Mostrar el registro sencillo del ítem

Síntesis y caracterización de membranas híbridas a partir de quitosan, polivinil alcohol y sílice para su aplicación en deshidratación de gases

dc.contributoren-US
dc.contributores-ES
dc.creatorGutiérrez-Gutiérrez, Martha Isabel; Ing. química, Universidad Industrial de Santander Bucaramanga
dc.creatorMorales-Mendivelso, Diego Francisco; Ing. químico, Universidad Industrial Santander Bucaramanga
dc.creatorMuvdi-Nova, Carlos Jesús; Ph. D. de Procesos, Universidad Industrial de Santander Bucaramanga
dc.creatorChaves-Guerrero, Arlex; Ph. D. en Ingeniería Química, Universidad Industrial de Santander. Bucaramanga
dc.date2015-06-16
dc.identifierhttp://revistas.ustabuca.edu.co/index.php/ITECKNE/article/view/819
dc.identifier10.15332/iteckne.v12i1.819
dc.descriptionThe membrane systems are an attractive technology applied to separation process.  For decades, the synthesis and characterization of its properties have been studied focusing its development of efficient and competitive membrane systems. In order to study the feasibility of the utilization of synthesized hybrids membranes to the process of gases dehydration, dense membranes composed  of  chitosan, polyvinyl alcohol and silica were elaborated  applying  the  solution  casting  method, considering  different  compositions, thickness and studying its permeability of water vapor. It was found that chitosan (CTS) quantity is the variable that affects more significantly  the permeated.  In addition, the influence of the time and the glutaraldehyde concentration in the crosslinking process was evaluated.  The experimental results showed that selected parameters do not have influence on permeate, only physical-chemical features of the membrane. Lastly, the membranes were characterized with three methods: (1) Infrared Spectroscopy (FTIR) that show internal structure changes with the crosslinking, (2) Differential scanning calorimetry that evidence changes  in  the  thermal  transitions  and  (3)  Thermogravimetric  Analysis  (TGA)  that  show  the  temperatures  of degradation of the membranes.en-US
dc.descriptionLos sistemas de membranas son una tecnología atractiva aplicada a procesos de separación. Por décadas se ha estudiado la síntesis y caracterización de sus propiedades enfocadas al desarrollo de sistemas de membrana eficientes y competitivos. En este sentido, con el fin de estudiar la factibilidad de sintetizar membranas híbridas para su aplicación en procesos de deshidratación de gases, se elaboraron membranas densas de quitosan, polivinil alcohol y sílice por medio del método solution casting, a diferentes composiciones y espesores evaluando su capacidad de permeado de vapor de agua. Se encontró así que la cantidad de quitosan (CTS) es la variable que favorece de manera más significativa el permeado. Adicionalmente, se evaluó la influencia del tiempo y la concentración de glutaraldehído en el entrecruzamiento. Los resultados experimentales mostraron que los parámetros escogidos no repercuten sobre transporte de vapor de agua, sino únicamente sobre las características fisicoquímicas de la membrana.   Finalmente, las membranas se caracterizaron por tres métodos: (1) Espectroscopia infrarroja (FTIR), muestra cambios en la estructura interna de las membranas.  (2) Calorimetría diferencial de barrido (DSC), evidencia cambios en las transiciones térmicas y (3) Análisis termogravimétrico (TGA) que muestra las temperaturas de degradación de las membranas.es-ES
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Santo Tomás. Seccional Bucaramangaes-ES
dc.relationhttp://revistas.ustabuca.edu.co/index.php/ITECKNE/article/view/819/634
dc.relation/*ref*/R. W. Baker, Membrane Technology and applications, 2nd ed. England, John Wiley & Sons, Ltd, 2004, pp. 1-7.
dc.relation/*ref*/R. W. Baker, and K. Lokhandwala, “Natural Gas Processing with Membranes: An Overview,” Membrane Technology and Research, vol. 47, no. 7, pp. 2109-2121, 2008.
