Pineda Rios, WilmerSánchez Quiroga, Leandro2020-04-072020-04-072020-04-07Sánchez, L. (2020). Estimación e imputación de datos faltantes mediante métodos de interpolación espacial para precipitación mensual acumulada en el departamento de Antioquia durante el periodo 2014-2018. (Trabajo de pregrado de Estadística). Universidad Santo Tomás. Bogotá, Colombia.http://hdl.handle.net/11634/22341Los valores faltantes son comunes en las bases de datos que trabajamos a diario, el saber que hacer con esos datos faltantes es fundamental, en algunas ocasiones la solución inmediata es quitar los registros y perder información que puede ser de gran valor, el propósito es aprovechar la información que se tiene disponible en la mayor posibilidad, para ello se disponen de varias técnicas que permiten imputar de manera eficiente los valores faltantes. El presente trabajo busca contrastar métodos de interpolación espacial en la imputación de valores faltantes de precipitación mensual acumulada en el departamento de Antioquia durante el periodo 2014-2018, con datos suministrados por el Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM), para ello se utiliza la distancia inversa ponderada(IDW, por sus siglas en inglés), Spline de placa delgada (TPS, por sus siglas en inglés) y kriging ordinario, como métodos evaluados a través de la raíz del error cuadrático medio(RMSE, por sus siglas en ingles). El Kriging ordinario fue efectivo cunado se tiene más del 10% de los valores faltantes, el método de la distancia inversa ponderada fue el que arrojó mejores resultados cuando se tienen 5% de los valores faltantes. Se aplicaron los resultados obtenidos a los datos correspondientes al año 2018.Missing values are common in the databases we work on a daily basis, knowing what to do with those missing data is essential, sometimes the immediate solution is to remove the records and lose information that can be of great value, the purpose is to take advantage of the information that is available in the greatest way, for this objective, there are several techniques that allow the efficient imputation of the missing values. This paper seeks to contrast methods of spatial interpolation in the imputation of missing values of accumulated monthly precipitation in the department of Antioquia during the 2014-2018 period, with data provided by the Institute of Hydrology, Meteorology and Environmental Studies (IDEAM), to achieve this goal, weighted inverse distance (IDW), thin plate spline (SPT) and ordinary kriging are used as evaluated methods through the root of the mean square error (RMSE). Ordinary Kriging was effective when you have more than 10% of the missing values, the weighted inverse distance method was the one that yielded the best results when you have 5% of the missing values. The results obtained were applied to the data corresponding to the year 2018application/pdfspaEstimación e imputación de datos faltantes mediante métodos de interpolación espacial para precipitación mensual acumulada en el departamento de Antioquia durante el periodo 2014-2018bachelor thesisKrigingGeostatisticsKrigeajeGeoestadisticaAbierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Valores faltantesInterpolación espacialPrecipitaciónIDWTPSreponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.co