Show simple item record

Effect of the remaining glycerol in the metabolites deposition for the chlorella vulgaris utex 1803, through inmobilization techniques

dc.creatorArdila-Álvarez, Ana María
dc.creatorQuintero-Dallos, Viviana
dc.creatorBlanco-Suárez, Vanessa Edith
dc.creatorVillamizar-Sánchez, Susan Stepahny
dc.creatorBarajas-Solano, Andrés Fernando
dc.creatorBarajas-Ferreira, Crisóstomo
dc.descriptionEl objetivo del presente estudio fue evaluar la viabilidad del uso de glicerina como fuente de carbono, usando algas inmovilizadas para la producción de metabolitos como carbohidratos, proteínas y lípidos. Se encontró, mediante el uso de análisis estadístico, que la acumulación de hidratos de carbono se favorece con concentraciones de glicerina de 3-5% (v/v) y 0,37 (g/L) de nitrógeno. La deposición de lípidos, se favorece con una concentración de 3% (v/v) de glicerina y 0,04 (g/L) de nitrógeno; Por otro lado, las proteínas se favorecen con mayores concentraciones de glicerina (5% v/v), y una concentración de nitrógeno similar a la utilizada para hidratos de
dc.descriptionThe purpose of the present study was to evaluate the viability of glycerol as carbon source using immobilized algae coupled with a modification on nitrogen (NO3 -) and phosphate (PO4) concentration, for the production of high valuable compounds (carbohydrates, proteins and lipids). The best conditions for carbohydrate accumulation were found by statistical analysis and they were achieved within a 3-5% (v/v) glycerol and an initial concentration of nitrogen source of 0,37 (g/L). Lipid deposition was favored with a concentration of 3% (v/v) glycerol and 0.04 (g/L) nitrogen. On the other hand, proteins were favored with higher concentrations of glycerol (5% v/v) and a concentration of nitrogen similar to that used for carbohydratesen-US
dc.publisherUniversidad Santo Tomás. Seccional Bucaramangaen-US
dc.relation/*ref*/P. Spolaore, C. Joannis-Cassan, E. Durán, & A. Isambert, “Commercial applications of microalgae”. Journal of bioscience and bioengineering, 101(2), pp. 87- 96, 2006.
dc.relation/*ref*/J. V. Haveren, E. L. Scott, and J. Sanders, “Bulk chemicals from biomass”. Biofuels, Bioproductos & Biorefining. vol 2, pp. 41-57, 2008.
dc.relation/*ref*/L. Christenson, & R. Sims, “Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts”. Biotechnology Advances, vol. 29, No. 6. pp. 686-702, 2011.
dc.relation/*ref*/N. Shifrin, & S. Chisholm, “Phytoplankton Lipids: Interspecific Differences and Effects of Nitrate, Silicate and Lightdark Cycles”. J. Phycol., vol 17, pp. 372-384, 1981.
dc.relation/*ref*/O. Zacheus, E. Iivanainen, T. Nissinen, M. Lehtola, & P. Martikainen, “Bacterial Biofilm Formation on Polyvinylchloride, Polyethylene And Stain Less Steel Exposed Too Zonated Water”. Water Res., vol. 34. pp. 63-70, 2000.
dc.relation/*ref*/E. Leenen, V. Dos Santos, K. Grolle, J. Tramper, R. Wijffels, “Characteristics of and selection criteria for support materials for cell immobilization in wastewater treatment”. Water Res., 12, pp. 2985-2996, 1996.
dc.relation/*ref*/Q. Hu, M. Sommerfeld, E. Jarvis, M. Ghirardi, M. Posewitz, M. Seibert, A. Darzins, “Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advaces”. Plant J., 54, pp. 621-639, 2008.
dc.relation/*ref*/C. Zamalloa, N. Boon, & W. Verstraete, “Decentralized two-stage sewage treatment by chemical–biological flocculation combined with microalgae biofilm for nutrient immobilization in a roof installed parallel plate reactor”. Bioresource technology, 130, pp. 152-160, 2013.
dc.relation/*ref*/C. H. Hsieh, & W. T. Wu, “Cultivation of microalgae for oil production with a cultivation strategy of urea limitation”. Bioresource technology, 100(17), pp. 3921-3926, 2009.
dc.relation/*ref*/N. Patil, Y. Veeranagouda, M. VIjaykumar, S. Nayak, T. Karegoudar, “Enhanced and potential degradation of o-phthalate by Bacillus sp. Immobilized cells in alginate and polyurethane”. International Journal of Biodetergents Biodegradable, 57, pp. 82-87, 1996.
dc.relation/*ref*/Y. Liang, N. Sarkany, Y. Cui, “Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions”. Biotechnol Lett., 31, pp. 1043-1049, 2009.
dc.relation/*ref*/C. I. Domínguez, Z. Arbib, F. Chinalia, S. C. Oliveira, J. Perales, P. Almeida, J. I. Druzian, I. Andrade, “From waste to energy: Microalgae production in wastewater and glycerol”. Applied Energy, 109, pp. 283-290, 2013.
dc.relation/*ref*/L. S. Clesceri, A. E. Greenberg, A. D. Eaton, Standard methods for examination of water and wastewater. American Public Health Association, 20th ed. Washington, D.C., 1999.
dc.relation/*ref*/M. Dubois, K. Gilles, P. Rebers, F. Smith. “Colorimetric Method for Determination of Sugars and Related Substances”. Analytical Chemistry, 3(28), pp. 350-356, 1956.
dc.relation/*ref*/Y. Chen, S. Vaidyanathan, “A simple, reproducible and sensitive spectrophotometric method to estimate microalgal lipids”. Analytica Chimica Acta, 724, pp. 67-72, 2012.
dc.relation/*ref*/Y. Chen, & S. Vaidyanathan, “Simultaneous assay of pigments, carbohydrates, proteins and lipids in microalgae”. Analytica chimica acta, 776, pp. 31-40, 2013.
dc.relation/*ref*/O. H. Lowry, N. J. Rosenbrough, A. L. Farr, R. J. Randall, “Protein measurement with the Folin Phenol Reagent”. Journ. Biol. Chem, 193, pp. 65-275, 1951. [18] C. R. Dorey, & J. A. Draves. Quantitative analysis laboratory: a new approach. Laboratory Manual. Department of Chemistry, University of Central Arkansas, Conway, AR. 1998.
dc.relation/*ref*/I. Brányiková, B. Maršálková, J. Doucha, T. Brányik, K. Bišová, V. Zachleder, M.Vítová, “Microalgae novel highly efficient starch producers”. Biotechnology Bioengineering, 108 (4), pp. 766-776, 2011.
dc.relation/*ref*/G. Belotti, M. Bravi, B. De Caprariis, P. De Filippis, M. Scarsella, “Effect of Nitrogen and Phosphorus Starvations on Chlorella vulgaris Lipids Productivity and Quality under Different Trophic Regimens for Biodiesel Production”. American Journal of Plant Sciences, 4, pp. 44-51, 2013.
dc.relation/*ref*/[21] N. S. Shifrin, S. W. Chisholm, “Phytoplankton lipids: Interspecific differences and effects of nitrate, silicate and lightdark cycles”. J. Phycol., 17, pp. 372-384, 1981.
dc.relation/*ref*/S. Silveira Martins, C. Martins, L. Cidrao, S. Santaella, “Immobilization of microbialcells: A promising tool for treatment of toxic pollutants in industrial wastewater”. African Journal of Biotechnology, 12 (28), pp. 4412-4418, 2013.
dc.relation/*ref*/L. Estévez, A. Barajas, C. Barajas, V. Kafarov, “Improvement of Lipid Productivity on Chlorella vulgaris Using Waste Glycerol and Sodium Acetate”. Ciencia, Tecnología y Futuro, 5 (2), pp. 113-126, 2013.
dc.relation/*ref*/T. Heredia-Arroyo, W. Wei, R. Ruan, & B. Hu, “Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials”. Biomass and Bioenergy, 35 (5), pp. 2245-2253, 2011.
dc.relation/*ref*/E. W. Becker, “Microalgae as a source of protein”. Biotechnological Advances, 25, pp. 207-210, 2007.
dc.rightsCopyright (c) 2018 ITECKNEen-US
dc.sourceITECKNE; Vol 14, No 1 (2017); 17 - 23es-ES
dc.sourceITECKNE; Vol 14, No 1 (2017); 17 - 23en-US
dc.subjectGlycerol; inmobilization; chlorella vulgaris.en-US
dc.subjectGlicerina; inmovilización; chlorella
dc.titleEfecto de la glicerina residual en la deposición de metabolitos para la chlorella vulgaris utex 1803, mediante técnicas de inmovilizaciónes-ES
dc.titleEffect of the remaining glycerol in the metabolites deposition for the chlorella vulgaris utex 1803, through inmobilization techniquesen-US

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record