dc.relation/*ref*/S. Mokhatab y W. A. Poe, «Chapter 9 -Natural Gas Dehydration,» de Handbook of Natural Gas Transmission and Processing (Second Edition), Boston, Gulf Professional Publishing, 2012, pp. 317-352.
dc.relation/*ref*/G. M. Li, C. Feng, J. F. Li, J. Z. Liu y Y. L. Wu, «Water vapor permeation and compressed air dehydration performances of modified polyimide membrane,» Separation and Purification Technology, vol. 60, nº 3, pp. 330-334, 2008.
dc.relation/*ref*/K.-V. Peinemann, S. Pereira-Nunes, and L. Giorno, Membrane Technology: Membranes for Food Applications, vol. 3,. Germany: Wiley-VCH pp. 1-2, 2010.
dc.relation/*ref*/M. Takht, T. Kaghazchi y A. Kargari, «Application of membrane separation processes in petrochemical industry: a review», Desalination, vol. 235, nº 1-3, pp. 199-244, 2009.
dc.relation/*ref*/G. Q. Chen, C. A. Scholes, G. G. Qiao, and S. E. Kentish, “Water vapor permeation in polyimide membranes,” Journal of Membrane Science, vol. 379, no 1-2, pp. 479-487, Sep., 2011.
dc.relation/*ref*/C. A. Scholes, G. W. Stevens, and S. E. Kentish, “Membrane gas separation applications in natural gas processing,” Fuel, vol. 96, pp. 15-28, June 2012.
dc.relation/*ref*/L. Deng, T.-J. Kim, M. Sandru, and M.-B. Hägg, “PVA/PVAm Blend FSC Membrane for Natural Gas Sweetening,” 1st Annual Gas Processing Symposium, Doha, Qatar, pp. 247-255, Jan. 2009.
dc.relation/*ref*/J. Hao, P. A. Rice and S. Stern, “Upgrading low-quality natural gas with H2S- and CO2-selective polymer membranes: Part I. Process design and economics of membrane stages without recycle streams,” Journal of Membrane Science, vol. 209, nº 1, pp. 177-206, Nov. 2002.
dc.relation/*ref*/B. Bolto, M. Hoang and Z. Xie, “A review of water recovery by vapour permeation through membranes,” Water Research, vol. 46, nº 2, pp. 259-266, Feb. 2012.
dc.relation/*ref*/J. Wijmans, and R. Baker, “The solution-diffusion model: a review,” Journal of Membrane Science, vol. 107, nº 1-2, pp. 1-21, Nov. 1995.
dc.relation/*ref*/M. Beppu, R. Vieira, C. Aimoli, and C. Santana, «Crosslinking of chitosan membranes using glutaraldehyde: Effect on ion permeability and water absorption,” Journal of Membrane Science, vol. 301, nº 1-2, pp. 126-130, Sep. 2007.
dc.relation/*ref*/Q. Yu, Y. Song, X. Shi, C. Xu and Y. Bin, “Preparation and properties of chitosan derivative/poly(vinyl alcohol) blend film crosslinked with glutaraldehyde,” Carbohydrate Polymers, vol. 84, nº 1, pp. 465-470, Feb. 2011.
dc.relation/*ref*/R. W. Baker, Membrane Technology and applications, 2nd ed. England, John Wiley & Sons, Ltd, 2004, pp. 90-91.
dc.relation/*ref*/Chuang, W. T. Young, and C. Lin, “The effect of polymeric additives on the structure and permeability of poly (vinyl alcohol) asymmetric membranes,” Journal for the science and technology of polymers, vol. 41, pp. 5633-5641, 2000.
dc.relation/*ref*/A. Ahmad, N. Yusuf and B. Ooi, “Preparation and modification of poly (vinyl) alcohol membrane: Effect of crosslinking,” Desalination, vol. 287, pp. 35-40, Jun. 2012.
dc.relation/*ref*/P.-H. Chen, Y.-H. Hwang, T.-Y. Kuo, F.-H. Liu, J.-Y. Lai and H.-J. Hsieh, “Improvement in the Properties of Chitosan Membranes Using Natural Organic Acid Solutions as Solvents for Chitosan Dissolution,” Journal of Medical and Biological Engineering, vol. 27, no 1, pp. 23-28, Feb. 2007.
dc.relation/*ref*/J. M. Yang, W. Y. Su, T. L. Leu and M. C. Yang, “Evaluation of chitosan/PVA blended hydrogel membranes,” Journal of Membrane Science, vol. 236, nº 1-2, pp. 39-51, Jun. 2004.
dc.relation/*ref*/D. A. Devi, B. Smitha, S. Sridhar and T. Aminabhavi, “Dehydration of 1,4-dioxane through blend membranes of poly(vinyl alcohol) and chitosan by pervaporation,” Journal of Membrane Science, vol. 280, pp. 138-147, Feb. 2006.
dc.relation/*ref*/Q. Cheng, F. Pan, B. Chen and Z. Jiang, “Preparation and dehumidification performance of composite membrane with PVA/gelatin–silica hybrid skin layer,” Journal of Membrane Science, vol. 363, pp. 316-325, Aug. 2010.
dc.relation/*ref*/N. Durmaz-Hilmioglu, A. E. Yildirim, A. Sakaoglu and S. Tulbentci, “Acetic acid dehydration by pervaporation,” Chemical Engineering and Processing: Process Intensification, vol. 40, no 3, pp. 263-267, May. 2001.
dc.relation/*ref*/B. Bolto, T. Tran, M. Hoang and Z. Xie, “Crosslinked poly(vinyl alcohol) membranes,” Progress in Polymer Science, vol. 34, nº 9, pp. 969-981, Sep. 2009.
dc.relation/*ref*/W. Zhang, Z. Yu, Q. Qian, Z. Zhang and X. Wang, “Improving the pervaporation performance of the glutaraldehyde crosslinked chitosan membrane by simultaneously changing its surface and bulk structure,” Journal of Membrane Science, vol. 348, no 1-2, pp. 213-223, Feb. 2010.
dc.relation/*ref*/P. Baroni, R. Vieira, E. Meneghetti, M. d. Silva and M. Beppu, “Evaluation of batch adsorption of chromium ions on natural and crosslinked chitosan membranes,” Journal of Hazardous Materials, vol. 152, pp. 1155-1163, Aug. 2008.
dc.relation/*ref*/T.-Y. Hsien and G. L. Rorrer, “Heterogeneous Cross-Linking of Chitosan Gel Beads: Kinetics, Modeling, and Influence on Cadmium Ion Adsorption Capacity,” Industrial Engineering Chemical Reserch, vol. 36, no 9, pp. 3631-3638, Aug. 1997.
dc.relation/*ref*/S. Ulatan and D. Balköse, “Diffusivity, solubility and permeability of water vapor in flexible PVC/silica composite membranes,” Journal of Membrane Science, vol. 115, pp. 217-224, Jun. 1996.
dc.rightsCopyright (c) 2018 ITECKNE0
dc.rights0
dc.sourceITECKNE; Vol. 12, núm. 1 (2015); 33-43es-ES
dc.source2339-3483
dc.source1692-1798
dc.subjecten-US
dc.subjectMembranes; crosslinking; dehydration; permeationen-US
dc.subjecten-US
dc.subjectes-ES
dc.subjectMembranas; entrecruzamiento; deshidratación; permeaciónes-ES
dc.subjectes-ES
dc.titleSynthesis and characterization of hybrides membranes composed of chitosan, polyvinyl alcohol and silica for its application in dehydration of gasesen-US
dc.titleSíntesis y caracterización de membranas híbridas a partir de quitosan, polivinil alcohol y sílice para su aplicación en deshidratación de gaseses-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typees-ES
dc.typeen-US


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem