Show simple item record

Transport phenomena in superconductors: kinematic vortex

dc.contributoren-US
dc.contributores-ES
dc.creatorBarba-Ortega, José José
dc.creatorValbuena-Niño, Ely Dannier
dc.creatorRincón-Joya, Miryam
dc.date2017-03-27
dc.identifierhttp://revistas.ustabuca.edu.co/index.php/ITECKNE/article/view/1625
dc.identifier10.15332/iteckne.v14i1.1625
dc.descriptionLa teoría fenomenológica Ginzburg-Landau (FGLT) es una fuerte herramienta para entender la física de los materiales superconductores a temperaturas críticas en presencia de campos magnéticos y corrientes aplicadas. El FGLT se deriva de la teoría del segundo orden de transición de Landau basada en un fenómeno crítico, llevada a un conjunto de dos ecuaciones no lineales Ginzburg-Landau (GLE). En el presente trabajo, resolvimos las ecuaciones de GLE en una placa superconductora en presencia de una corriente aplicada a campo magnético cero. Analizamos la aparición y aniquilación de pares vórtice y anti-vórtice en la mitad de la placa con una corriente externa aplicada. Una pequeña resistividad es encontrada en el rango Meissner en la curva de corriente-voltaje.es-ES
dc.descriptionThe phenomenological Ginzburg-Landau theory (FGLT) is a strong tool in understanding the physics of the superconductors at low critical temperature in the presence of applied fields and currents. The FGLT is derived from the second order transition theory of Landau based on critical phenomena, leading to a set of two coupled nonlinear Ginzburg-Landau equations (GLE). In this paper, we solve the GLE to a superconducting slab of Al in presence of applied current j at zero magnetic fields. We have analysed the appearance and subsequent annihilation of vortexanti- vortex pairs in the middle of the sample at an external applied current j1. A small resistivity is found in Meissner range in the current-voltage curve at j ≤ j1.en-US
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad Santo Tomás. Seccional Bucaramangaen-US
dc.relationhttp://revistas.ustabuca.edu.co/index.php/ITECKNE/article/view/1625/1270
dc.relation/*ref*/J. Van de Vondel, C. C. de Souza, B. Y. Zhu, M. Morelle and V. V. Moshchalkov, “Vortex-Rectification Effects in Films with Periodic Asymmetric Pinning”, Phys. Rev. Lett., vol. 94, p. 057003, 2005.
dc.relation/*ref*/K. Yu, T. W. Heitmann, C. Song, M. P. DeFeo, B. L. T. Plourde, M. B. S. Hesselberth and P. H. Kes, “Asymmetric weak-pinning superconducting channels: Vortex ratchets”, Phys. Rev. B, vol. 76, p. 220507, 2007.
dc.relation/*ref*/K. Yu, M. B. S. Hesselberth, P. H. Kes and B. L. T. Plourde, “Vortex dynamics in superconducting channels with periodic constrictions”, Phys. Rev. B, vol 81, p. 184503, 2010.
dc.relation/*ref*/M. B. Hastings, C. J. O. Reichhardt and C. Reichhardt, “Ratchet Cellular Automata”, Phys. Rev. Lett., vol 90, p. 247004, 2003.
dc.relation/*ref*/T. Puig, E. Rosseel, M. Baert, M. J. V. Bael, V. V. Moshchalkov and Y. Bruynseraede, “Stable vortex configurations in superconducting 2×2 antidot clusters”, Appl. Phys. Lett., vol 70, p. 3155, 1997.
dc.relation/*ref*/G. Karapetrov, V. Yefremenko, G. Mihajlovic, J. E. Pearson, M. Lavarone, V. Novosad and S. D. Bader, “Evidence of vortex jamming in Abrikosov vortex flux flow regime”, Phys. Rev. B, vol. 86, p. 054524, 2012.
dc.relation/*ref*/G. Berdiyorov, K. Harrabi, F. Oktasendra, K. Gasmi, A. I. Mansour, J. P. Maneval and F. M. Peeters, “Dynamics of current-driven phase-slip centers in superconducting strips”, Phys. Rev. B, vol. 90, 054506, 2014.
dc.relation/*ref*/F. Rogeri, R. Zadorosny, P. N. Lisboa-Filho, E. Sardella and W. A. Ortiz, “Magnetic field profile of a mesoscopic SQUID-shaped superconducting film”, Supercond. Sci. Technol., vol. 26, p. 075005, 2013.
dc.relation/*ref*/R. I. Rey, A. R. Álvarez, C. Carballeira, J. Mosqueira, F. Vidal, S. Salem, A. D. Alvarenga, R. Zhang and H. Luo, “Measurements of the superconducting fluctuations in optimally doped BaFe2−xNixAs2 under high magnetic fields: probing the 3D-anisotropic Ginzburg–Landau approach”, Supercond. Sci. Technol., vol. 27, p. 07500, 2014.
dc.relation/*ref*/P. J. Pereira, V. V. Moshchalkov and L. F. Chibotaru, “Efficient solution of 3D Ginzburg-Landau problem for mesoscopic superconductors”, J. Phys. Conf. Ser., vol. 490, p. 012220, 2014.
dc.relation/*ref*/J. I. Martin, “Flux Pinning in a Superconductor by an Array of Submicrometer Magnetic Dots”, Phys. Rev. Lett., vol. 79, p. 1929, 1997.
dc.relation/*ref*/D. J. Morgan and J. B. Ketterson, “Asymmetric Flux Pinning in a Regular Array of Magnetic Dipoles”, Phys. Rev. Lett., vol. 80, p. 3614, 1998.
dc.relation/*ref*/M. V. Milosevic, G. R. Berdiyorov and F. M. Peeters, “Mesoscopic Field and Current Compensator Based on a Hybrid Superconductor-Ferromagnet Structure”, Phys. Rev. Lett., vol. 95, p. 147004, 2005.
dc.relation/*ref*/G. R. Berdiyorov, “Effect of surface functionalization on the electronic transport properties of Ti3C2 MXene”, Eurp. Phys. Lett., vol. 111, p. 67002, 2015.
dc.relation/*ref*/G. R. Berdiyorov, K. Harrabi, J. P. Maneval and F. M. Peeters, “Effect of pinning on the response of superconducting strips to an external pulsed current”, Supercond. Sci. Technol, vol. 28, p. 25004, 2015.
dc.relation/*ref*/G. R. Berdiyorov, M. V. Milosevic, F. M. Peeters and D. Y. Vodolazov, “Kinematic vortex-antivortex lines in strongly driven superconducting stripes”, Phys. Rev. B, 79 184506, 2009.
dc.relation/*ref*/P. Sánchez, J. Albino Aguiar, D. Domínguez, “Behavior of the flux-flow resistivity in mesoscopic superconductors”, Physica C, vol. 503, p. 15, 2014.
dc.relation/*ref*/J. Barba-Ortega, E. Sardella, J. A. Aguiar, “Superconducting boundary conditions for mesoscopic circular samples”, Sci. Technol., vol. 24, p. 015001, 2011.
dc.relation/*ref*/J. Barba-Ortega, E. Sardella, J. A. Aguiar, “Superconducting properties of a parallelepiped mesoscopic superconductor: A comparative study between the 2D and 3D Ginzburg–Landau models”, Phys. Lett. A. vol. 379, no. 7, p. 732, 2015.
dc.relation/*ref*/T. Golod, A. Iovan V. M. Krasnov, “Single Abrikosov vortices as quantized information bits”, Nature Communications, vol. 6, p. 8628, 2015.
dc.relation/*ref*/A. C. Bolech, G. C. Buscaglia, A. López, Connectivity and Superconductivity, in: J. Berger, J. Rubinstein, Ed. Heidelberg, New, York: Springer, 2000.
dc.relation/*ref*/D. Gropp, H. G. Kaper, G. K. Leaf, D. M. Levine, M. Palumbo, V. M. Vinokur, “Numerical simulation of vortex dynamics in type-II superconductors”, J. Comput. Phys., Vol. 123, p. 254, 1996.
dc.relation/*ref*/P. G. de Gennes, “Superconductivity of Metals and Alloys”, Ed. New York: Addison-Wesley, 1994, p. 274.
dc.relation/*ref*/A. C. Bolech, G. C. Buscaglia, A. López, Connectivity and Superconductivity, in: J. Berger, J. Rubinstein, Ed. Heidelberg, New, York: Springer, 2000.
dc.relation/*ref*/D. Gropp, H. G. Kaper, G. K. Leaf, D. M. Levine, M. Palumbo, V. M. Vinokur, “Numerical simulation of vortex dynamics in type-II superconductors”, J. Comput. Phys., Vol. 123, p. 254, 1996.
dc.relation/*ref*/P. G. de Gennes, “Superconductivity of Metals and Alloys”, Ed. New York: Addison-Wesley, 1994, p. 274.
dc.rightsCopyright (c) 2018 ITECKNEen-US
dc.sourceITECKNE; Vol 14, No 1 (2017); 11 - 16es-ES
dc.sourceITECKNE; Vol 14, No 1 (2017); 11 - 16en-US
dc.source2339-3483
dc.source1692-1798
dc.subjectes-ES
dc.subjectGinzburg-Landau; Superconductor; Vórtice.es-ES
dc.subjectes-ES
dc.subjecten-US
dc.subjectGinzburg-Landau; Superconductors; Vortexen-US
dc.subjecten-US
dc.titleFenómeno de transporte en superconductores: vórtices cinemáticoses-ES
dc.titleTransport phenomena in superconductors: kinematic vortexen-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typees-ES
dc.typeen-US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record