20018525.2021.1909521. URL: https://doi.org/10.1080/ 20018525.2021.1909521. | spa |
dc.relation.references | Radovan Stojanovic and Andrej Skraba. “Simplified open HW /SW pulse oximetry in- terface for purpose of COVID-19 symptoms detection and monitoring”. In: 2021 10th Mediterranean Conference on Embedded Computing (MECO). 2021, pp. 1–5. DOI: 10.1109/ MECO52532.2021.9460178. | spa |
dc.relation.references | J Canet. “FISIOLOGÍA RESPIRATORIA”. In: Sociedad Catalana de Anestesiología, Reani- mación y Terapéutica del Dolor (2018). | spa |
dc.relation.references | Guillermo M. Albaiceta. “Curvas presión-volumen en la lesión pulmonar aguda”. es. In: Medicina Intensiva 33 (July 2009), pp. 243–250. ISSN: 0210-5691. URL: http://scielo. isciii.es/scielo.php?script=sci_arttext&pid=S0210-56912009000500005& nrm=iso. | spa |
dc.relation.references | Howard T. Milhorn et al. “A Mathematical Model of the Human Respiratory Control Sys- tem”. In: Biophysical Journal 5.1 (1965). ISSN: 00063495. DOI: 10.1016/S0006-3495(65) 86701-7. | spa |
dc.relation.references | Ron T. Ogan. “Hardware-in-the-Loop Simulation”. In: Modeling and Simulation in the Sys- tems Engineering Life Cycle: Core Concepts and Accompanying Lectures. Ed. by Margaret L. Loper. London: Springer London, 2015, pp. 167–173. ISBN: 978-1-4471-5634-5. DOI: 10. 1007/978- 1- 4471- 5634- 5_14. URL: https://doi.org/10.1007/978- 1- 4471-5634-5_14. | spa |
dc.relation.references | Mihaela Juganaru Mathieu. “Lenguaje de programacion”. In: Introduccion a la programa- cion 1 (2014). | spa |
dc.relation.references | Mathworks. MATLAB - El lenguaje del cálculo técnico - MATLAB & Simulink. URL: https: //la.mathworks.com/products/matlab.html. | spa |
dc.relation.references | Mathworks. Simulación y diseño basado en modelos con Simulink - MATLAB & Simulink. URL: https://la.mathworks.com/products/simulink.html. | spa |
dc.relation.references | Peter Marwedel. Embedded System Design. Jan. 2007. | spa |
dc.relation.references | S Casco. “Raspberry Pi, Arduino y Beaglebone Black Comparación y Aplicaciones”. In: vol 1 (2014), pp. 4–8. | spa |
dc.relation.references | Óscar Torrente Artero. Arduino. Curso práctico de formación. RC libros, 2013. | spa |
dc.relation.references | Edwin Patricio Álvarez Sucuy and Carlos Xavier Guerrero Berrones. “Diseño e imple- mentación de un módulo de electrónica de potencia para el control y monitoreo de una señal de voltaje utilizando la tarjeta de control NI myRIO.” B.S. thesis. Escuela Superior Politécnica de Chimborazo, 2019. | spa |
dc.relation.references | A. B. OTIS et al. “Mechanical factors in distribution of pulmonary ventilation”. In: Journal of applied physiology 8 (4 1956). ISSN: 00218987. DOI: 10.1152/jappl.1956.8.4.427. | spa |
dc.relation.references | Zhonghai He and Yuqian Zhao. Modeling in Respiratory Movement Using LabVIEW and Simulink. 2011. DOI: 10.5772/13134. | spa |
dc.relation.references | Néstor Flórez Luna and Manuela Beltrán. SIMULACION POR SOFTWARE DE LAS CUR- VAS GENERADAS EN VENTILACION MECANICA POR CONTROL DE PRESION. | spa |
dc.relation.references | Ebymar Arismendi and Joan Albert Barberà. VALORACIÓN DEL INTERCAMBIO GASEOSO. Vol. 11. 2011, pp. 59–72. URL: https : / / www . neumomadrid . org / wp - content / uploads/monog_neumomadrid_xviii.pdf. | spa |
dc.relation.references | P Oliver et al. “Estudio de la oxigenación e interpretación de la gasometría arterial”. In: Documentos de la Sociedad Española de Químicos Cosméticos (2015 2014). | spa |
dc.contributor.corporatename | Universidad Santo Tomás | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.subject.proposal | Emulación | spa |
dc.subject.proposal | Fisiología Respiratoria | spa |
dc.subject.proposal | Sistema Embebido | spa |
dc.subject.proposal | Pulmón | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad Santo Tomás | spa |
dc.identifier.instname | instname:Universidad Santo Tomás | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.description.degreelevel | Pregrado | spa |
dc.identifier.repourl | repourl:https://repository.usta.edu.co | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.drive | info:eu-repo/semantics/bachelorThesis | |