Patrones de metilación de ADN en sangre periférica en periodontitis y enfermedad de Alzheimer: análisis diferencial, de intersección y validación

dc.contributor.advisorHernández Hincapié, Hernán Guillermo
dc.contributor.advisorNaranjo Galvis, Carlos Andrés
dc.contributor.authorChacón Arboleda, Paula Tatiana
dc.coverage.campusCRAI-USTA Bucaramangaspa
dc.date.accessioned2024-12-05T14:55:15Z
dc.date.available2024-12-05T14:55:15Z
dc.date.issued2024-12-04
dc.descriptionLa presente tesis de doctorado analizó patrones de metilación de ADN en sangre periférica en pacientes con enfermedad de Alzheimer (EA) y periodontitis a lo largo del genoma, revelando alteraciones epigenéticas en genes clave relacionados con inflamación y rutas metabólicas. En periodontitis, se encontraron posiciones y regiones con metilación diferencial, identificándose genes diferencialmente hipermetilados como GDAP2, RPH3AL, SLC19A1 y COL18A1; y genes diferencialmente hipometilados como CUL3, ARID3C, BCL11A y SLC6A5, implicados en la respuesta inmune y el metabolismo. En EA, se encontraron posiciones y regiones con metilación diferencial, incluyendo genes diferencialmente hipermetilados como CACNA1A, HOXA-AS3, HOXA6, y diferencialmente hipometilados como MIB2, KMT5A, MIDEAS y BCAM, involucrados en la inflamación sistémica. El análisis de enriquecimiento génico funcional mostró ontologías relacionadas con transporte celular y respuesta inmune en periodontitis y EA. De forma interesante, se encontró una coincidencia epigenética exacta en una región de 93 pares de bases del gen MDGA1 en EA y periodontitis, indicando relevancia epigenética en la intersección entre estas enfermedades. Asimismo, los resultados de metilación diferencial para genes priorizados evidenciaron a HLA-B y PDGFRA en ambas enfermedades indicando una conexión epigenética inflamatoria entre ellas. Los CpG sustitutos de cerebro en sangre que se encontraron metilados diferencialmente en EA se asociaron con los genes protocadherina PCDHGB1-3 y PCDHGA1-6. La validación en pacientes colombianos mostró diferencias significativas en la metilación de MDGA1, GDAP2 y MIB2. Estos hallazgos sugieren que la metilación diferencial desempeña un papel en la patogénesis compartida entre periodontitis y EA, justificando nuevas exploraciones de estos mecanismos epigenéticos comunes.spa
dc.description.abstractThis PhD thesis analyzed DNA methylation patterns in peripheral blood in patients with Alzheimer's disease (AD) and periodontitis throughout the genome, revealing epigenetic alterations in key genes related to inflammation and metabolic pathways. In periodontitis, positions and regions with differential methylation were found, identifying differentially hypermethylated genes such as GDAP2, RPH3AL, SLC19A1 and COL18A1; and differentially hypomethylated genes such as CUL3, ARID3C, BCL11A and SLC6A5, involved in immune response and metabolism. In AD, positions and regions with differential methylation were found, including differentially hypermethylated genes such as CACNA1A, HOXA-AS3, HOXA6, and differentially hypomethylated genes such as MIB2, KMT5A, MIDEAS and BCAM, involved in systemic inflammation. Functional gene enrichment analysis showed ontologies related to cellular transport and immune response in periodontitis and AD. Interestingly, an exact epigenetic match was found in a 93-base pair region of the MDGA1 gene in AD and periodontitis, indicating epigenetic relevance at the intersection between these diseases. Likewise, differential methylation results for prioritized genes showed HLA-B and PDGFRA in both diseases showing an inflammatory epigenetic connection between them. The blood-brain surrogate CpGs found differentially methylated in AD were associated with the protocadherin genes PCDHGB1-3 and PCDHGA1-6. Validation in Colombian patients showed significant differences in the methylation of MDGA1, GDAP2, and MIB2. These findings suggest that differential methylation plays a role in the shared pathogenesis between periodontitis and AD, justifying further explorations of these common epigenetic mechanisms.spa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Odontologíaspa
dc.description.domainhttps://www.ustabuca.edu.co/spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationChacón Arboleda, P. T. (2024) Patrones de metilación de ADN en sangre periférica en periodontitis y enfermedad de Alzheimer: análisis diferencial, de intersección y validación. [Tesis de posgrado]. Universidad Santo Tomás, Bucaramanga, Colombiaspa
dc.identifier.instnameinstname:Universidad Santo Tomásspa
dc.identifier.reponamereponame:Repositorio Institucional Universidad Santo Tomásspa
dc.identifier.repourlrepourl:https://repository.usta.edu.cospa
dc.identifier.urihttp://hdl.handle.net/11634/58784
dc.language.isospaspa
dc.publisherUniversidad Santo Tomásspa
dc.publisher.facultyFacultad de Odontologíaspa
dc.publisher.programDoctorado Odontologíaspa
dc.relation.referencesAcha, B., Corroza, J., Sanchez-Ruiz de Gordoa, J., Cabello, C., Robles, M., Mendez-Lopez, I., . . . i, B. S. G. (2023). Association of Blood-Based DNA Methylation Markers With Late- Onset Alzheimer Disease: A Potential Diagnostic Approach. Neurology, 101(23), e2434- e2447. https://doi.org/10.1212/WNL.0000000000207865spa
dc.relation.referencesAcharjee, S., Chauhan, S., Pal, R., & Tomar, R. S. (2023). Mechanisms of DNA methylation and histone modifications. Prog Mol Biol Transl Sci, 197, 51-92. https://doi.org/10.1016/bs.pmbts.2023.01.001spa
dc.relation.referencesAcharya, S., Lumley, A. I., Zhang, L., Vausort, M., Devaux, Y., & On Behalf Of The Ncer-Pd, C. (2023). GATA3 as a Blood-Based RNA Biomarker for Idiopathic Parkinson's Disease. Int J Mol Sci, 24(12). https://doi.org/10.3390/ijms241210040spa
dc.relation.referencesAkiyama, H., Barger, S., Barnum, S., Bradt, B., Bauer, J., Cole, G. M., . . . Wyss-Coray, T. (2000). Inflammation and Alzheimer's disease. Neurobiol Aging, 21(3), 383-421. https://doi.org/10.1016/s0197-4580(00)00124-xspa
dc.relation.referencesAlcolea, D., Beeri, M. S., Rojas, J. C., Gardner, R. C., & Lleo, A. (2023). Blood Biomarkers in Neurodegenerative Diseases: Implications for the Clinical Neurologist. Neurology, 101(4), 172-180. https://doi.org/10.1212/WNL.0000000000207193spa
dc.relation.referencesAllam, Duan, Y., Heinemann, F., Winter, J., Gotz, W., Deschner, J., . . . Novak, N. (2011). IL- 23-producing CD68(+) macrophage-like cells predominate within an IL-17-polarized infiltrate in chronic periodontitis lesions. J Clin Periodontol, 38(10), 879-886. https://doi.org/10.1111/j.1600-051X.2011.01752.xspa
dc.relation.referencesAndrade, A., Brennecke, A., Mallat, S., Brown, J., Gomez-Rivadeneira, J., Czepiel, N., & Londrigan, L. (2019). Genetic Associations between Voltage-Gated Calcium Channels and Psychiatric Disorders. Int J Mol Sci, 20(14). https://doi.org/10.3390/ijms20143537spa
dc.relation.referencesAndrews, S. J., Fulton-Howard, B., O'Reilly, P., Marcora, E., & Goate, A. M. (2021). Causal Associations Between Modifiable Risk Factors and the Alzheimer's Phenome. Ann Neurol, 89(1), 54-65. https://doi.org/10.1002/ana.25918spa
dc.relation.referencesAngarica, V. E., & Del Sol, A. (2017). Bioinformatics Tools for Genome-Wide Epigenetic Research. Adv Exp Med Biol, 978, 489-512. https://doi.org/10.1007/978-3-319-53889- 1_25spa
dc.relation.referencesAra, T., Kurata, K., Hirai, K., Uchihashi, T., Uematsu, T., Imamura, Y., . . . Wang, P. L. (2009). Human gingival fibroblasts are critical in sustaining inflammation in periodontal disease. J Periodontal Res, 44(1), 21-27. https://doi.org/10.1111/j.1600-0765.2007.01041.xspa
dc.relation.referencesAronson, J. K., & Ferner, R. E. (2017). Biomarkers-A General Review. Curr Protoc Pharmacol, 76, 9.23.21-29.23.17. https://doi.org/10.1002/cpph.19spa
dc.relation.referencesArumugam, K., Shin, W., Schiavone, V., Vlahos, L., Tu, X., Carnevali, D., . . . Cosma, M. P. (2020). The Master Regulator Protein BAZ2B Can Reprogram Human Hematopoietic Lineage-Committed Progenitors into a Multipotent State. Cell Rep, 33(10), 108474. https://doi.org/10.1016/j.celrep.2020.108474spa
dc.relation.referencesAshraf, G. M., Tarasov, V. V., Makhmutovа, A., Chubarev, V. N., Avila-Rodriguez, M., Bachurin, S. O., & Aliev, G. (2019). The Possibility of an Infectious Etiology of Alzheimer Disease. Mol Neurobiol, 56(6), 4479-4491. https://doi.org/10.1007/s12035- 018-1388-yspa
dc.relation.referencesAshton, N. J., Hye, A., Rajkumar, A. P., Leuzy, A., Snowden, S., Suárez-Calvet, M., . . . Aarsland, D. (2020). An update on blood-based biomarkers for non-Alzheimer neurodegenerative disorders. Nat Rev Neurol, 16(5), 265-284. https://doi.org/10.1038/s41582-020-0348-0spa
dc.relation.referencesAssfaw, Schindler, S. E., & Morris, J. C. (2024). Advances in blood biomarkers for Alzheimer disease (AD): A review. Kaohsiung J Med Sci, 40(8), 692-698. https://doi.org/10.1002/kjm2.12870spa
dc.relation.referencesAzevedo, A. M., Carvalho Rocha, L. P., de Faria Amormino, S. A., Cavalieri Gomes, C., Ornelas Dutra, W., Santiago Gomez, R., . . . Rocha Moreira, P. (2020). DNA methylation profile of genes related to immune response in generalized periodontitis. Journal of periodontal research, 55(3), 426-431. https://doi.org/10.1111/jre.12726spa
dc.relation.referencesBabitha, G., Nagpal, D., Shripad, S. J., Yadav, S. C., & Prakash, S. (2016). Interleukins in periodontal health and disease. Indian J Dent Adv, 8(1), 18-32. https://doi.org/10.5866/2016.8.10018spa
dc.relation.referencesBaciu, S. F., Mesaroș, A., & Kacso, I. M. (2023). Chronic Kidney Disease and Periodontitis Interplay-A Narrative Review. Int J Environ Res Public Health, 20(2). https://doi.org/10.3390/ijerph20021298spa
dc.relation.referencesBaeza, M., Morales, A., Cisterna, C., Cavalla, F., Jara, G., Isamitt, Y., . . . Gamonal, J. (2020). Effect of periodontal treatment in patients with periodontitis and diabetes: systematic review and meta-analysis. J Appl Oral Sci, 28, e20190248. https://doi.org/10.1590/1678- 7757-2019-0248spa
dc.relation.referencesBahado-Singh, R. O., Radhakrishna, U., Gordevičius, J., Aydas, B., Yilmaz, A., Jafar, F., . . . Vishweswaraiah, S. (2022). Artificial Intelligence and Circulating Cell-Free DNA Methylation Profiling: Mechanism and Detection of Alzheimer's Disease. Cells, 11(11). https://doi.org/10.3390/cells11111744spa
dc.relation.referencesBahado-Singh, R. O., Vishweswaraiah, S., Aydas, B., Yilmaz, A., Metpally, R. P., Carey, D. J., . . . Radhakrishna, U. (2021). Artificial intelligence and leukocyte epigenomics: Evaluation and prediction of late-onset Alzheimer's disease. PLoS One, 16(3), e0248375. https://doi.org/10.1371/journal.pone.0248375spa
dc.relation.referencesBai, J., Li, Y., Shao, T., Zhao, Z., Wang, Y., Wu, A., . . . Li, X. (2014). Integrating analysis reveals microRNA-mediated pathway crosstalk among Crohn's disease, ulcerative colitis and colorectal cancer. Mol Biosyst, 10(9), 2317-2328. https://doi.org/10.1039/c4mb00169aspa
dc.relation.referencesBakulski, K. M., Dolinoy, D. C., Sartor, M. A., Paulson, H. L., Konen, J. R., Lieberman, A. P., . . . Rozek, L. S. (2012). Genome-wide DNA methylation differences between late-onset Alzheimer's disease and cognitively normal controls in human frontal cortex. J Alzheimers Dis, 29(3), 571-588. https://doi.org/10.3233/jad-2012-111223 Bale, B. F., Doneen, A. L., & Vigerust, D. J. (2017). High-risk periodontal pathogensspa
dc.relation.referencesBarros-Silva, D., Marques, C. J., Henrique, R., & Jerónimo, C. (2018). Profiling DNA Methylation Based on Next-Generation Sequencing Approaches: New Insights and Clinical Applications. Genes (Basel), 9(9). https://doi.org/10.3390/genes9090429spa
dc.relation.referencesBarros, & Offenbacher, S. (2014). Modifiable risk factors in periodontal disease: epigenetic regulation of gene expression in the inflammatory response. Periodontol 2000, 64(1), 95- 110. https://doi.org/10.1111/prd.12000spa
dc.relation.referencesBarros, S., Fahimipour, F., Tarran, R., Kim, S., Scarel‐Caminaga, R., Justice, A., & North, K. (2020). Epigenetic reprogramming in periodontal disease: dynamic crosstalk with potential impact in oncogenesis. Periodontology 2000, 82(1), 157-172.spa
dc.relation.referencesBarthet, G., & Mulle, C. (2020). Presynaptic failure in Alzheimer's disease. Prog Neurobiol, 194, 101801. https://doi.org/10.1016/j.pneurobio.2020.101801spa
dc.relation.referencesBartold. (2018). Lifestyle and periodontitis: The emergence of personalized periodontics. Periodontol 2000, 78(1), 7-11. https://doi.org/10.1111/prd.12237spa
dc.relation.referencesBartold, P. M., & Van Dyke, T. E. (2017). Host modulation: controlling the inflammation to control the infection. Periodontol 2000, 75(1), 317-329. https://doi.org/10.1111/prd.12169spa
dc.relation.referencesBartold, P. M., & Van Dyke, T. E. (2019). An appraisal of the role of specific bacteria in the initial pathogenesis of periodontitis. J Clin Periodontol, 46(1), 6-11. https://doi.org/10.1111/jcpe.13046spa
dc.relation.referencesBaruah, A., Singla, K., Chapadgaonkar, S. S., & Rameshwari, R. (2020). In–Silico Visualization of Gene-Gene Interactions in Autism Spectrum Disorder Genes. Biosciences Biotechnology Research Asia, 17(3), 485-498. https://doi.org/http://dx.doi.org/10.13005/bbra/2852spa
dc.relation.referencesBatchelor, P. (2014). Is periodontal disease a public health problem? Br Dent J, 217(8), 405-409. https://doi.org/10.1038/sj.bdj.2014.912spa
dc.relation.referencesBediaga, Elcoroaristizabal, Calvo, Inza, Pérez, Acha-Sagredo, . . . Pancorb., d. (2017). Blood samples as a surrogate for brain samples in methylation studies. EC Neurology, 5, 74-90.spa
dc.relation.referencesBenakanakere, M., Abdolhosseini, M., Hosur, K., Finoti, L. S., & Kinane, D. F. (2015). TLR2 promoter hypermethylation creates innate immune dysbiosis. J Dent Res, 94(1), 183-191. https://doi.org/10.1177/0022034514557545spa
dc.relation.referencesBenakanakere, M. R., Finoti, L., Palioto, D. B., Teixeira, H. S., & Kinane, D. F. (2019). Epigenetics, Inflammation, and Periodontal Disease. Current Oral Health Reports, 6(1), 37-46. https://doi.org/10.1007/s40496-019-0208-4spa
dc.relation.referencesBenjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal statistical society: series B (Methodological), 57(1), 289-300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.xspa
dc.relation.referencesBernstein, A. I., Lin, Y., Street, R. C., Lin, L., Dai, Q., Yu, L., . . . Jin, P. (2016). 5- Hydroxymethylation-associated epigenetic modifiers of Alzheimer's disease modulate Tau-induced neurotoxicity. Hum Mol Genet, 25(12), 2437-2450. https://doi.org/10.1093/hmg/ddw109spa
dc.relation.referencesBevill, S. M., Olivares-Quintero, J. F., Sciaky, N., Golitz, B. T., Singh, D., Beltran, A. S., . . . Johnson, G. L. (2019). GSK2801, a BAZ2/BRD9 Bromodomain Inhibitor, Synergizes with BET Inhibitors to Induce Apoptosis in Triple-Negative Breast Cancer. Mol Cancer Res, 17(7), 1503-1518. https://doi.org/10.1158/1541-7786.Mcr-18-1121spa
dc.relation.referencesBhore, N., Wang, B. J., Chen, Y. W., & Liao, Y. F. (2017). Critical Roles of Dual-Specificity Phosphatases in Neuronal Proteostasis and Neurological Diseases. Int J Mol Sci, 18(9). https://doi.org/10.3390/ijms18091963spa
dc.relation.referencesBhuyan, R., Bhuyan, S. K., Mohanty, J. N., Das, S., Juliana, N., & Juliana, I. F. (2022). Periodontitis and Its Inflammatory Changes Linked to Various Systemic Diseases: Aspa
dc.relation.referencesBoccardi, M., Dodich, A., Albanese, E., Gayet-Ageron, A., Festari, C., Ashton, N. J., . . . Garibotto, V. (2021). The strategic biomarker roadmap for the validation of Alzheimer's diagnostic biomarkers: methodological update. Eur J Nucl Med Mol Imaging, 48(7), 2070-2085. https://doi.org/10.1007/s00259-020-05120-2spa
dc.relation.referencesBolós, M., Perea, J. R., & Avila, J. (2017). Alzheimer's disease as an inflammatory disease. Biomol Concepts, 8(1), 37-43. https://doi.org/10.1515/bmc-2016-0029spa
dc.relation.referencesBondi, M. W., Edmonds, E. C., & Salmon, D. P. (2017). Alzheimer's Disease: Past, Present, and Future. J Int Neuropsychol Soc, 23(9-10), 818-831. https://doi.org/10.1017/s135561771700100xspa
dc.relation.referencesBorsa, L., Dubois, M., Sacco, G., & Lupi, L. (2021). Analysis the Link between Periodontal Diseases and Alzheimer's Disease: A Systematic Review. Int J Environ Res Public Health, 18(17). https://doi.org/10.3390/ijerph18179312spa
dc.relation.referencesBouziane, A., Lattaf, S., & Abdallaoui Maan, L. (2023). Effect of Periodontal Disease on Alzheimer's Disease: A Systematic Review. Cureus, 15(10), e46311. https://doi.org/10.7759/cureus.46311spa
dc.relation.referencesBraun., Han, S., Hing, B., Nagahama, Y., Gaul, L. N., Heinzman, J. T., . . . Shinozaki, G. (2019). Genome-wide DNA methylation comparison between live human brain and peripheral tissues within individuals. Transl Psychiatry, 9(1), 47. https://doi.org/10.1038/s41398- 019-0376-yspa
dc.relation.referencesBreivik, T. J., Gjermo, P., Gundersen, Y., Opstad, P. K., Murison, R., Hugoson, A., . . . Fristad, I. (2024). Microbiota-immune-brain interactions: A new vision in the understanding of periodontal health and disease. Periodontol 2000. https://doi.org/10.1111/prd.12610spa
dc.relation.referencesBreza, M., Bourinaris, T., Efthymiou, S., Maroofian, R., Athanasiou-Fragkouli, A., Tzartos, J., . . . Houlden, H. (2020). A homozygous GDAP2 loss-of-function variant in a patient with adult-onset cerebellar ataxia. Brain, 143(6), e49. https://doi.org/10.1093/brain/awaa120spa
dc.relation.referencesBrookes, & Shi. (2014). Diverse epigenetic mechanisms of human disease. Annu Rev Genet, 48, 237-268. https://doi.org/10.1146/annurev-genet-120213-092518spa
dc.relation.referencesBryzgalov, L. O., Korbolina, E. E., & Merkulova, T. I. (2023). Exploring the Genetic Predisposition to Epigenetic Changes in Alzheimer's Disease. Int J Mol Sci, 24(9). https://doi.org/10.3390/ijms24097955spa
dc.relation.referencesBuduneli, N. (2019). Biomarkers in periodontal health and disease: Rationale, benefits, and future directions. Springer Nature.spa
dc.relation.referencesCahyanur, R., Irawan, C., Lisnawati, L., Adham, M., Kamal, A. F., Utomo, A. R. H., . . . Salamah, T. (2023). CXCL8, MMP1, MMP2, and FN1 Gene Expression and Tumor Extension in Nasopharyngeal Cancer Patients: A Cross-sectional Study. Acta Medica Indonesiana, 55(3), 261.spa
dc.relation.referencesCai, C., Langfelder, P., Fuller, T. F., Oldham, M. C., Luo, R., van den Berg, L. H., . . . Horvath, S. (2010). Is human blood a good surrogate for brain tissue in transcriptional studies? BMC genomics, 11, 589. https://doi.org/10.1186/1471-2164-11-589spa
dc.relation.referencesCaliff, R. M. (2018). Biomarker definitions and their applications. Exp Biol Med (Maywood), 243(3), 213-221. https://doi.org/10.1177/1535370217750088spa
dc.relation.referencesCalle-Fabregat, C. d. l., Morante-Palacios, O., & Ballestar, E. (2020). Understanding the relevance of DNA methylation changes in immune differentiation and disease. Genes, 11(1), 110. https://doi.org/10.3390/genes11010110spa
dc.relation.referencesCalsolaro, V., & Edison, P. (2016). Neuroinflammation in Alzheimer's disease: Current evidence and future directions. Alzheimers Dement, 12(6), 719-732. https://doi.org/10.1016/j.jalz.2016.02.010spa
dc.relation.referencesCardenas, A. M., Ardila, L. J., Vernal, R., Melgar-Rodriguez, S., & Hernandez, H. G. (2022). Biomarkers of Periodontitis and Its Differential DNA Methylation and Gene Expression in Immune Cells: A Systematic Review. Int J Mol Sci, 23(19). https://doi.org/10.3390/ijms231912042spa
dc.relation.referencesCardona, K., Medina, J., Orrego-Cardozo, M., Restrepo de Mejía, F., Elcoroaristizabal, X., & Naranjo Galvis, C. A. (2021). Inflammatory gene expression profiling in peripheral blood from patients with Alzheimer's disease reveals key pathways and hub genes with potential diagnostic utility: a preliminary study. PeerJ, 9, e12016. https://doi.org/10.7717/peerj.12016spa
dc.relation.referencesCardoso, J. M., Ribeiro, A. C., Proença, L., Noronha, S., & Castro Alves, R. (2024). Analysis of the Association of IL-1A, IL-1B, and IL-1RN Genetic Polymorphisms with Periimplantitis in a Portuguese Population. Int J Oral Maxillofac Implants, 39(4), 103-111. https://doi.org/10.11607/jomi.10615spa
dc.relation.referencesCarnielli, C. M., Macedo, C. C. S., De Rossi, T., Granato, D. C., Rivera, C., Domingues, R. R., . . . Paes Leme, A. F. (2018). Combining discovery and targeted proteomics reveals a prognostic signature in oral cancer. Nat Commun, 9(1), 3598. https://doi.org/10.1038/s41467-018-05696-2spa
dc.relation.referencesCarter, C. J., France, J., Crean, S., & Singhrao, S. K. (2017). The Porphyromonas gingivalis/Host Interactome Shows Enrichment in GWASdb Genes Related to Alzheimer's Disease, Diabetes and Cardiovascular Diseases. Front Aging Neurosci, 9, 408. https://doi.org/10.3389/fnagi.2017.00408spa
dc.relation.referencesCarvajal, P., Vernal, R., Reinero, D., Malheiros, Z., Stewart, B., Pannuti, C. M., & Romito, G. A. (2020). Periodontal disease and its impact on general health in Latin America. Section II: Introduction part II. Braz Oral Res, 34(supp1 1), e023. https://doi.org/10.1590/1807- 3107bor-2020.vol34.0023spa
dc.relation.referencesCaton, J. G., Armitage, G., Berglundh, T., Chapple, I. L., Jepsen, S., Kornman, K. S., . . . Tonetti, M. S. (2018). A new classification scheme for periodontal and peri‐implant diseases and conditions–Introduction and key changes from the 1999 classification. https://doi.org/10.1002/JPER.18-0157spa
dc.relation.referencesCecoro, G., Annunziata, M., Iuorio, M. T., Nastri, L., & Guida, L. (2020). Periodontitis, Low- Grade Inflammation and Systemic Health: A Scoping Review. Medicina (Kaunas), 56(6). https://doi.org/10.3390/medicina56060272spa
dc.relation.referencesCekici, A., Kantarci, A., Hasturk, H., & Van Dyke, T. E. (2014). Inflammatory and immune pathways in the pathogenesis of periodontal disease. Periodontol 2000, 64(1), 57-80. https://doi.org/10.1111/prd.12002spa
dc.relation.referencesCelarain, N., Sánchez-Ruiz de Gordoa, J., Zelaya, M. V., Roldán, M., Larumbe, R., Pulido, L., . . . Mendioroz, M. (2016). TREM2 upregulation correlates with 5-hydroxymethycytosine enrichment in Alzheimer’s disease hippocampus. Clinical Epigenetics, 8, 1-10. https://doi.org/10.1186/s13148-016-0202-9spa
dc.relation.referencesChapple, I. L. C., Mealey, B. L., Van Dyke, T. E., Bartold, P. M., Dommisch, H., Eickholz, P., . . . Yoshie, H. (2018). Periodontal health and gingival diseases and conditions on an intact and a reduced periodontium: Consensus report of workgroup 1 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J Periodontol, 89 Suppl 1, S74-s84. https://doi.org/10.1002/jper.17-0719spa
dc.relation.referencesCheignon, C., Tomas, M., Bonnefont-Rousselot, D., Faller, P., Hureau, C., & Collin, F. (2018). Oxidative stress and the amyloid beta peptide in Alzheimer's disease. Redox Biol, 14, 450-464. https://doi.org/10.1016/j.redox.2017.10.014spa
dc.relation.referencesChen, Zhong, Y. J., Dong, Q. Q., Wong, H. M., & Wen, Y. F. (2021a). Global, regional, and national burden of severe periodontitis, 1990-2019: An analysis of the Global Burden of Disease Study 2019. J Clin Periodontol, 48(9), 1165-1188. https://doi.org/10.1111/jcpe.13506spa
dc.relation.referencesChen, Zhong, Y. J., Dong, Q. Q., Wong, H. M., & Wen, Y. F. (2021b). Global, regional, and national burden of severe periodontitis, 1990–2019: An analysis of the Global Burden of Disease Study 2019. Journal of clinical periodontology, 48(9), 1165-1188.spa
dc.relation.referencesChen, M. H., Cheng, C. M., Tsai, S. J., Tsai, C. F., Su, T. P., Li, C. T., . . . Bai, Y. M. (2021). Obsessive-Compulsive Disorder and Dementia Risk: A Nationwide Longitudinal Study. J Clin Psychiatry, 82(3). https://doi.org/10.4088/JCP.20m13644spa
dc.relation.referencesChen, X., Lei, H., Cheng, Y., Fang, S., Sun, W., Zhang, X., & Jin, Z. (2024). CXCL8, MMP12, and MMP13 are common biomarkers of periodontitis and oral squamous cell carcinoma. Oral Dis, 30(2), 390-407. https://doi.org/10.1111/odi.14419spa
dc.relation.referencesCheng, Hughes, F. J., & Taams, L. S. (2014). The presence, function and regulation of IL-17 and Th17 cells in periodontitis. J Clin Periodontol, 41(6), 541-549. https://doi.org/10.1111/jcpe.12238spa
dc.relation.referencesCheng, Q., Wang, J., Li, M., Fang, J., Ding, H., Meng, J., . . . Zhang, W. (2022). CircSV2b participates in oxidative stress regulation through miR-5107-5p-Foxk1-Akt1 axis in Parkinson's disease. Redox Biol, 56, 102430. https://doi.org/10.1016/j.redox.2022.102430spa
dc.relation.referencesCheng, W. C., Hughes, F. J., & Taams, L. S. (2014). The presence, function and regulation of IL‐ 17 and Th17 cells in periodontitis. Journal of clinical periodontology, 41(6), 541-549.spa
dc.relation.referencesChikamatsu, K., Aono, A., Hata, H., Igarashi, Y., Takaki, A., Yamada, H., . . . Mitarai, S. (2018). Evaluation of PyroMark Q24 pyrosequencing as a method for the identification ofspa
dc.relation.referencesCholewa-Waclaw, J., Bird, A., von Schimmelmann, M., Schaefer, A., Yu, H., Song, H., . . . Tsai, L. H. (2016). The Role of Epigenetic Mechanisms in the Regulation of Gene Expression in the Nervous System. J Neurosci, 36(45), 11427-11434. https://doi.org/10.1523/jneurosci.2492-16.2016spa
dc.relation.referencesChouliaras, L., Mastroeni, D., Delvaux, E., Grover, A., Kenis, G., Hof, P. R., . . . van den Hove, D. L. (2013). Consistent decrease in global DNA methylation and hydroxymethylation in the hippocampus of Alzheimer's disease patients. Neurobiol Aging, 34(9), 2091-2099. https://doi.org/10.1016/j.neurobiolaging.2013.02.021spa
dc.relation.referencesChung, S. J., Lee, J. H., Kim, S. Y., You, S., Kim, M. J., Lee, J. Y., & Koh, J. (2013). Association of GWAS top hits with late-onset Alzheimer disease in Korean population. Alzheimer Dis Assoc Disord, 27(3), 250-257. https://doi.org/10.1097/WAD.0b013e31826d7281spa
dc.relation.referencesCiceri, F., Rotllant, D., & Maes, T. (2017). Understanding epigenetic alterations in Alzheimer's and Parkinson's disease: Towards targeted biomarkers and therapies. Current Pharmaceutical Design, 23(5), 839-857. https://doi.org/10.2174/1381612823666170124121140spa
dc.relation.referencesCichońska, D., Mazuś, M., & Kusiak, A. (2024). Recent aspects of periodontitis and Alzheimer’s disease—a narrative review. International journal of molecular sciences, 25(5), 2612. https://doi.org/10.3390/ijms25052612spa
dc.relation.referencesConnor, S. A., Ammendrup-Johnsen, I., Kishimoto, Y., Tari, P. K., Cvetkovska, V., Harada, T., . . . Craig, A. M. (2017). Loss of synapse repressor MDGA1 enhances perisomatic inhibition, confers resistance to network excitation, and impairs cognitive function. Cell reports, 21(13), 3637-3645. https://doi.org/10.1016/j.celrep.2017.11.109spa
dc.relation.referencesConole, E. L., Stevenson, A. J., Muñoz Maniega, S., Harris, S. E., Green, C., Valdés Hernández, M. d. C., . . . Deary, I. J. (2021). DNA methylation and protein markers of chronic inflammation and their associations with brain and cognitive aging. Neurology, 97(23), e2340-e2352. https://doi.org/10.1212/WNL.00000000000129spa
dc.relation.referencesConsortium, G.-T. (2020). The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science, 369(6509), 1318-1330. https://doi.org/10.1126/science.aaz1776spa
dc.relation.referencesCoppedè, F. (2021). Epigenetic regulation in Alzheimer’s disease: is it a potential therapeutic target? Expert Opinion on Therapeutic Targets, 25(4), 283-298. https://doi.org/10.1080/14728222.2021.1916469spa
dc.relation.referencesCrews, L., & Masliah, E. (2010). Molecular mechanisms of neurodegeneration in Alzheimer's disease. Hum Mol Genet, 19(R1), R12-20. https://doi.org/10.1093/hmg/ddq160spa
dc.relation.referencesCustodio, Wheelock, A., Thumala, D., & Slachevsky, A. (2017). Dementia in Latin America: epidemiological evidence and implications for public policy. Frontiers in aging neuroscience, 9, 221. https://doi.org/10.3389/fnagi.2017.00221spa
dc.relation.referencesd'Abramo, C., D'Adamio, L., & Giliberto, L. (2020). Significance of Blood and Cerebrospinal Fluid Biomarkers for Alzheimer's Disease: Sensitivity, Specificity and Potential for Clinical Use. J Pers Med, 10(3). https://doi.org/10.3390/jpm10030116spa
dc.relation.referencesda Silva, M. K., de Carvalho, A. C. G., Alves, E. H. P., da Silva, F. R. P., Pessoa, L. d. S., & Vasconcelos, D. F. P. (2017). Genetic factors and the risk of periodontitis development: Findings from a systematic review composed of 13 studies of meta‐analysis with 71,531 participants. International journal of dentistry, 2017(1), 1914073. https://doi.org/10.1155/2017/1914073spa
dc.relation.referencesDahlqvist, J., Fulco, C. P., Ray, J. P., Liechti, T., de Boer, C. G., Lieb, D. J., . . . Hacohen, N. (2022). Systematic identification of genomic elements that regulate FCGR2A expression and harbor variants linked with autoimmune disease. Human molecular genetics, 31(12), 1946-1961. https://doi.org/10.1093/hmg/ddab372spa
dc.relation.referencesDantzer, R. (2018). Neuroimmune interactions: from the brain to the immune system and vice versa. Physiological Reviews, 98(1), 477-504. https://doi.org/10.1152/physrev.00039.2016spa
dc.relation.referencesDato, S., De Rango, F., Crocco, P., Pallotti, S., Belloy, M. E., Le Guen, Y., . . . Napolioni, V. (2023). Sex- and APOE-specific genetic risk factors for late-onset Alzheimer's disease: Evidence from gene-gene interaction of longevity-related loci. Aging Cell, 22(9), e13938. https://doi.org/10.1111/acel.13938spa
dc.relation.referencesDavis, S., & Meltzer, P. S. (2007). GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics, 23(14), 1846-1847. https://doi.org/10.1093/bioinformatics/btm254spa
dc.relation.referencesde Camargo Pereira, G., Guimaraes, G. N., Planello, A. C., Santamaria, M. P., de Souza, A. P., Line, S. R., & Marques, M. R. (2013). Porphyromonas gingivalis LPS stimulation downregulates DNMT1, DNMT3a, and JMJD3 gene expression levels in human HaCaT keratinocytes. Clin Oral Investig, 17(4), 1279-1285. https://doi.org/10.1007/s00784-012- 0816-zspa
dc.relation.referencesDe Oliveira, N. F., Andia, D. C., Planello, A. C., Pasetto, S., Marques, M. R., Nociti, F. H., Jr., . . . De Souza, A. P. (2011). TLR2 and TLR4 gene promoter methylation status during chronic periodontitis. J Clin Periodontol, 38(11), 975-983. https://doi.org/10.1111/j.1600-051X.2011.01765.xspa
dc.relation.referencesDelbove, T., Gueyffier, F., Juillard, L., Kalbacher, E., Maucort-Boulch, D., Nony, P., . . . Gritsch, K. (2021). Effect of periodontal treatment on the glomerular filtration rate, reduction of inflammatory markers and mortality in patients with chronic kidney disease: A systematic review. PLoS One, 16(1), e0245619. https://doi.org/10.1371/journal.pone.0245619spa
dc.relation.referencesDeng, K.-G., Zhao, H., & Zuo, P.-X. (2019). Association between KIAA0319 SNPs and risk of dyslexia: a meta-analysis. Journal of Genetics, 98(2), 62. https://doi.org/https://doi.org/10.1007/s12041-019-1103-4spa
dc.relation.referencesDesta, N. (2021). Pathophysiological association between periodontal disease and Alzheimer's disease: Importance of periodontal health in the elderly. Journal of Oral Biosciences, 63(4), 351-359. https://doi.org/10.1016/j.job.2021.08.007spa
dc.relation.referencesDhar, G. A., Saha, S., Mitra, P., & Nag Chaudhuri, R. (2021). DNA methylation and regulation of gene expression: Guardian of our health. The Nucleus, 64(3), 259-270. https://doi.org/10.1007/s13237-021-00367-yspa
dc.relation.referencesDharshini, S. A. P., Jemimah, S., Taguchi, Y., & Gromiha, M. M. (2021). Exploring common therapeutic targets for neurodegenerative disorders using transcriptome study. Frontiers in Genetics, 12, 639160. https://doi.org/10.3389/fgene.2021.639160spa
dc.relation.referencesDhingra, R., Kwee, L. C., Diaz-Sanchez, D., Devlin, R. B., Cascio, W., Hauser, E. R., . . . Olden, K. (2019). Evaluating DNA methylation age on the illumina MethylationEPIC bead chip. PLoS One, 14(4), e0207834. https://doi.org/10.1371/journal.pone.0207834spa
dc.relation.referencesDi Francesco, A., Arosio, B., Falconi, A., Di Bonaventura, M. V. M., Karimi, M., Mari, D., . . . D’Addario, C. (2015). Global changes in DNA methylation in Alzheimer’s disease peripheral blood mononuclear cells. Brain, behavior, and immunity, 45, 139-144. https://doi.org/10.1016/j.bbi.2014.11.002spa
dc.relation.referencesDioguardi, M., Crincoli, V., Laino, L., Alovisi, M., Sovereto, D., Mastrangelo, F., . . . Muzio, L. L. (2020). The Role of Periodontitis and Periodontal Bacteria in the Onset and Progression of Alzheimer's Disease: A Systematic Review. Journal of clinical medicine, 9(2), 495. https://doi.org/10.3390/jcm9020495spa
dc.relation.referencesDiomede, F., Thangavelu, S. R., Merciaro, I., D’Orazio, M., Bramanti, P., Mazzon, E., & Trubiani, O. (2017). Porphyromonas gingivalis lipopolysaccharide stimulation in human periodontal ligament stem cells: role of epigenetic modifications to the inflammation. European journal of histochemistry: EJH, 61(3). https://doi.org/10.4081/ejh.2017.2826spa
dc.relation.referencesDiop-Bove, N. K., Wu, J., Zhao, R., Locker, J., & Goldman, I. D. (2009). Hypermethylation of the human proton-coupled folate transporter (SLC46A1) minimal trancriptional regulatory region in an antifolate-resistant HeLa cell line. Molecular cancer therapeutics, 8(8), 2424-2431. https://doi.org/10.1158/1535-7163.MCT-08-0938spa
dc.relation.referencesDominy, S. S., Lynch, C., Ermini, F., Benedyk, M., Marczyk, A., Konradi, A., . . . Griffin, C. (2019). Porphyromonas gingivalis in Alzheimer’s disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Science advances, 5(1), eaau3333. https://doi.org/10.1126/sciadv.aau3333spa
dc.relation.referencesDutzan, N., Konkel, J. E., Greenwell-Wild, T., & Moutsopoulos, N. M. (2016). Characterization of the human immune cell network at the gingival barrier. Mucosal Immunol, 9(5), 1163- 1172. https://doi.org/10.1038/mi.2015.136spa
dc.relation.referencesEcker, S., Pancaldi, V., Valencia, A., Beck, S., & Paul, D. S. (2018). Epigenetic and Transcriptional Variability Shape Phenotypic Plasticity. BioEssays, 40(2). https://doi.org/10.1002/bies.201700148spa
dc.relation.referencesEidhof, I., Baets, J., Kamsteeg, E.-J., Deconinck, T., van Ninhuijs, L., Martin, J.-J., . . . Schenck, A. (2018). GDAP2 mutations implicate susceptibility to cellular stress in a new form of cerebellar ataxia. Brain, 141(9), 2592-2604. https://doi.org/10.1093/brain/awy198spa
dc.relation.referencesEk, W. E., Karlsson, T., Höglund, J., Rask-Andersen, M., & Johansson, Å. (2021). Causal effects of inflammatory protein biomarkers on inflammatory diseases. Sci Adv, 7(50), eabl4359. https://doi.org/10.1126/sciadv.abl4359spa
dc.relation.referencesEke, P. I., Dye, B. A., Wei, L., Slade, G. D., Thornton‐Evans, G. O., Borgnakke, W. S., . . . Genco, R. J. (2015). Update on prevalence of periodontitis in adults in the United States: NHANES 2009 to 2012. Journal of periodontology, 86(5), 611-622. https://doi.org/10.1902/jop.2015.140520spa
dc.relation.referencesEl Hajj, N., Dittrich, M., & Haaf, T. (2017). Epigenetic dysregulation of protocadherins in human disease. Semin Cell Dev Biol, 69, 172-182. https://doi.org/10.1016/j.semcdb.2017.07.007spa
dc.relation.referencesElliott, P., Cowie, M. R., Franke, J., Ziegler, A., Antoniades, C., Bax, J., . . . Jensen, M. T. (2021). Development, validation, and implementation of biomarker testing in cardiovascular medicine state-of-the-art: proceedings of the European Society of Cardiology—Cardiovascular Round Table. Cardiovascular research, 117(5), 1248-1256. https://doi.org/10.1093/cvr/cvaa272spa
dc.relation.referencesEllison, E. M., Bradley-Whitman, M. A., & Lovell, M. A. (2017). Single-Base Resolution Mapping of 5-Hydroxymethylcytosine Modifications in Hippocampus of Alzheimer's Disease Subjects. J Mol Neurosci, 63(2), 185-197. https://doi.org/10.1007/s12031-017- 0969-yspa
dc.relation.referencesEmery, D. C., Shoemark, D. K., Batstone, T. E., Waterfall, C. M., Coghill, J. A., Cerajewska, T. L., . . . Allen, S. J. (2017). 16S rRNA Next Generation Sequencing Analysis Shows Bacteria in Alzheimer's Post-Mortem Brain. Front Aging Neurosci, 9, 195. https://doi.org/10.3389/fnagi.2017.00195spa
dc.relation.referencesEskan, M. A., Hajishengallis, G., & Kinane, D. F. (2007). Differential activation of human gingival epithelial cells and monocytes by Porphyromonas gingivalis fimbriae. Infection and immunity, 75(2), 892-898. https://doi.org/10.1128/iai.01604-06spa
dc.relation.referencesFabris, F., Palmer, D., de Magalhães, J. P., & Freitas, A. A. (2020). Comparing enrichment analysis and machine learning for identifying gene properties that discriminate between gene classes. Brief Bioinform, 21(3), 803-814. https://doi.org/10.1093/bib/bbz028spa
dc.relation.referencesFan, R., Zhou, Y., Chen, X., Zhong, X., He, F., Peng, W., . . . Xu, Y. (2023). Porphyromonas gingivalis outer membrane vesicles promote apoptosis via msRNA-regulated DNA methylation in periodontitis. Microbiology Spectrum, 11(1), e03288-03222. https://doi.org/10.1128/spectrum.03288-22spa
dc.relation.referencesFatmi, M. K., Wang, H., Slotabec, L., Wen, C., Seale, B., Zhao, B., & Li, J. (2024). Single-Cell RNA-seq reveals transcriptomic modulation of Alzheimer’s disease by activated protein C. Aging (Albany NY), 16(4), 3137. https://doi.org/10.18632/aging.205624spa
dc.relation.referencesFaulkner, E., Mensah, A., Rodgers, A. M., McMullan, L. R., & Courtenay, A. J. (2022). The Role of Epigenetic and Biological Biomarkers in the Diagnosis of Periodontal Disease: A Systematic Review Approach. Diagnostics (Basel), 12(4). https://doi.org/10.3390/diagnostics12040919spa
dc.relation.referencesFerri, C. P., Prince, M., Brayne, C., Brodaty, H., Fratiglioni, L., Ganguli, M., . . . Huang, Y. (2005). Global prevalence of dementia: a Delphi consensus study. The lancet, 366(9503), 2112-2117. https://doi.org/10.1016/S0140-6736(05)67889-0spa
dc.relation.referencesFischer, S., Schlotthauer, I., Kizner, V., Macartney, T., Dorner-Ciossek, C., & Gillardon, F. (2020). Loss-of-function mutations of CUL3, a high confidence gene for psychiatric disorders, Lead to aberrant neurodevelopment in human induced pluripotent stem cells. Neuroscience, 448, 234-254. https://doi.org/10.1016/j.neuroscience.2020.08.028spa
dc.relation.referencesFoster, E., Wildner, H., Tudeau, L., Haueter, S., Ralvenius, W. T., Jegen, M., . . . Ghanem, A. (2015). Targeted ablation, silencing, and activation establish glycinergic dorsal horn neurons as key components of a spinal gate for pain and itch. Neuron, 85(6), 1289-1304. https://doi.org/10.1016/j.neuron.2015.02.028spa
dc.relation.referencesFransquet, P. D., & Ryan, J. (2019). The current status of blood epigenetic biomarkers for dementia. Crit Rev Clin Lab Sci, 56(7), 435-457. https://doi.org/10.1080/10408363.2019.1639129spa
dc.relation.referencesFujihashi, K., Kono, Y., Beagley, K., Yamamoto, M., McGhee, J., Mestecky, J., & Kiyono, H. (1993). Cytokines and periodontal disease: immunopathological role of interleukins for B cell responses in chronic inflamed gingival tissues. Journal of periodontology, 64(5 Suppl), 400-406.spa
dc.relation.referencesFukuura, K., Inoue, Y., Miyajima, C., Watanabe, S., Tokugawa, M., Morishita, D., . . . Hayashi, H. (2019). The ubiquitin-specific protease USP17 prevents cellular senescence by stabilizing the methyltransferase SET8 and transcriptionally repressing p21. J Biol Chem, 294(44), 16429-16439. https://doi.org/10.1074/jbc.RA119.009006spa
dc.relation.referencesGarlet, G. (2010). Destructive and protective roles of cytokines in periodontitis: a re-appraisal from host defense and tissue destruction viewpoints. Journal of dental research, 89(12), 1349-1363. https://doi.org/10.1177/0022034510376spa
dc.relation.referencesGasparoni, G., Bultmann, S., Lutsik, P., Kraus, T. F. J., Sordon, S., Vlcek, J., . . . Walter, J. (2018). DNA methylation analysis on purified neurons and glia dissects age and Alzheimer's disease-specific changes in the human cortex. Epigenetics Chromatin, 11(1), 41. https://doi.org/10.1186/s13072-018-0211-3spa
dc.relation.referencesGeng, Q.-S., Huang, T., Li, L.-F., Shen, Z.-B., Xue, W.-H., & Zhao, J. (2022). Over-expression and prognostic significance of FN1, correlating with immune infiltrates in thyroid cancer. Frontiers in Medicine, 8, 812278. https://doi.org/10.3389/fmed.2021.812278spa
dc.relation.referencesGeorge, D. R., Whitehouse, P. J., & Ballenger, J. (2011). The evolving classification of dementia: placing the DSM-V in a meaningful historical and cultural context and pondering the future of "Alzheimer's". Cult Med Psychiatry, 35(3), 417-435. https://doi.org/10.1007/s11013-011-9219-xspa
dc.relation.referencesGerring, Z. F., Lupton, M. K., Edey, D., Gamazon, E. R., & Derks, E. M. (2020). An analysis of genetically regulated gene expression across multiple tissues implicates novel gene candidates in Alzheimer’s disease. Alzheimer's Research & Therapy, 12, 1-10. https://doi.org/10.1186/s13195-020-00611-8spa
dc.relation.referencesGlasner, A., Levi, A., Enk, J., Isaacson, B., Viukov, S., Orlanski, S., . . . Hanna, J. H. (2018). NKp46 receptor-mediated interferon-γ production by natural killer cells increases fibronectin 1 to alter tumor architecture and control metastasis. Immunity, 48(1), 107-119. e104. https://doi.org/10.1016/j.immuni.2017.12.007spa
dc.relation.referencesGlossop, J. R., Nixon, N. B., Emes, R. D., Sim, J., Packham, J. C., Mattey, D. L., . . . Fryer, A. A. (2017). DNA methylation at diagnosis is associated with response to diseasemodifying drugs in early rheumatoid arthritis. Epigenomics, 9(4), 419-428. https://doi.org/10.2217/epi-2016-0042spa
dc.relation.referencesGoldberg, A. D., Allis, C. D., & Bernstein, E. (2007). Epigenetics: a landscape takes shape. Cell, 128(4), 635-638. https://doi.org/10.1016/j.cell.2007.02.006spa
dc.relation.referencesGong, L., Feng, X., Ye, D., Li, H., Wu, R., Tao, J., . . . Cui, P. (2020). OptMatch: Optimized Matchmaking via Modeling the High-Order Interactions on the Arena Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual Event, CA, USA. https://doi.org/10.1145/3394486.3403279spa
dc.relation.referencesGonzalez-Mundo, I., Perez-Vielma, N. M., Gomez-Lopez, M., Fleury, A., Correa-Basurto, J., Rosales-Hernandez, M. C., . . . Miliar-Garcia, A. (2020). DNA methylation of the RE-1 silencing transcription factor in peripheral blood mononuclear cells and gene expression of antioxidant enzyme in patients with late-onset Alzheimer disease. Exp Gerontol, 136, 110951. https://doi.org/10.1016/j.exger.2020.110951spa
dc.relation.referencesGrønkjær, L., Holmstrup, P., Schou, S., Jepsen, P., & Vilstrup, H. (2018). Severe periodontitis and higher cirrhosis mortality. United European Gastroenterol J, 6(1), 73-80. https://doi.org/10.1177/2050640617715846spa
dc.relation.referencesGuarino, A., Favieri, F., Boncompagni, I., Agostini, F., Cantone, M., & Casagrande, M. (2019). Executive functions in Alzheimer disease: a systematic review. Frontiers in aging neuroscience, 10, 437. https://doi.org/https://doi.org/10.3389/fnagi.2018.00437spa
dc.relation.referencesGuo, H., Urban, A. E., & Wong, W. H. (2024). Prioritizing disease-related rare variants by integrating gene expression data. bioRxiv, 2024.2003. 2019.585836. https://doi.org/10.21203/rs.3.rs-4355589/v1spa
dc.relation.referencesHajishengallis. (2015). Periodontitis: from microbial immune subversion to systemic inflammation. Nat Rev Immunol, 15(1), 30-44. https://doi.org/10.1038/nri3785spa
dc.relation.referencesHajishengallis, & Chavakis. (2021). Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities. Nat Rev Immunol, 21(7), 426-440. https://doi.org/10.1038/s41577-020-00488-6spa
dc.relation.referencesHajishengallis, G., & Korostoff, J. M. (2017b). Revisiting the Page & Schroeder model: the good, the bad and the unknowns in the periodontal host response 40 years later. Periodontol 2000, 75(1), 116-151. https://doi.org/10.1111/prd.12181spa
dc.relation.referencesHansson, O., Blennow, K., Zetterberg, H., & Dage, J. (2023). Blood biomarkers for Alzheimer's disease in clinical practice and trials. Nat Aging, 3(5), 506-519. https://doi.org/10.1038/s43587-023-00403-3spa
dc.relation.referencesHashioka, S., Wu, Z., & Klegeris, A. (2021). Glia-driven neuroinflammation and systemic inflammation in Alzheimer’s disease. Current neuropharmacology, 19(7), 908-924. https://doi.org/https://doi.org/10.2174/1570159X18666201111104509spa
dc.relation.referencesHatcher, C., Relton, C. L., Gaunt, T. R., & Richardson, T. G. (2019). Leveraging brain cortexderived molecular data to elucidate epigenetic and transcriptomic drivers of complex traits and disease. Translational psychiatry, 9(1), 105. https://doi.org/10.1038/s41398- 019-0437-2spa
dc.relation.referencesHernández, H. (2015). Estudio de patrones genómicos de metilación de ADN en enfermedad de Alzheimer orientado hacia neuronas piramidales corticales y su concordancia con leucocitos de sangre periférica. Instituto de Investigaciones Biomédicasspa
dc.relation.referencesHernández, H. G., López-Cepeda, M. L., Contreras-García, G. A., Vargas-Porras, C., & Arboleda, H. (2019). Bisulphite conversion DNA visualiser for designing DNA methylation primers. Trends in Bioinformatics, 12, 1-6. https://doi.org/10.3923/tb.2019.1.6spa
dc.relation.referencesHernández, H. G., Mahecha, M. F., Mejía, A., Arboleda, H., & Forero, D. A. (2014). Global long interspersed nuclear element 1 DNA methylation in a Colombian sample of patients with late-onset Alzheimer’s disease. American Journal of Alzheimer's Disease & Other Dementias®, 29(1), 50-53. https://doi.org/10.1177/1533317513505132spa
dc.relation.referencesHernandez, H. G., Sandoval-Hernandez, A. G., Garrido-Gil, P., Labandeira-Garcia, J. L., Zelaya, M. V., Bayon, G. F., . . . Arboleda, H. (2018). Alzheimer's disease DNA methylome of pyramidal layers in frontal cortex: laser-assisted microdissection study. Epigenomics, 10(11), 1365-1382. https://doi.org/10.2217/epi-2017-0160spa
dc.relation.referencesHickey, N. A., Shalamanova, L., Whitehead, K. A., Dempsey-Hibbert, N., van der Gast, C., & Taylor, R. L. (2020). Exploring the putative interactions between chronic kidney disease and chronic periodontitis. Crit Rev Microbiol, 46(1), 61-77. https://doi.org/10.1080/1040841x.2020.1724872spa
dc.relation.referencesHill, M. A., & Gammie, S. C. (2022). Alzheimer’s disease large-scale gene expression portrait identifies exercise as the top theoretical treatment. Scientific reports, 12(1), 17189. https://doi.org/10.1038/s41598-022-22179-zspa
dc.relation.referencesHoang. (2004a). The origin of hematopoietic cell type diversity. Oncogene, 23(43), 7188-7198. https://doi.org/10.1038/sj.onc.1207937spa
dc.relation.referencesHoltfreter, B., Albandar, J. M., Dietrich, T., Dye, B. A., Eaton, K. A., Eke, P. I., . . . Kocher, T. (2015). Standards for reporting chronic periodontitis prevalence and severity in epidemiologic studies: Proposed standards from the Joint EU/USA Periodontal Epidemiology Working Group. Journal of clinical periodontology, 42(5), 407-412. https://doi.org/10.1111/jcpe.12392spa
dc.relation.referencesHu, D., Guo, Y., Wu, M., Ma, Y., & Jing, W. (2022). GDAP2 overexpression affects the development of neurons and dysregulates neuronal excitatory synaptic transmission. Neuroscience, 488, 32-43. https://doi.org/https://doi.org/10.1016/j.neuroscience.2022.02.005spa
dc.relation.referencesHu, Y. W., Kang, C. M., Zhao, J. J., Nie, Y., Zheng, L., Li, H. X., . . . Qiu, Y. R. (2018). Lnc RNA PLAC 2 down‐regulates RPL 36 expression and blocks cell cycle progression in glioma through a mechanism involving STAT 1. Journal of cellular and molecular medicine, 22(1), 497-510. https://doi.org/ https://doi.org/10.1111/jcmm.13338spa
dc.relation.referencesHuang, S., Huang, P., Wu, H., Wang, S., & Liu, G. (2022). LINC02381 aggravates breast cancer through the miR-1271-5p/FN1 axis to activate PI3K/AKT pathway. Mol Carcinog, 61(3), 346-358. https://doi.org/10.1002/mc.23375spa
dc.relation.referencesHuntington, N. D., Carpentier, S., Vivier, E., & Belz, G. T. (2016). Innate lymphoid cells: parallel checkpoints and coordinate interactions with T cells. Curr Opin Immunol, 38, 86- 93. https://doi.org/10.1016/j.coi.2015.11.008spa
dc.relation.referencesIde, M., Harris, M., Stevens, A., Sussams, R., Hopkins, V., Culliford, D., . . . Thomas, R. (2016). Periodontitis and cognitive decline in Alzheimer’s disease. PLoS One, 11(3), e0151081. https://doi.org/https://doi.org/10.1371/journal.pone.0151081spa
dc.relation.referencesIshida, K., Kobayashi, T., Ito, S., Komatsu, Y., Yokoyama, T., Okada, M., . . . Yoshie, H. (2012). Interleukin-6 gene promoter methylation in rheumatoid arthritis and chronic periodontitis. J Periodontol, 83(7), 917-925. https://doi.org/10.1902/jop.2011.110356spa
dc.relation.referencesItoh, T., Fairall, L., Muskett, F. W., Milano, C. P., Watson, P. J., Arnaudo, N., . . . Schwabe, J. W. (2015). Structural and functional characterization of a cell cycle associated HDAC1/2 complex reveals the structural basis for complex assembly and nucleosome targeting. Nucleic Acids Res, 43(4), 2033-2044. https://doi.org/10.1093/nar/gkv068spa
dc.relation.referencesIvanova, D., Dirks, A., Montenegro‐Venegas, C., Schöne, C., Altrock, W. D., Marini, C., . . . Gundelfinger, E. D. (2015). Synaptic activity controls localization and function of Ct BP 1 via binding to B assoon and P iccolo. The EMBO journal, 34(8), 1056-1077. https://doi.org/https://doi.org/10.15252/embj.201488796spa
dc.relation.referencesJayaswamy, P. K., Gollapalli, P., Vijaykrishnaraj, M., Alexander, L. M., Patil, P., & Shetty, P. (2023). Identification of network-based differential gene expression signatures and their transcriptional factors to develop progressive blood biomarkers for Alzheimer's disease. Human Gene, 37, 201202. https://doi.org/10.1016/j.humgen.2023.201202spa
dc.relation.referencesJi, S., & Choi, Y. (2013). Innate immune response to oral bacteria and the immune evasive characteristics of periodontal pathogens. J Periodontal Implant Sci, 43(1), 3-11. https://doi.org/10.5051/jpis.2013.43.1.3spa
dc.relation.referencesJiang, Z., Shi, Y., Zhao, W., Zhou, L., Zhang, B., Xie, Y., . . . Wang, Z. (2021). Association between chronic periodontitis and the risk of Alzheimer’s disease: combination of text mining and GEO dataset. BMC Oral Health, 21(1), 1-11. https://doi.org/https://doi.org/10.1186/s12903-021-01827-2spa
dc.relation.referencesJohanson, C. E., Stopa, E. G., & McMillan, P. N. (2011). The blood–cerebrospinal fluid barrier: structure and functional significance. The Blood-Brain and Other Neural Barriers: Reviews and Protocols, 101-131. https://doi.org/10.1007/978-1-60761-938-3_4spa
dc.relation.referencesJoustra, V., Hageman, I., Li Yim, A., Gecse, K., Lowenberg, M., te Velde, A., . . . D’Haens, G. (2020). P823 DNA methylation profiles accurately predict vedolizumab response and remain stable during induction and maintenance treatment in Crohn’s disease. Journal of Crohn's and Colitis, 14(Supplement_1), S639-S640. https://doi.org/10.1093/eccojcc/ jjz203.951spa
dc.relation.referencesKähler, A. K., Djurovic, S., Kulle, B., Jönsson, E. G., Agartz, I., Hall, H., . . . Melle, I. (2008). Association analysis of schizophrenia on 18 genes involved in neuronal migration: MDGA1 as a new susceptibility gene. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 147(7), 1089-1100. https://doi.org/10.1002/ajmg.b.30726spa
dc.relation.referencesKamer, A. R., Pirraglia, E., Tsui, W., Rusinek, H., Vallabhajosula, S., Mosconi, L., . . . de Leon, M. J. (2015). Periodontal disease associates with higher brain amyloid load in normal elderly. Neurobiol Aging, 36(2), 627-633. https://doi.org/10.1016/j.neurobiolaging.2014.10.038spa
dc.relation.referencesKanagasingam, S., Chukkapalli, S. S., Welbury, R., & Singhrao, S. K. (2020). Porphyromonas gingivalis is a strong risk factor for Alzheimer’s disease. Journal of Alzheimer's Disease Reports, 4(1), 501-511. https://doi.org/10.3233/ADR-200250spa
dc.relation.referencesKatkoori, V., Jia, X., Callens, T., Kumar, S., Ponnazhagan, S., Messiaen, L., . . . Manne, U. (2007). Rabphillin-3A-Like gene is a candidate tumor suppressor in colorectal adenocarcinoma. Cancer Research, 67(9_Supplement), 3650-3650.spa
dc.relation.referencesKatoh, M., & Katoh, M. (2004). Identification and characterization of human FOXK1 gene in silico. International journal of molecular medicine, 14(1), 127-132. https://doi.org/10.3892/ijmm.14.1.127spa
dc.relation.referencesKhouly, I., Braun, R. S., Ordway, M., Aouizerat, B. E., Ghassib, I., Larsson, L., & Asa’ad, F. (2020). The role of DNA methylation and histone modification in periodontal disease: a systematic review. International journal of molecular sciences, 21(17), 6217. https://doi.org/10.3390/ijms21176217spa
dc.relation.referencesKobayashi, N., Shinagawa, S., Nagata, T., Shimada, K., Shibata, N., Ohnuma, T., . . . Kondo, K. (2016). Usefulness of DNA Methylation Levels in COASY and SPINT1 Gene Promoter Regions as Biomarkers in Diagnosis of Alzheimer's Disease and Amnestic Mild Cognitive Impairment. PLoS One, 11(12), e0168816. https://doi.org/10.1371/journal.pone.0168816spa
dc.relation.referencesKoestler, D. C., Jones, M. J., Usset, J., Christensen, B. C., Butler, R. A., Kobor, M. S., . . . Kelsey, K. T. (2016). Improving cell mixture deconvolution by identifying optimal DNA methylation libraries (IDOL). BMC bioinformatics, 17, 120. https://doi.org/10.1186/s12859-016-0943-7spa
dc.relation.referencesKouki, M. A., Pritchard, A. B., Alder, J. E., & Crean, S. (2022). Do Periodontal Pathogens or Associated Virulence Factors Have a Deleterious Effect on the Blood-Brain Barrier, Contributing to Alzheimer’s Disease? Journal of Alzheimer's Disease, 85(3), 957-973. https://doi.org/10.3233/JAD-215103 Kubota, T., Maruyama, S., Abe, D., Tomita, T., Morozumispa
dc.relation.referencesKukułowicz, J., Pietrzak-Lichwa, K., Klimończyk, K., Idlin, N., & Bajda, M. (2024). The SLC6A15–SLC6A20 Neutral Amino Acid Transporter Subfamily: Functions, Diseases, and Their Therapeutic Relevance. Pharmacological Reviews, 76(1), 142-193. https://doi.org/10.1124/pharmrev.123.000886spa
dc.relation.referencesLaberge, Akoum, D., Wlodarczyk, P., Massé, J. D., Fournier, D., & Semlali, A. (2023). The Potential Role of Epigenetic Modifications on Different Facets in the Periodontal Pathogenesis. Genes (Basel), 14(6). https://doi.org/10.3390/genes14061202spa
dc.relation.referencesLarsson, L. (2017). Current concepts of epigenetics and its role in periodontitis. Current Oral Health Reports, 4(4), 286-293. https://doi.org/10.1007/s40496-017-0156-9spa
dc.relation.referencesLavu, V., Venkatesan, V., & Rao, S. R. (2015). The epigenetic paradigm in periodontitis pathogenesis. J Indian Soc Periodontol, 19(2), 142-149. https://doi.org/10.4103/0972- 124X.145784spa
dc.relation.referencesLee, W., Aitken, S., Sodek, J., & McCulloch, C. (1995). Evidence of a direct relationship between neutrophil collagenase activity and periodontal tissue destruction in vivo: role of active enzyme in human periodontitis. Journal of periodontal research, 30(1), 23-33. https://doi.org/10.1111/j.1600-0765.1995.tb01249.xCspa
dc.relation.referencesLeira, Y., Vivancos, J., Diz, P., Martín, Á., Carasol, M., & Frank, A. (2024). Asociación entre periodontitis, enfermedad cerebrovascular y demencia. Informe científico del Grupo de Trabajo de la Sociedad Española de Periodoncia y la Sociedad Española de Neurología. Neurología. https://doi.org/10.1016/j.nrl.2023.11.003spa
dc.relation.referencesLesurf, R., Cotto, K. C., Wang, G., Griffith, M., Kasaian, K., Jones, S. J., . . . Open Regulatory Annotation, C. (2016). ORegAnno 3.0: a community-driven resource for curated regulatory annotation. Nucleic Acids Res, 44(D1), D126-132. https://doi.org/10.1093/nar/gkv1203spa
dc.relation.referencesLewin, J., Schmitt, A. O., Adorján, P., Hildmann, T., & Piepenbrock, C. (2004). Quantitative DNA methylation analysis based on four-dye trace data from direct sequencing of PCR amplificates. Bioinformatics, 20(17), 3005-3012. https://doi.org/10.1093/bioinformatics/bth346spa
dc.relation.referencesLi, Kiprowska, M., Kansara, T., Kansara, P., & Li, P. (2022). Neuroinflammation: A distal consequence of periodontitis. Journal of dental research, 101(12), 1441-1449. https://doi.org/10.1177/00220345221102spa
dc.relation.referencesLi, J., Liu, J., Feng, G., Li, T., Zhao, Q., Li, Y., . . . He, L. (2011). The MDGA1 gene confers risk to schizophrenia and bipolar disorder. Schizophrenia research, 125(2-3), 194-200. https://doi.org/10.1186/s13148-021-01179-2spa
dc.relation.referencesLiccardo, D., Marzano, F., Carraturo, F., Guida, M., Femminella, G. D., Bencivenga, L., . . . Valletta, A. (2020). Potential bidirectional relationship between periodontitis and Alzheimer’s disease. Frontiers in physiology, 11, 683. https://doi.org/10.3389/fphys.2020.00683spa
dc.relation.referencesLima, A., Bernardes, M., Azevedo, R., Monteiro, J., Sousa, H., Medeiros, R., & Seabra, V. (2014). SLC19A1, SLC46A1 and SLCO1B1 polymorphisms as predictors of methotrexate-related toxicity in Portuguese rheumatoid arthritis patients. Toxicological Sciences, 142(1), 196-209. https://doi.org/10.1093/toxsci/kfu162spa
dc.relation.referencesLiu, Y., Wu, Z., Zhang, X., Ni, J., Yu, W., Zhou, Y., & Nakanishi, H. (2013). Leptomeningeal cells transduce peripheral macrophages inflammatory signal to microglia in reponse to Porphyromonas gingivalis LPS. Mediators of inflammation, 2013. https://doi.org/10.1155/2013/407562spa
dc.relation.referencesLoos, B. G., & Van Dyke, T. E. (2020). The role of inflammation and genetics in periodontal disease. Periodontology 2000, 83(1), 26-39. https://doi.org/10.1111/prd.12297spa
dc.relation.referencesLozupone, M., Dibello, V., Sardone, R., Castellana, F., Zupo, R., Lampignano, L., . . . Solfrizzi, V. (2023). The impact of apolipoprotein E (APOE) epigenetics on aging and sporadic Alzheimer’s disease. Biology, 12(12), 1529. https://doi.org/10.3390/biology12121529spa
dc.relation.referencesLunnon, K., Smith, R., Hannon, E., De Jager, P. L., Srivastava, G., Volta, M., . . . Macdonald, R. (2014). Methylomic profiling implicates cortical deregulation of ANK1 in Alzheimer's disease. Nature neuroscience, 17(9), 1164-1170. https://doi.org/10.1038/nn.3782spa
dc.relation.referencesMadianos, P. N., Bobetsis, Y. A., & Kinane, D. F. (2005). Generation of inflammatory stimuli: how bacteria set up inflammatory responses in the gingiva. J Clin Periodontol, 32 Suppl 6, 57-71. https://doi.org/10.1111/j.1600-051X.2005.00821.xspa
dc.relation.referencesMahoney, R., Bendl, J., Kozlenkov, A., Micallef, C., Shao, Z., Edelstien, J., . . . Haroutunian, V. (2023). F93. Cell-type specific transcriptomic profiling in schizophrenia identifies changes in gabaergic neurons and oligodendrocytes at transcript level. European Neuropsychopharmacology, 75, S270. https://doi.org/10.1016/j.euroneuro.2023.08.474spa
dc.relation.referencesMarioni, R. E., Harris, S. E., Zhang, Q., McRae, A. F., Hagenaars, S. P., Hill, W. D., . . . Visscher, P. M. (2018). GWAS on family history of Alzheimer's disease. Transl Psychiatry, 8(1), 99. https://doi.org/10.1038/s41398-018-0150-6spa
dc.relation.referencesMartínez-Iglesias, O., Naidoo, V., Cacabelos, N., & Cacabelos, R. (2021). Epigenetic Biomarkers as Diagnostic Tools for Neurodegenerative Disorders. Int J Mol Sci, 23(1). https://doi.org/10.3390/ijms23010013spa
dc.relation.referencesMasumoto, R., Kitagaki, J., Fujihara, C., Matsumoto, M., Miyauchi, S., Asano, Y., . . . Murakami, S. (2019). Identification of genetic risk factors of aggressive periodontitis using genomewide association studies in association with those of chronic periodontitis. J Periodontal Res, 54(3), 199-206. https://doi.org/10.1111/jre.12620spa
dc.relation.referencesMatsushita, K., Yamada-Furukawa, M., Kurosawa, M., & Shikama, Y. (2020). Periodontal disease and periodontal disease-related bacteria involved in the pathogenesis of Alzheimer’s disease. Journal of inflammation research, 13, 275. https://doi.org/10.2147/JIR.S255309spa
dc.relation.referencesMayadas, T. N., Cullere, X., & Lowell, C. A. (2014). The multifaceted functions of neutrophils. Annu Rev Pathol, 9, 181-218. https://doi.org/10.1146/annurev-pathol-020712-164023spa
dc.relation.referencesMendonça, C. F., Kuras, M., Nogueira, F. C. S., Plá, I., Hortobágyi, T., Csiba, L., . . . Marko- Varga, G. (2019). Proteomic signatures of brain regions affected by tau pathology in early and late stages of Alzheimer's disease. Neurobiology of disease, 130, 104509. https://doi.org/https://doi.org/10.1016/j.nbd.2019.104509spa
dc.relation.referencesMendonca, V., Soares-Lima, S. C., & Moreira, M. A. M. (2024). Exploring cross-tissue DNA methylation patterns: blood-brain CpGs as potential neurodegenerative disease biomarkers. Commun Biol, 7(1), 904. https://doi.org/10.1038/s42003-024-06591-xspa
dc.relation.referencesMilano, W., Ambrosio, P., Carizzone, F., De Biasio, V., Di Munzio, W., Foia, M. G., & Capasso, A. (2020). Depression and Obesity: Analysis of Common Biomarkers. Diseases, 8(2). https://doi.org/10.3390/diseases8020023spa
dc.relation.referencesMishra, V. C., Deshpande, T., Gupta, N., Dorwal, P., Chandra, D., Raina, V., & Sharma, G. (2021). Frequency analysis of HLA-B allele in leukemia patients from a North Indian population: a case-control study. Meta Gene, 27, 100842. https://doi.org/10.1016/j.mgene.2020.100842spa
dc.relation.referencesMorgan, A. R., Touchard, S., Leckey, C., O'Hagan, C., Nevado‐Holgado, A. J., Consortium, N., . . . Bos, I. (2019). Inflammatory biomarkers in Alzheimer's disease plasma. Alzheimer's & Dementia, 15(6), 776-787.spa
dc.relation.referencesMurray, P. J., Allen, J. E., Biswas, S. K., Fisher, E. A., Gilroy, D. W., Goerdt, S., . . . Wynn, T. A. (2014). Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity, 41(1), 14-20. https://doi.org/10.1016/j.immuni.2014.06.008spa
dc.relation.referencesNibali, L., Di Iorio, A., Tu, Y. K., & Vieira, A. R. (2017). Host genetics role in the pathogenesis of periodontal disease and caries. J Clin Periodontol, 44 Suppl 18, S52-S78. https://doi.org/10.1111/jcpe.12639spa
dc.relation.referencesOffenbacher, S., Jiao, Y., Kim, S. J., Marchesan, J., Moss, K. L., Jing, L., . . . North, K. E. (2018). GWAS for Interleukin-1β levels in gingival crevicular fluid identifies IL37 variants in periodontal inflammation. Nat Commun, 9(1), 3686. https://doi.org/10.1038/s41467-018-05940-9spa
dc.relation.referencesOlsen, I., & Singhrao, S. K. (2019). Poor Oral Health and Its Neurological Consequences: Mechanisms of Porphyromonas gingivalis Involvement in Cognitive Dysfunction. Current Oral Health Reports, 6(2), 120-129. https://doi.org/10.1007/s40496-019-0212-8spa
dc.relation.referencesPalomba, N. P., Fortunato, G., Pepe, G., Modugno, N., Pietracupa, S., Damiano, I., . . . Ianiro, L. (2023). Common and rare variants in TMEM175 gene concur to the pathogenesis of Parkinson’s disease in Italian patients. Molecular neurobiology, 60(4), 2150-2173. https://doi.org/10.1007/s12035-022-03203-9spa
dc.relation.referencesPapadopoulos, Weinberg, E. O., Massari, P., Gibson, F. C., 3rd, Wetzler, L. M., Morgan, E. F., & Genco, C. A. (2013). Macrophage-specific TLR2 signaling mediates pathogen-induced TNF-dependent inflammatory oral bone loss. J Immunol, 190(3), 1148-1157. https://doi.org/10.4049/jimmunol.1202511spa
dc.relation.referencesPapapanou, P. N., Sedaghatfar, M. H., Demmer, R. T., Wolf, D. L., Yang, J., Roth, G. A., . . . Pavlidis, P. (2007). Periodontal therapy alters gene expression of peripheral blood monocytes. Journal of clinical periodontology, 34(9), 736-747. https://doi.org/10.1111/j.1600-051X.2007.01113.xspa
dc.relation.referencesPazos, Leira, Y., Domínguez, C., Pías-Peleteiro, J. M., Blanco, J., & Aldrey, J. M. (2018). Association between periodontal disease and dementia: A literature review. Neurologiaspa
dc.relation.referencesPillai, J. A., Bena, J., Bebek, G., Bekris, L. M., Bonner‐Jackson, A., Kou, L., . . . Rao, S. M. (2020). Inflammatory pathway analytes predicting rapid cognitive decline in MCI stage of Alzheimer’s disease. Annals of Clinical and Translational Neurology, 7(7), 1225- 1239. https://doi.org/10.1002/acn3.51109spa
dc.relation.referencesPolepalle, T., Moogala, S., Boggarapu, S., Pesala, D. S., & Palagi, F. B. (2015). Acute phase proteins and their role in periodontitis: a review. Journal of clinical and diagnostic research: JCDR, 9(11), ZE01. https://doi.org/10.7860/JCDR/2015/15692.6728spa
dc.relation.referencesPotashkin, J., Santiago, J., & Quinn, J. (2022). Co-expression network analysis identifies molecular determinants of loneliness associated with neuropsychiatric and neurodegenerative diseases. https://doi.org/10.21203/rs.3.rs-2203829/v1spa
dc.relation.referencesPrasad, G. R., & Jho, E.-h. (2019). A concise review of human brain methylome during aging and neurodegenerative diseases. BMB reports, 52(10), 577. https://doi.org/10.5483/BMBRep.2019.52.10.215spa
dc.relation.referencesQu, L., Lin, B., Zeng, W., Fan, C., Wu, H., Ge, Y., . . . Xin, J. (2022). Lysosomal K+ channel TMEM175 promotes apoptosis and aggravates symptoms of Parkinson's disease. EMBO reports, 23(9), e53234. https://doi.org/10.15252/embr.202153234spa
dc.relation.referencesRapanelli, M., Tan, T., Wang, W., Wang, X., Wang, Z.-J., Zhong, P., . . . Qu, J. (2021). Behavioral, circuitry, and molecular aberrations by region-specific deficiency of the highrisk autism gene Cul3. Molecular Psychiatry, 26(5), 1491-1504. https://doi.org/10.1038/s41380-019-0498-xspa
dc.relation.referencesReitz, C., Pericak-Vance, M. A., Foroud, T., & Mayeux, R. (2023). A global view of the genetic basis of Alzheimer disease. Nat Rev Neurol, 19(5), 261-277. https://doi.org/10.1038/s41582-023-00789-zspa
dc.relation.referencesRibeiro, M. S., Pacheco, R. B., Fischer, R. G., & Macedo, J. M. (2016). Interaction of IL1B and IL1RN polymorphisms, smoking habit, gender, and ethnicity with aggressive and chronic periodontitis susceptibility. Contemp Clin Dent, 7(3), 349-356.spa
dc.relation.referencesRiviere, G. R., Riviere, K., & Smith, K. (2002). Molecular and immunological evidence of oral Treponema in the human brain and their association with Alzheimer's disease. Oral microbiology and immunology, 17(2), 113-118. https://doi.org/10.1046/j.0902- 0055.2001.00100.xspa
dc.relation.referencesRocha, J. J., Jayaram, S. A., Stevens, T. J., Muschalik, N., Shah, R. D., Emran, S., . . . Munro, S. (2023). Functional unknomics: Systematic screening of conserved genes of unknown function. PLoS biology, 21(8), e3002222. https://doi.org/10.1371/journal.pbio.3002222spa
dc.relation.referencesSalcedo-Tacuma, D., Melgarejo, J. D., Mahecha, M. F., Ortega-Rojas, J., Arboleda-Bustos, C. E., Pardo-Turriago, R., & Arboleda, H. (2019). Differential Methylation Levels in CpGs of the BIN1 Gene in Individuals With Alzheimer Disease. Alzheimer Dis Assoc Disord, 33(4), 321-326. https://doi.org/10.1097/WAD.0000000000000329spa
dc.relation.referencesSánchez, C. Z., Sanabria, M. O. C., Sánchez, M. Z., López, P. A. C., Sanabria, M. S., Hernández, S. H., . . . Valera, A. U. (2019). Prevalencia de demencia en adultos mayores de América Latina: revisión sistemática. Revista Española de Geriatría y Gerontología, 54(6), 346- 355. https://doi.org/10.1016/j.regg.2018.12.007spa
dc.relation.referencesSasaki, M., Anast, J., Bassett, W., Kawakami, T., Sakuragi, N., & Dahiya, R. (2003). Bisulfite conversion-specific and methylation-specific PCR: a sensitive technique for accurate evaluation of CpG methylation. Biochemical and biophysical research communications, 309(2), 305-309. https://doi.org/10.1016/j.bbrc.2003.08.005spa
dc.relation.referencesScelsi, M. A., Khan, R. R., Lorenzi, M., Christopher, L., Greicius, M. D., Schott, J. M., . . . Altmann, A. (2018). Genetic study of multimodal imaging Alzheimer’s disease progression score implicates novel loci. Brain, 141(7), 2167-2180. https://doi.org/10.1093/brain/awy141spa
dc.relation.referencesSemick, S. A., Bharadwaj, R. A., Collado-Torres, L., Tao, R., Shin, J. H., Deep-Soboslay, A., . . . Mattay, V. S. (2019). Integrated DNA methylation and gene expression profiling across multiple brain regions implicate novel genes in Alzheimer’s disease. Acta Neuropathologica, 137(4), 557-569. https://doi.org/10.1007/s00401-019-01966-5spa
dc.relation.referencesSepulveda-Falla, D., Barrera-Ocampo, A., Hagel, C., Korwitz, A., Vinueza-Veloz, M. F., Zhou, K., . . . Glatzel, M. (2014). Familial Alzheimer's disease-associated presenilin-1 alters cerebellar activity and calcium homeostasis. J Clin Invest, 124(4), 1552-1567. https://doi.org/10.1172/JCI66407spa
dc.relation.referencesShaddox, L. M., Mullersman, A. F., Huang, H., Wallet, S. M., Langaee, T., & Aukhil, I. (2017). Epigenetic regulation of inflammation in localized aggressive periodontitis. Clin Epigenetics, 9, 94. https://doi.org/10.1186/s13148-017-0385-8spa
dc.relation.referencesShinagawa, S., Kobayashi, N., Nagata, T., Kusaka, A., Yamada, H., Kondo, K., & Nakayama, K. (2016). DNA methylation in the NCAPH2/LMF2 promoter region is associated with hippocampal atrophy in Alzheimer's disease and amnesic mild cognitive impairment patients. Neurosci Lett, 629, 33-37. https://doi.org/10.1016/j.neulet.2016.06.055spa
dc.relation.referencesSinghrao, S. K., Neal, J. W., Rushmere, N. K., Morgan, B. P., & Gasque, P. (2000). Spontaneous classical pathway activation and deficiency of membrane regulators render human neurons susceptible to complement lysis. Am J Pathol, 157(3), 905-918. https://doi.org/10.1016/S0002-9440(10)64604-4spa
dc.relation.referencesSmith, A. R., Smith, R. G., Pishva, E., Hannon, E., Roubroeks, J. A., Burrage, J., . . . Mill, J. (2019). Parallel profiling of DNA methylation and hydroxymethylation highlights neuropathology-associated epigenetic variation in Alzheimer’s disease. Clinical Epigenetics, 11, 1-13. https://doi.org/10.1186/s13148-019-0636-yspa
dc.relation.referencesSperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A., Craft, S., Fagan, A. M., . . . Phelps, C. H. (2011). Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement, 7(3), 280-292. https://doi.org/10.1016/j.jalz.2011.03.003spa
dc.relation.referencesStatello, L., Guo, C. J., Chen, L. L., & Huarte, M. (2021). Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol, 22(2), 96-118. https://doi.org/10.1038/s41580-020-00315-9spa
dc.relation.referencesTabas, I., & Glass, C. K. (2013). Anti-inflammatory therapy in chronic disease: challenges and opportunities. Science, 339(6116), 166-172. https://doi.org/10.1126/science.1230720spa
dc.relation.referencesTammen, S. A., Friso, S., & Choi, S. W. (2013). Epigenetics: the link between nature and nurture. Mol Aspects Med, 34(4), 753-764. https://doi.org/10.1016/j.mam.2012.07.018spa
dc.relation.referencesTaryma-Leśniak, O., Sokolowska, K. E., & Wojdacz, T. K. (2020). Current status of development of methylation biomarkers for in vitro diagnostic IVD applications. Clinical Epigenetics, 12(1), 100. https://doi.org/10.1186/s13148-020-00886-6spa
dc.relation.referencesTherriault, J., Schindler, S. E., Salvadó, G., Pascoal, T. A., Benedet, A. L., Ashton, N. J., . . . Rosa-Neto, P. (2024). Biomarker-based staging of Alzheimer disease: rationale and clinical applications. Nat Rev Neurol, 20(4), 232-244. https://doi.org/10.1038/s41582- 024-00942-2spa
dc.relation.referencesToader, C., Dobrin, N., Brehar, F.-M., Popa, C., Covache-Busuioc, R.-A., Glavan, L. A., . . . Popa, A. A. (2023). From recognition to remedy: The significance of biomarkers in neurodegenerative disease pathology. International journal of molecular sciences, 24(22), 16119. https://doi.org/10.3390/ijms242216119spa
dc.relation.referencesTranchevent, L.-C., Ardeshirdavani, A., ElShal, S., Alcaide, D., Aerts, J., Auboeuf, D., & Moreau, Y. (2016). Candidate gene prioritization with Endeavour. Nucleic acids research, 44(W1), W117-W121. https://doi.org/10.1093/nar/gkw365spa
dc.relation.referencesTse, M. Y., Ashbury, J. E., Zwingerman, N., King, W. D., Taylor, S. A., & Pang, S. C. (2011). A refined, rapid and reproducible high resolution melt (HRM)-based method suitable for quantification of global LINE-1 repetitive element methylation. BMC research notes, 4(1), 565. https://doi.org/10.1186/1756-0500-4-565spa
dc.relation.referencesUNESCO, U. (1997). Declaración universal sobre el genoma humano y los derechos humanos. Boletín del Consejo Académico de Ética en Medicina, 4(1).spa
dc.relation.referencesUniProt, C. (2015). UniProt: a hub for protein information. Nucleic Acids Res, 43(Database issue), D204-212. https://doi.org/10.1093/nar/gku989spa
dc.relation.referencesVasanthakumar, A., Davis, J. W., Idler, K., Waring, J. F., Asque, E., Riley-Gillis, B., . . . Nho, K. (2020). Harnessing peripheral DNA methylation differences in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) to reveal novel biomarkers of disease. Clinical Epigenetics, 12(1), 1-11.spa
dc.relation.referencesViglianisi, G., Santonocito, S., Polizzi, A., Troiano, G., Amato, M., Zhurakivska, K., . . . Isola, G. (2023). Impact of Circulating Cell-Free DNA (cfDNA) as a Biomarker of the Development and Evolution of Periodontitis. Int J Mol Sci, 24(12). https://doi.org/10.3390/ijms24129981spa
dc.relation.referencesVilla, M., Wu, J., Hansen, S., & Pahnke, J. (2024). Emerging role of ABC transporters in glia cells in health and diseases of the central nervous system. Cells, 13(9), 740. https://doi.org/10.3390/cells13090740spa
dc.relation.referencesWainberg, M., Andrews, S. J., & Tripathy, S. J. (2023). Shared genetic risk loci between Alzheimer’s disease and related dementias, Parkinson’s disease, and amyotrophic lateral sclerosis. Alzheimer's Research & Therapy, 15(1), 113. https://doi.org/10.1186/s13195- 023-01244-3spa
dc.relation.referencesWalker, K. A., Ficek, B. N., & Westbrook, R. (2019). Understanding the Role of Systemic Inflammation in Alzheimer's Disease. ACS Chem Neurosci, 10(8), 3340-3342. https://doi.org/10.1021/acschemneuro.9b00333spa
dc.relation.referencesWang, Ho, Leung, Goto, T., & Chang, R. C.-C. (2019). Systemic inflammation linking chronic periodontitis to cognitive decline. Brain, behavior, and immunity, 81, 63-73. https://doi.org/10.1016/j.bbi.2019.07.002spa
dc.relation.referencesWang, Wang, Y., Ma, X., Zhou, S., Xu, J., Guo, Y., . . . Yuan, L. (2023). Gender-specific association of SLC19A1 and MTHFR genetic polymorphism with oxidative stress biomarkers and plasma folate levels in older adults. Experimental Gerontology, 178, 112208. https://doi.org/10.1016/j.exger.2023.112208spa
dc.relation.referencesWang, P., Wang, B., Zhang, Z., & Wang, Z. (2021). Identification of inflammation-related DNA methylation biomarkers in periodontitis patients based on weighted co-expression analysis. Aging (Albany NY), 13(15), 19678. https://doi.org/10.18632/aging.203378spa
dc.relation.referencesWatson, C. T., Roussos, P., Garg, P., Ho, D. J., Azam, N., Katsel, P. L., . . . Sharp, A. J. (2016). Genome-wide DNA methylation profiling in the superior temporal gyrus reveals epigenetic signatures associated with Alzheimer's disease. Genome Med, 8(1), 5. https://doi.org/10.1186/s13073-015-0258-8spa
dc.relation.referencesWeinberg, D. N., Papillon-Cavanagh, S., Chen, H., Yue, Y., Chen, X., Rajagopalan, K. N., . . . Nikbakht, H. (2019). The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape. Nature, 573(7773), 281-286. https://doi.org/10.1038/s41586-019-1534-3spa
dc.relation.referencesWilhelm-Benartzi, C. S., Koestler, D. C., Karagas, M. R., Flanagan, J. M., Christensen, B. C., Kelsey, K. T., . . . Brown, R. (2013). Review of processing and analysis methods for DNA methylation array data. Br J Cancer, 109(6), 1394-1402. https://doi.org/10.1038/bjc.2013.496spa
dc.relation.referencesWu, Song, J., Yin, X., Ma, H., & Zhang, J. (2024). An Integrated Proteome and Transcriptome Analysis Identifies Novel Causal Genes in Periodontal Disease. Available at SSRN 4329969. https://doi.org/10.2139/ssrn.4329969spa
dc.relation.referencesXiao, X., Liu, X., & Jiao, B. (2020). Epigenetics: Recent Advances and Its Role in the Treatment of Alzheimer's Disease. Front Neurol, 11, 538301. https://doi.org/10.3389/fneur.2020.538301spa
dc.relation.referencesXing, X., Que, X., Zheng, S., Wang, S., Song, Q., Yao, Y., & Zhang, P. (2024). Emerging roles of FOXK2 in cancers and metabolic disorders. Front Oncol, 14, 1376496. https://doi.org/10.3389/fonc.2024.1376496spa
dc.relation.referencesYang, X., Han, H., De Carvalho, D. D., Lay, F. D., Jones, P. A., & Liang, G. (2014). Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer cell, 26(4), 577-590. https://doi.org/10.1016/j.ccr.2014.07.028spa
dc.relation.referencesYao, Q., Wang, C., Wang, Y., Zhang, X., Jiang, H., & Chen, D. (2022). The integrated comprehension of lncRNA HOXA-AS3 implication on human diseases. Clin Transl Oncol, 24(12), 2342-2350. https://doi.org/10.1007/s12094-022-02920-wspa
dc.relation.referencesYong, W.-S., Hsu, F.-M., & Chen, P.-Y. (2016). Profiling genome-wide DNA methylation. Epigenetics & chromatin, 9(1), 26. https://doi.org/DOI 10.1186/s13072-016-0075-3spa
dc.relation.referencesYoshioka, M., Matsutani, T., Hara, A., Hirono, S., Hiwasa, T., Takiguchi, M., & Iwadate, Y. (2018). Real-time methylation-specific PCR for the evaluation of methylation status of MGMT gene in glioblastoma. Oncotarget, 9(45), 27728-27735. https://doi.org/10.18632/oncotarget.25543spa
dc.relation.referencesZhang, J., Hou, S., You, Z., Li, G., Xu, S., Li, X., . . . Pang, D. (2021). Expression and prognostic values of ARID family members in breast cancer. Aging (Albany NY), 13(4), 5621.spa
dc.relation.referencesZhang, S., Barros, S. P., Moretti, A. J., Yu, N., Zhou, J., Preisser, J. S., . . . Offenbacher, S. (2013). Epigenetic regulation of TNFA expression in periodontal disease. J Periodontol, 84(11), 1606-1616. https://doi.org/10.1902/jop.2013.120294spa
dc.relation.referencesZhang, S., Crivello, A., Offenbacher, S., Moretti, A., Paquette, D. W., & Barros, S. P. (2010). Interferon-gamma promoter hypomethylation and increased expression in chronic periodontitis. J Clin Periodontol, 37(11), 953-961. https://doi.org/10.1111/j.1600- 051X.2010.01616.xspa
dc.relation.referencesZhao, N., Teles, F., Lu, J., Koestler, D. C., Beck, J., Boerwinkle, E., . . . Michaud, D. S. (2023). Epigenome-wide association study using peripheral blood leukocytes identifies genomic regions associated with periodontal disease and edentulism in the Atherosclerosis Risk in Communities study. J Clin Periodontol, 50(9), 1140-1153. https://doi.org/10.1111/jcpe.13852spa
dc.relation.referencesZhou, K., Wang, L., Wu, L., Wu, Q., Zhu, L., & Yang, X. (2022). Key genes associated with Alzheimer's disease and periodontitis. https://doi.org/10.21203/rs.3.rs-2230514/v1spa
dc.relation.referencesZhuang, J., Widschwendter, M., & Teschendorff, A. E. (2012). A comparison of feature selection and classification methods in DNA methylation studies using the Illumina Infinium platform. BMC bioinformatics, 13, 59. https://doi.org/10.1186/1471-2105-13-59spa
dc.relation.referencesZilka, N., Ferencik, M., & Hulin, I. (2006). Neuroinflammation in Alzheimer's disease: protector or promoter? Bratisl Lek Listy, 107(9-10), 374-383. http://www.ncbi.nlm.nih.gov/pubmed/17262990spa
dc.relation.referencesZou, L., Chen, W., Shao, S., Sun, Z., Zhong, R., Shi, J., . . . Song, R. (2012). Genetic variant in KIAA0319, but not in DYX1C1, is associated with risk of dyslexia: an integrated metaanalysis. Am J Med Genet B Neuropsychiatr Genet, 159b(8), 970-976. https://doi.org/10.1002/ajmg.b.32102spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_14cbspa
dc.rights.localAbierto (Texto Completo)spa
dc.subject.keywordDNA methylationspa
dc.subject.keywordEpigenomicsspa
dc.subject.keywordPeriodontitisspa
dc.subject.keywordAlzheimer's diseasespa
dc.subject.keywordBiomarkersspa
dc.subject.lembPatrones de metilación de ADNspa
dc.subject.lembPacientes con enfermedad de Alzheimerspa
dc.subject.lembEnfermedades de los dientesspa
dc.subject.lembPatogénesisspa
dc.subject.lembAnálisis de informaciónspa
dc.subject.proposalMetilación de ADNspa
dc.subject.proposalEpigenómicaspa
dc.subject.proposalPeriodontitisspa
dc.subject.proposalenfermedad de Alzheimerspa
dc.subject.proposalBiomarcadoresspa
dc.titlePatrones de metilación de ADN en sangre periférica en periodontitis y enfermedad de Alzheimer: análisis diferencial, de intersección y validaciónspa
dc.type.categoryFormación de Recurso Humano para la Ctel: Tesis de Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driveinfo:eu-repo/semantics/doctoralThesis
dc.type.localTesis doctoralspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersion

Archivos

Bloque original

Mostrando 1 - 3 de 3
Thumbnail USTA
Nombre:
2024ChacónPaula.pdf
Tamaño:
2.55 MB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de grado
Thumbnail USTA
Nombre:
2024ChacónPaula1.pdf
Tamaño:
62.87 KB
Formato:
Adobe Portable Document Format
Descripción:
Carta de facultad
Thumbnail USTA
Nombre:
2024ChacónPaula2.pdf
Tamaño:
283.03 KB
Formato:
Adobe Portable Document Format
Descripción:
Acuerdo de publicación

Bloque de licencias

Mostrando 1 - 1 de 1
Thumbnail USTA
Nombre:
license.txt
Tamaño:
807 B
Formato:
Item-specific license agreed upon to submission
Descripción: