Show simple item record

Transport phenomena in superconductors: kinematic vortex

dc.contributor.authorBarba-Ortega, José Joséspa
dc.contributor.authorValbuena-Niño, Ely Dannierspa
dc.contributor.authorRincón-Joya, Miryamspa
dc.date2017-03-27spa
dc.identifierhttp://revistas.ustabuca.edu.co/index.php/ITECKNE/article/view/1625spa
dc.identifier10.15332/iteckne.v14i1.1625spa
dc.descriptionLa teoría fenomenológica Ginzburg-Landau (FGLT) es una fuerte herramienta para entender la física de los materiales superconductores a temperaturas críticas en presencia de campos magnéticos y corrientes aplicadas. El FGLT se deriva de la teoría del segundo orden de transición de Landau basada en un fenómeno crítico, llevada a un conjunto de dos ecuaciones no lineales Ginzburg-Landau (GLE). En el presente trabajo, resolvimos las ecuaciones de GLE en una placa superconductora en presencia de una corriente aplicada a campo magnético cero. Analizamos la aparición y aniquilación de pares vórtice y anti-vórtice en la mitad de la placa con una corriente externa aplicada. Una pequeña resistividad es encontrada en el rango Meissner en la curva de corriente-voltaje.spa
dc.descriptionThe phenomenological Ginzburg-Landau theory (FGLT) is a strong tool in understanding the physics of the superconductors at low critical temperature in the presence of applied fields and currents. The FGLT is derived from the second order transition theory of Landau based on critical phenomena, leading to a set of two coupled nonlinear Ginzburg-Landau equations (GLE). In this paper, we solve the GLE to a superconducting slab of Al in presence of applied current j at zero magnetic fields. We have analysed the appearance and subsequent annihilation of vortexanti- vortex pairs in the middle of the sample at an external applied current j1. A small resistivity is found in Meissner range in the current-voltage curve at j ≤ j1.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Santo Tomás. Seccional Bucaramangaeng
dc.relationhttp://revistas.ustabuca.edu.co/index.php/ITECKNE/article/view/1625/1270spa
dc.relation/*ref*/J. Van de Vondel, C. C. de Souza, B. Y. Zhu, M. Morelle and V. V. Moshchalkov, “Vortex-Rectification Effects in Films with Periodic Asymmetric Pinning”, Phys. Rev. Lett., vol. 94, p. 057003, 2005.spa
dc.relation/*ref*/K. Yu, T. W. Heitmann, C. Song, M. P. DeFeo, B. L. T. Plourde, M. B. S. Hesselberth and P. H. Kes, “Asymmetric weak-pinning superconducting channels: Vortex ratchets”, Phys. Rev. B, vol. 76, p. 220507, 2007.spa
dc.relation/*ref*/K. Yu, M. B. S. Hesselberth, P. H. Kes and B. L. T. Plourde, “Vortex dynamics in superconducting channels with periodic constrictions”, Phys. Rev. B, vol 81, p. 184503, 2010.spa
dc.relation/*ref*/M. B. Hastings, C. J. O. Reichhardt and C. Reichhardt, “Ratchet Cellular Automata”, Phys. Rev. Lett., vol 90, p. 247004, 2003.spa
dc.relation/*ref*/T. Puig, E. Rosseel, M. Baert, M. J. V. Bael, V. V. Moshchalkov and Y. Bruynseraede, “Stable vortex configurations in superconducting 2×2 antidot clusters”, Appl. Phys. Lett., vol 70, p. 3155, 1997.spa
dc.relation/*ref*/G. Karapetrov, V. Yefremenko, G. Mihajlovic, J. E. Pearson, M. Lavarone, V. Novosad and S. D. Bader, “Evidence of vortex jamming in Abrikosov vortex flux flow regime”, Phys. Rev. B, vol. 86, p. 054524, 2012.spa
dc.relation/*ref*/G. Berdiyorov, K. Harrabi, F. Oktasendra, K. Gasmi, A. I. Mansour, J. P. Maneval and F. M. Peeters, “Dynamics of current-driven phase-slip centers in superconducting strips”, Phys. Rev. B, vol. 90, 054506, 2014.spa
dc.relation/*ref*/F. Rogeri, R. Zadorosny, P. N. Lisboa-Filho, E. Sardella and W. A. Ortiz, “Magnetic field profile of a mesoscopic SQUID-shaped superconducting film”, Supercond. Sci. Technol., vol. 26, p. 075005, 2013.spa
dc.relation/*ref*/R. I. Rey, A. R. Álvarez, C. Carballeira, J. Mosqueira, F. Vidal, S. Salem, A. D. Alvarenga, R. Zhang and H. Luo, “Measurements of the superconducting fluctuations in optimally doped BaFe2−xNixAs2 under high magnetic fields: probing the 3D-anisotropic Ginzburg–Landau approach”, Supercond. Sci. Technol., vol. 27, p. 07500, 2014.spa
dc.relation/*ref*/P. J. Pereira, V. V. Moshchalkov and L. F. Chibotaru, “Efficient solution of 3D Ginzburg-Landau problem for mesoscopic superconductors”, J. Phys. Conf. Ser., vol. 490, p. 012220, 2014.spa
dc.relation/*ref*/J. I. Martin, “Flux Pinning in a Superconductor by an Array of Submicrometer Magnetic Dots”, Phys. Rev. Lett., vol. 79, p. 1929, 1997.spa
dc.relation/*ref*/D. J. Morgan and J. B. Ketterson, “Asymmetric Flux Pinning in a Regular Array of Magnetic Dipoles”, Phys. Rev. Lett., vol. 80, p. 3614, 1998.spa
dc.relation/*ref*/M. V. Milosevic, G. R. Berdiyorov and F. M. Peeters, “Mesoscopic Field and Current Compensator Based on a Hybrid Superconductor-Ferromagnet Structure”, Phys. Rev. Lett., vol. 95, p. 147004, 2005.spa
dc.relation/*ref*/G. R. Berdiyorov, “Effect of surface functionalization on the electronic transport properties of Ti3C2 MXene”, Eurp. Phys. Lett., vol. 111, p. 67002, 2015.spa
dc.relation/*ref*/G. R. Berdiyorov, K. Harrabi, J. P. Maneval and F. M. Peeters, “Effect of pinning on the response of superconducting strips to an external pulsed current”, Supercond. Sci. Technol, vol. 28, p. 25004, 2015.spa
dc.relation/*ref*/G. R. Berdiyorov, M. V. Milosevic, F. M. Peeters and D. Y. Vodolazov, “Kinematic vortex-antivortex lines in strongly driven superconducting stripes”, Phys. Rev. B, 79 184506, 2009.spa
dc.relation/*ref*/P. Sánchez, J. Albino Aguiar, D. Domínguez, “Behavior of the flux-flow resistivity in mesoscopic superconductors”, Physica C, vol. 503, p. 15, 2014.spa
dc.relation/*ref*/J. Barba-Ortega, E. Sardella, J. A. Aguiar, “Superconducting boundary conditions for mesoscopic circular samples”, Sci. Technol., vol. 24, p. 015001, 2011.spa
dc.relation/*ref*/J. Barba-Ortega, E. Sardella, J. A. Aguiar, “Superconducting properties of a parallelepiped mesoscopic superconductor: A comparative study between the 2D and 3D Ginzburg–Landau models”, Phys. Lett. A. vol. 379, no. 7, p. 732, 2015.spa
dc.relation/*ref*/T. Golod, A. Iovan V. M. Krasnov, “Single Abrikosov vortices as quantized information bits”, Nature Communications, vol. 6, p. 8628, 2015.spa
dc.relation/*ref*/A. C. Bolech, G. C. Buscaglia, A. López, Connectivity and Superconductivity, in: J. Berger, J. Rubinstein, Ed. Heidelberg, New, York: Springer, 2000.spa
dc.relation/*ref*/D. Gropp, H. G. Kaper, G. K. Leaf, D. M. Levine, M. Palumbo, V. M. Vinokur, “Numerical simulation of vortex dynamics in type-II superconductors”, J. Comput. Phys., Vol. 123, p. 254, 1996.spa
dc.relation/*ref*/P. G. de Gennes, “Superconductivity of Metals and Alloys”, Ed. New York: Addison-Wesley, 1994, p. 274.spa
dc.relation/*ref*/A. C. Bolech, G. C. Buscaglia, A. López, Connectivity and Superconductivity, in: J. Berger, J. Rubinstein, Ed. Heidelberg, New, York: Springer, 2000.spa
dc.relation/*ref*/D. Gropp, H. G. Kaper, G. K. Leaf, D. M. Levine, M. Palumbo, V. M. Vinokur, “Numerical simulation of vortex dynamics in type-II superconductors”, J. Comput. Phys., Vol. 123, p. 254, 1996.spa
dc.relation/*ref*/P. G. de Gennes, “Superconductivity of Metals and Alloys”, Ed. New York: Addison-Wesley, 1994, p. 274.spa
dc.rightsCopyright (c) 2018 ITECKNEeng
dc.sourceITECKNE; Vol 14, No 1 (2017); 11 - 16spa
dc.sourceITECKNE; Vol 14, No 1 (2017); 11 - 16eng
dc.source2339-3483spa
dc.source1692-1798spa
dc.titleFenómeno de transporte en superconductores: vórtices cinemáticosspa
dc.titleTransport phenomena in superconductors: kinematic vortexeng
dc.typeinfo:eu-repo/semantics/articlespa
dc.typeinfo:eu-repo/semantics/publishedVersionspa
dc.subject.proposalGinzburg-Landau; Superconductor; Vórtice.spa
dc.subject.proposalGinzburg-Landau; Superconductors; Vortexeng


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Indexado por: