Rodriguez, SaithPérez, KatherínQuintero, CarlosLópez, JorgeRojas, EyberthCalderón, Juan2019-12-172019-12-172015-12-15http://hdl.handle.net/11634/20409In this paper we propose a methodology to build multiclass classifiers for the human-robot interaction problem. Our solution uses kernel-based classifiers and assumes that each data type is better represented by a different kernel. The kernels are then combined into one single kernel that uses all the dataset involved in the HRI process. The results on real data shows that our proposal is capable of obtaining lower generalization errors due to the use of specific kernels for each data type. Also, we show that our proposal is more robust when presented to noise in either or both data types.application/pdfAtribución-NoComercial-CompartirIgual 2.5 Colombiahttp://creativecommons.org/licenses/by-nc-sa/2.5/co/Identification of multimodal human-robot interaction using combined kernelsHuman-robot interactionCombined KernelsData typesNoisehttps://doi.org/10.1007/978-3-319-28031-8_23Generación de Nuevo Conocimiento: Artículos publicados en revistas especializadas - Electrónicos