Patrones de metilación de ADN en sangre periférica en periodontitis y enfermedad de Alzheimer: análisis diferencial, de intersección y validación
dc.contributor.advisor | Hernández Hincapié, Hernán Guillermo | |
dc.contributor.advisor | Naranjo Galvis, Carlos Andrés | |
dc.contributor.author | Chacón Arboleda, Paula Tatiana | |
dc.coverage.campus | CRAI-USTA Bucaramanga | spa |
dc.date.accessioned | 2024-12-05T14:55:15Z | |
dc.date.available | 2024-12-05T14:55:15Z | |
dc.date.issued | 2024-12-04 | |
dc.description | La presente tesis de doctorado analizó patrones de metilación de ADN en sangre periférica en pacientes con enfermedad de Alzheimer (EA) y periodontitis a lo largo del genoma, revelando alteraciones epigenéticas en genes clave relacionados con inflamación y rutas metabólicas. En periodontitis, se encontraron posiciones y regiones con metilación diferencial, identificándose genes diferencialmente hipermetilados como GDAP2, RPH3AL, SLC19A1 y COL18A1; y genes diferencialmente hipometilados como CUL3, ARID3C, BCL11A y SLC6A5, implicados en la respuesta inmune y el metabolismo. En EA, se encontraron posiciones y regiones con metilación diferencial, incluyendo genes diferencialmente hipermetilados como CACNA1A, HOXA-AS3, HOXA6, y diferencialmente hipometilados como MIB2, KMT5A, MIDEAS y BCAM, involucrados en la inflamación sistémica. El análisis de enriquecimiento génico funcional mostró ontologías relacionadas con transporte celular y respuesta inmune en periodontitis y EA. De forma interesante, se encontró una coincidencia epigenética exacta en una región de 93 pares de bases del gen MDGA1 en EA y periodontitis, indicando relevancia epigenética en la intersección entre estas enfermedades. Asimismo, los resultados de metilación diferencial para genes priorizados evidenciaron a HLA-B y PDGFRA en ambas enfermedades indicando una conexión epigenética inflamatoria entre ellas. Los CpG sustitutos de cerebro en sangre que se encontraron metilados diferencialmente en EA se asociaron con los genes protocadherina PCDHGB1-3 y PCDHGA1-6. La validación en pacientes colombianos mostró diferencias significativas en la metilación de MDGA1, GDAP2 y MIB2. Estos hallazgos sugieren que la metilación diferencial desempeña un papel en la patogénesis compartida entre periodontitis y EA, justificando nuevas exploraciones de estos mecanismos epigenéticos comunes. | spa |
dc.description.abstract | This PhD thesis analyzed DNA methylation patterns in peripheral blood in patients with Alzheimer's disease (AD) and periodontitis throughout the genome, revealing epigenetic alterations in key genes related to inflammation and metabolic pathways. In periodontitis, positions and regions with differential methylation were found, identifying differentially hypermethylated genes such as GDAP2, RPH3AL, SLC19A1 and COL18A1; and differentially hypomethylated genes such as CUL3, ARID3C, BCL11A and SLC6A5, involved in immune response and metabolism. In AD, positions and regions with differential methylation were found, including differentially hypermethylated genes such as CACNA1A, HOXA-AS3, HOXA6, and differentially hypomethylated genes such as MIB2, KMT5A, MIDEAS and BCAM, involved in systemic inflammation. Functional gene enrichment analysis showed ontologies related to cellular transport and immune response in periodontitis and AD. Interestingly, an exact epigenetic match was found in a 93-base pair region of the MDGA1 gene in AD and periodontitis, indicating epigenetic relevance at the intersection between these diseases. Likewise, differential methylation results for prioritized genes showed HLA-B and PDGFRA in both diseases showing an inflammatory epigenetic connection between them. The blood-brain surrogate CpGs found differentially methylated in AD were associated with the protocadherin genes PCDHGB1-3 and PCDHGA1-6. Validation in Colombian patients showed significant differences in the methylation of MDGA1, GDAP2, and MIB2. These findings suggest that differential methylation plays a role in the shared pathogenesis between periodontitis and AD, justifying further explorations of these common epigenetic mechanisms. | spa |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Odontología | spa |
dc.description.domain | https://www.ustabuca.edu.co/ | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.citation | Chacón Arboleda, P. T. (2024) Patrones de metilación de ADN en sangre periférica en periodontitis y enfermedad de Alzheimer: análisis diferencial, de intersección y validación. [Tesis de posgrado]. Universidad Santo Tomás, Bucaramanga, Colombia | spa |
dc.identifier.instname | instname:Universidad Santo Tomás | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad Santo Tomás | spa |
dc.identifier.repourl | repourl:https://repository.usta.edu.co | spa |
dc.identifier.uri | http://hdl.handle.net/11634/58784 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Santo Tomás | spa |
dc.publisher.faculty | Facultad de Odontología | spa |
dc.publisher.program | Doctorado Odontología | spa |
dc.relation.references | Acha, B., Corroza, J., Sanchez-Ruiz de Gordoa, J., Cabello, C., Robles, M., Mendez-Lopez, I., . . . i, B. S. G. (2023). Association of Blood-Based DNA Methylation Markers With Late- Onset Alzheimer Disease: A Potential Diagnostic Approach. Neurology, 101(23), e2434- e2447. https://doi.org/10.1212/WNL.0000000000207865 | spa |
dc.relation.references | Acharjee, S., Chauhan, S., Pal, R., & Tomar, R. S. (2023). Mechanisms of DNA methylation and histone modifications. Prog Mol Biol Transl Sci, 197, 51-92. https://doi.org/10.1016/bs.pmbts.2023.01.001 | spa |
dc.relation.references | Acharya, S., Lumley, A. I., Zhang, L., Vausort, M., Devaux, Y., & On Behalf Of The Ncer-Pd, C. (2023). GATA3 as a Blood-Based RNA Biomarker for Idiopathic Parkinson's Disease. Int J Mol Sci, 24(12). https://doi.org/10.3390/ijms241210040 | spa |
dc.relation.references | Akiyama, H., Barger, S., Barnum, S., Bradt, B., Bauer, J., Cole, G. M., . . . Wyss-Coray, T. (2000). Inflammation and Alzheimer's disease. Neurobiol Aging, 21(3), 383-421. https://doi.org/10.1016/s0197-4580(00)00124-x | spa |
dc.relation.references | Alcolea, D., Beeri, M. S., Rojas, J. C., Gardner, R. C., & Lleo, A. (2023). Blood Biomarkers in Neurodegenerative Diseases: Implications for the Clinical Neurologist. Neurology, 101(4), 172-180. https://doi.org/10.1212/WNL.0000000000207193 | spa |
dc.relation.references | Allam, Duan, Y., Heinemann, F., Winter, J., Gotz, W., Deschner, J., . . . Novak, N. (2011). IL- 23-producing CD68(+) macrophage-like cells predominate within an IL-17-polarized infiltrate in chronic periodontitis lesions. J Clin Periodontol, 38(10), 879-886. https://doi.org/10.1111/j.1600-051X.2011.01752.x | spa |
dc.relation.references | Andrade, A., Brennecke, A., Mallat, S., Brown, J., Gomez-Rivadeneira, J., Czepiel, N., & Londrigan, L. (2019). Genetic Associations between Voltage-Gated Calcium Channels and Psychiatric Disorders. Int J Mol Sci, 20(14). https://doi.org/10.3390/ijms20143537 | spa |
dc.relation.references | Andrews, S. J., Fulton-Howard, B., O'Reilly, P., Marcora, E., & Goate, A. M. (2021). Causal Associations Between Modifiable Risk Factors and the Alzheimer's Phenome. Ann Neurol, 89(1), 54-65. https://doi.org/10.1002/ana.25918 | spa |
dc.relation.references | Angarica, V. E., & Del Sol, A. (2017). Bioinformatics Tools for Genome-Wide Epigenetic Research. Adv Exp Med Biol, 978, 489-512. https://doi.org/10.1007/978-3-319-53889- 1_25 | spa |
dc.relation.references | Ara, T., Kurata, K., Hirai, K., Uchihashi, T., Uematsu, T., Imamura, Y., . . . Wang, P. L. (2009). Human gingival fibroblasts are critical in sustaining inflammation in periodontal disease. J Periodontal Res, 44(1), 21-27. https://doi.org/10.1111/j.1600-0765.2007.01041.x | spa |
dc.relation.references | Aronson, J. K., & Ferner, R. E. (2017). Biomarkers-A General Review. Curr Protoc Pharmacol, 76, 9.23.21-29.23.17. https://doi.org/10.1002/cpph.19 | spa |
dc.relation.references | Arumugam, K., Shin, W., Schiavone, V., Vlahos, L., Tu, X., Carnevali, D., . . . Cosma, M. P. (2020). The Master Regulator Protein BAZ2B Can Reprogram Human Hematopoietic Lineage-Committed Progenitors into a Multipotent State. Cell Rep, 33(10), 108474. https://doi.org/10.1016/j.celrep.2020.108474 | spa |
dc.relation.references | Ashraf, G. M., Tarasov, V. V., Makhmutovа, A., Chubarev, V. N., Avila-Rodriguez, M., Bachurin, S. O., & Aliev, G. (2019). The Possibility of an Infectious Etiology of Alzheimer Disease. Mol Neurobiol, 56(6), 4479-4491. https://doi.org/10.1007/s12035- 018-1388-y | spa |
dc.relation.references | Ashton, N. J., Hye, A., Rajkumar, A. P., Leuzy, A., Snowden, S., Suárez-Calvet, M., . . . Aarsland, D. (2020). An update on blood-based biomarkers for non-Alzheimer neurodegenerative disorders. Nat Rev Neurol, 16(5), 265-284. https://doi.org/10.1038/s41582-020-0348-0 | spa |
dc.relation.references | Assfaw, Schindler, S. E., & Morris, J. C. (2024). Advances in blood biomarkers for Alzheimer disease (AD): A review. Kaohsiung J Med Sci, 40(8), 692-698. https://doi.org/10.1002/kjm2.12870 | spa |
dc.relation.references | Azevedo, A. M., Carvalho Rocha, L. P., de Faria Amormino, S. A., Cavalieri Gomes, C., Ornelas Dutra, W., Santiago Gomez, R., . . . Rocha Moreira, P. (2020). DNA methylation profile of genes related to immune response in generalized periodontitis. Journal of periodontal research, 55(3), 426-431. https://doi.org/10.1111/jre.12726 | spa |
dc.relation.references | Babitha, G., Nagpal, D., Shripad, S. J., Yadav, S. C., & Prakash, S. (2016). Interleukins in periodontal health and disease. Indian J Dent Adv, 8(1), 18-32. https://doi.org/10.5866/2016.8.10018 | spa |
dc.relation.references | Baciu, S. F., Mesaroș, A., & Kacso, I. M. (2023). Chronic Kidney Disease and Periodontitis Interplay-A Narrative Review. Int J Environ Res Public Health, 20(2). https://doi.org/10.3390/ijerph20021298 | spa |
dc.relation.references | Baeza, M., Morales, A., Cisterna, C., Cavalla, F., Jara, G., Isamitt, Y., . . . Gamonal, J. (2020). Effect of periodontal treatment in patients with periodontitis and diabetes: systematic review and meta-analysis. J Appl Oral Sci, 28, e20190248. https://doi.org/10.1590/1678- 7757-2019-0248 | spa |
dc.relation.references | Bahado-Singh, R. O., Radhakrishna, U., Gordevičius, J., Aydas, B., Yilmaz, A., Jafar, F., . . . Vishweswaraiah, S. (2022). Artificial Intelligence and Circulating Cell-Free DNA Methylation Profiling: Mechanism and Detection of Alzheimer's Disease. Cells, 11(11). https://doi.org/10.3390/cells11111744 | spa |
dc.relation.references | Bahado-Singh, R. O., Vishweswaraiah, S., Aydas, B., Yilmaz, A., Metpally, R. P., Carey, D. J., . . . Radhakrishna, U. (2021). Artificial intelligence and leukocyte epigenomics: Evaluation and prediction of late-onset Alzheimer's disease. PLoS One, 16(3), e0248375. https://doi.org/10.1371/journal.pone.0248375 | spa |
dc.relation.references | Bai, J., Li, Y., Shao, T., Zhao, Z., Wang, Y., Wu, A., . . . Li, X. (2014). Integrating analysis reveals microRNA-mediated pathway crosstalk among Crohn's disease, ulcerative colitis and colorectal cancer. Mol Biosyst, 10(9), 2317-2328. https://doi.org/10.1039/c4mb00169a | spa |
dc.relation.references | Bakulski, K. M., Dolinoy, D. C., Sartor, M. A., Paulson, H. L., Konen, J. R., Lieberman, A. P., . . . Rozek, L. S. (2012). Genome-wide DNA methylation differences between late-onset Alzheimer's disease and cognitively normal controls in human frontal cortex. J Alzheimers Dis, 29(3), 571-588. https://doi.org/10.3233/jad-2012-111223 Bale, B. F., Doneen, A. L., & Vigerust, D. J. (2017). High-risk periodontal pathogens | spa |
dc.relation.references | Barros-Silva, D., Marques, C. J., Henrique, R., & Jerónimo, C. (2018). Profiling DNA Methylation Based on Next-Generation Sequencing Approaches: New Insights and Clinical Applications. Genes (Basel), 9(9). https://doi.org/10.3390/genes9090429 | spa |
dc.relation.references | Barros, & Offenbacher, S. (2014). Modifiable risk factors in periodontal disease: epigenetic regulation of gene expression in the inflammatory response. Periodontol 2000, 64(1), 95- 110. https://doi.org/10.1111/prd.12000 | spa |
dc.relation.references | Barros, S., Fahimipour, F., Tarran, R., Kim, S., Scarel‐Caminaga, R., Justice, A., & North, K. (2020). Epigenetic reprogramming in periodontal disease: dynamic crosstalk with potential impact in oncogenesis. Periodontology 2000, 82(1), 157-172. | spa |
dc.relation.references | Barthet, G., & Mulle, C. (2020). Presynaptic failure in Alzheimer's disease. Prog Neurobiol, 194, 101801. https://doi.org/10.1016/j.pneurobio.2020.101801 | spa |
dc.relation.references | Bartold. (2018). Lifestyle and periodontitis: The emergence of personalized periodontics. Periodontol 2000, 78(1), 7-11. https://doi.org/10.1111/prd.12237 | spa |
dc.relation.references | Bartold, P. M., & Van Dyke, T. E. (2017). Host modulation: controlling the inflammation to control the infection. Periodontol 2000, 75(1), 317-329. https://doi.org/10.1111/prd.12169 | spa |
dc.relation.references | Bartold, P. M., & Van Dyke, T. E. (2019). An appraisal of the role of specific bacteria in the initial pathogenesis of periodontitis. J Clin Periodontol, 46(1), 6-11. https://doi.org/10.1111/jcpe.13046 | spa |
dc.relation.references | Baruah, A., Singla, K., Chapadgaonkar, S. S., & Rameshwari, R. (2020). In–Silico Visualization of Gene-Gene Interactions in Autism Spectrum Disorder Genes. Biosciences Biotechnology Research Asia, 17(3), 485-498. https://doi.org/http://dx.doi.org/10.13005/bbra/2852 | spa |
dc.relation.references | Batchelor, P. (2014). Is periodontal disease a public health problem? Br Dent J, 217(8), 405-409. https://doi.org/10.1038/sj.bdj.2014.912 | spa |
dc.relation.references | Bediaga, Elcoroaristizabal, Calvo, Inza, Pérez, Acha-Sagredo, . . . Pancorb., d. (2017). Blood samples as a surrogate for brain samples in methylation studies. EC Neurology, 5, 74-90. | spa |
dc.relation.references | Benakanakere, M., Abdolhosseini, M., Hosur, K., Finoti, L. S., & Kinane, D. F. (2015). TLR2 promoter hypermethylation creates innate immune dysbiosis. J Dent Res, 94(1), 183-191. https://doi.org/10.1177/0022034514557545 | spa |
dc.relation.references | Benakanakere, M. R., Finoti, L., Palioto, D. B., Teixeira, H. S., & Kinane, D. F. (2019). Epigenetics, Inflammation, and Periodontal Disease. Current Oral Health Reports, 6(1), 37-46. https://doi.org/10.1007/s40496-019-0208-4 | spa |
dc.relation.references | Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal statistical society: series B (Methodological), 57(1), 289-300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x | spa |
dc.relation.references | Bernstein, A. I., Lin, Y., Street, R. C., Lin, L., Dai, Q., Yu, L., . . . Jin, P. (2016). 5- Hydroxymethylation-associated epigenetic modifiers of Alzheimer's disease modulate Tau-induced neurotoxicity. Hum Mol Genet, 25(12), 2437-2450. https://doi.org/10.1093/hmg/ddw109 | spa |
dc.relation.references | Bevill, S. M., Olivares-Quintero, J. F., Sciaky, N., Golitz, B. T., Singh, D., Beltran, A. S., . . . Johnson, G. L. (2019). GSK2801, a BAZ2/BRD9 Bromodomain Inhibitor, Synergizes with BET Inhibitors to Induce Apoptosis in Triple-Negative Breast Cancer. Mol Cancer Res, 17(7), 1503-1518. https://doi.org/10.1158/1541-7786.Mcr-18-1121 | spa |
dc.relation.references | Bhore, N., Wang, B. J., Chen, Y. W., & Liao, Y. F. (2017). Critical Roles of Dual-Specificity Phosphatases in Neuronal Proteostasis and Neurological Diseases. Int J Mol Sci, 18(9). https://doi.org/10.3390/ijms18091963 | spa |
dc.relation.references | Bhuyan, R., Bhuyan, S. K., Mohanty, J. N., Das, S., Juliana, N., & Juliana, I. F. (2022). Periodontitis and Its Inflammatory Changes Linked to Various Systemic Diseases: A | spa |
dc.relation.references | Boccardi, M., Dodich, A., Albanese, E., Gayet-Ageron, A., Festari, C., Ashton, N. J., . . . Garibotto, V. (2021). The strategic biomarker roadmap for the validation of Alzheimer's diagnostic biomarkers: methodological update. Eur J Nucl Med Mol Imaging, 48(7), 2070-2085. https://doi.org/10.1007/s00259-020-05120-2 | spa |
dc.relation.references | Bolós, M., Perea, J. R., & Avila, J. (2017). Alzheimer's disease as an inflammatory disease. Biomol Concepts, 8(1), 37-43. https://doi.org/10.1515/bmc-2016-0029 | spa |
dc.relation.references | Bondi, M. W., Edmonds, E. C., & Salmon, D. P. (2017). Alzheimer's Disease: Past, Present, and Future. J Int Neuropsychol Soc, 23(9-10), 818-831. https://doi.org/10.1017/s135561771700100x | spa |
dc.relation.references | Borsa, L., Dubois, M., Sacco, G., & Lupi, L. (2021). Analysis the Link between Periodontal Diseases and Alzheimer's Disease: A Systematic Review. Int J Environ Res Public Health, 18(17). https://doi.org/10.3390/ijerph18179312 | spa |
dc.relation.references | Bouziane, A., Lattaf, S., & Abdallaoui Maan, L. (2023). Effect of Periodontal Disease on Alzheimer's Disease: A Systematic Review. Cureus, 15(10), e46311. https://doi.org/10.7759/cureus.46311 | spa |
dc.relation.references | Braun., Han, S., Hing, B., Nagahama, Y., Gaul, L. N., Heinzman, J. T., . . . Shinozaki, G. (2019). Genome-wide DNA methylation comparison between live human brain and peripheral tissues within individuals. Transl Psychiatry, 9(1), 47. https://doi.org/10.1038/s41398- 019-0376-y | spa |
dc.relation.references | Breivik, T. J., Gjermo, P., Gundersen, Y., Opstad, P. K., Murison, R., Hugoson, A., . . . Fristad, I. (2024). Microbiota-immune-brain interactions: A new vision in the understanding of periodontal health and disease. Periodontol 2000. https://doi.org/10.1111/prd.12610 | spa |
dc.relation.references | Breza, M., Bourinaris, T., Efthymiou, S., Maroofian, R., Athanasiou-Fragkouli, A., Tzartos, J., . . . Houlden, H. (2020). A homozygous GDAP2 loss-of-function variant in a patient with adult-onset cerebellar ataxia. Brain, 143(6), e49. https://doi.org/10.1093/brain/awaa120 | spa |
dc.relation.references | Brookes, & Shi. (2014). Diverse epigenetic mechanisms of human disease. Annu Rev Genet, 48, 237-268. https://doi.org/10.1146/annurev-genet-120213-092518 | spa |
dc.relation.references | Bryzgalov, L. O., Korbolina, E. E., & Merkulova, T. I. (2023). Exploring the Genetic Predisposition to Epigenetic Changes in Alzheimer's Disease. Int J Mol Sci, 24(9). https://doi.org/10.3390/ijms24097955 | spa |
dc.relation.references | Buduneli, N. (2019). Biomarkers in periodontal health and disease: Rationale, benefits, and future directions. Springer Nature. | spa |
dc.relation.references | Cahyanur, R., Irawan, C., Lisnawati, L., Adham, M., Kamal, A. F., Utomo, A. R. H., . . . Salamah, T. (2023). CXCL8, MMP1, MMP2, and FN1 Gene Expression and Tumor Extension in Nasopharyngeal Cancer Patients: A Cross-sectional Study. Acta Medica Indonesiana, 55(3), 261. | spa |
dc.relation.references | Cai, C., Langfelder, P., Fuller, T. F., Oldham, M. C., Luo, R., van den Berg, L. H., . . . Horvath, S. (2010). Is human blood a good surrogate for brain tissue in transcriptional studies? BMC genomics, 11, 589. https://doi.org/10.1186/1471-2164-11-589 | spa |
dc.relation.references | Califf, R. M. (2018). Biomarker definitions and their applications. Exp Biol Med (Maywood), 243(3), 213-221. https://doi.org/10.1177/1535370217750088 | spa |
dc.relation.references | Calle-Fabregat, C. d. l., Morante-Palacios, O., & Ballestar, E. (2020). Understanding the relevance of DNA methylation changes in immune differentiation and disease. Genes, 11(1), 110. https://doi.org/10.3390/genes11010110 | spa |
dc.relation.references | Calsolaro, V., & Edison, P. (2016). Neuroinflammation in Alzheimer's disease: Current evidence and future directions. Alzheimers Dement, 12(6), 719-732. https://doi.org/10.1016/j.jalz.2016.02.010 | spa |
dc.relation.references | Cardenas, A. M., Ardila, L. J., Vernal, R., Melgar-Rodriguez, S., & Hernandez, H. G. (2022). Biomarkers of Periodontitis and Its Differential DNA Methylation and Gene Expression in Immune Cells: A Systematic Review. Int J Mol Sci, 23(19). https://doi.org/10.3390/ijms231912042 | spa |
dc.relation.references | Cardona, K., Medina, J., Orrego-Cardozo, M., Restrepo de Mejía, F., Elcoroaristizabal, X., & Naranjo Galvis, C. A. (2021). Inflammatory gene expression profiling in peripheral blood from patients with Alzheimer's disease reveals key pathways and hub genes with potential diagnostic utility: a preliminary study. PeerJ, 9, e12016. https://doi.org/10.7717/peerj.12016 | spa |
dc.relation.references | Cardoso, J. M., Ribeiro, A. C., Proença, L., Noronha, S., & Castro Alves, R. (2024). Analysis of the Association of IL-1A, IL-1B, and IL-1RN Genetic Polymorphisms with Periimplantitis in a Portuguese Population. Int J Oral Maxillofac Implants, 39(4), 103-111. https://doi.org/10.11607/jomi.10615 | spa |
dc.relation.references | Carnielli, C. M., Macedo, C. C. S., De Rossi, T., Granato, D. C., Rivera, C., Domingues, R. R., . . . Paes Leme, A. F. (2018). Combining discovery and targeted proteomics reveals a prognostic signature in oral cancer. Nat Commun, 9(1), 3598. https://doi.org/10.1038/s41467-018-05696-2 | spa |
dc.relation.references | Carter, C. J., France, J., Crean, S., & Singhrao, S. K. (2017). The Porphyromonas gingivalis/Host Interactome Shows Enrichment in GWASdb Genes Related to Alzheimer's Disease, Diabetes and Cardiovascular Diseases. Front Aging Neurosci, 9, 408. https://doi.org/10.3389/fnagi.2017.00408 | spa |
dc.relation.references | Carvajal, P., Vernal, R., Reinero, D., Malheiros, Z., Stewart, B., Pannuti, C. M., & Romito, G. A. (2020). Periodontal disease and its impact on general health in Latin America. Section II: Introduction part II. Braz Oral Res, 34(supp1 1), e023. https://doi.org/10.1590/1807- 3107bor-2020.vol34.0023 | spa |
dc.relation.references | Caton, J. G., Armitage, G., Berglundh, T., Chapple, I. L., Jepsen, S., Kornman, K. S., . . . Tonetti, M. S. (2018). A new classification scheme for periodontal and peri‐implant diseases and conditions–Introduction and key changes from the 1999 classification. https://doi.org/10.1002/JPER.18-0157 | spa |
dc.relation.references | Cecoro, G., Annunziata, M., Iuorio, M. T., Nastri, L., & Guida, L. (2020). Periodontitis, Low- Grade Inflammation and Systemic Health: A Scoping Review. Medicina (Kaunas), 56(6). https://doi.org/10.3390/medicina56060272 | spa |
dc.relation.references | Cekici, A., Kantarci, A., Hasturk, H., & Van Dyke, T. E. (2014). Inflammatory and immune pathways in the pathogenesis of periodontal disease. Periodontol 2000, 64(1), 57-80. https://doi.org/10.1111/prd.12002 | spa |
dc.relation.references | Celarain, N., Sánchez-Ruiz de Gordoa, J., Zelaya, M. V., Roldán, M., Larumbe, R., Pulido, L., . . . Mendioroz, M. (2016). TREM2 upregulation correlates with 5-hydroxymethycytosine enrichment in Alzheimer’s disease hippocampus. Clinical Epigenetics, 8, 1-10. https://doi.org/10.1186/s13148-016-0202-9 | spa |
dc.relation.references | Chapple, I. L. C., Mealey, B. L., Van Dyke, T. E., Bartold, P. M., Dommisch, H., Eickholz, P., . . . Yoshie, H. (2018). Periodontal health and gingival diseases and conditions on an intact and a reduced periodontium: Consensus report of workgroup 1 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J Periodontol, 89 Suppl 1, S74-s84. https://doi.org/10.1002/jper.17-0719 | spa |
dc.relation.references | Cheignon, C., Tomas, M., Bonnefont-Rousselot, D., Faller, P., Hureau, C., & Collin, F. (2018). Oxidative stress and the amyloid beta peptide in Alzheimer's disease. Redox Biol, 14, 450-464. https://doi.org/10.1016/j.redox.2017.10.014 | spa |
dc.relation.references | Chen, Zhong, Y. J., Dong, Q. Q., Wong, H. M., & Wen, Y. F. (2021a). Global, regional, and national burden of severe periodontitis, 1990-2019: An analysis of the Global Burden of Disease Study 2019. J Clin Periodontol, 48(9), 1165-1188. https://doi.org/10.1111/jcpe.13506 | spa |
dc.relation.references | Chen, Zhong, Y. J., Dong, Q. Q., Wong, H. M., & Wen, Y. F. (2021b). Global, regional, and national burden of severe periodontitis, 1990–2019: An analysis of the Global Burden of Disease Study 2019. Journal of clinical periodontology, 48(9), 1165-1188. | spa |
dc.relation.references | Chen, M. H., Cheng, C. M., Tsai, S. J., Tsai, C. F., Su, T. P., Li, C. T., . . . Bai, Y. M. (2021). Obsessive-Compulsive Disorder and Dementia Risk: A Nationwide Longitudinal Study. J Clin Psychiatry, 82(3). https://doi.org/10.4088/JCP.20m13644 | spa |
dc.relation.references | Chen, X., Lei, H., Cheng, Y., Fang, S., Sun, W., Zhang, X., & Jin, Z. (2024). CXCL8, MMP12, and MMP13 are common biomarkers of periodontitis and oral squamous cell carcinoma. Oral Dis, 30(2), 390-407. https://doi.org/10.1111/odi.14419 | spa |
dc.relation.references | Cheng, Hughes, F. J., & Taams, L. S. (2014). The presence, function and regulation of IL-17 and Th17 cells in periodontitis. J Clin Periodontol, 41(6), 541-549. https://doi.org/10.1111/jcpe.12238 | spa |
dc.relation.references | Cheng, Q., Wang, J., Li, M., Fang, J., Ding, H., Meng, J., . . . Zhang, W. (2022). CircSV2b participates in oxidative stress regulation through miR-5107-5p-Foxk1-Akt1 axis in Parkinson's disease. Redox Biol, 56, 102430. https://doi.org/10.1016/j.redox.2022.102430 | spa |
dc.relation.references | Cheng, W. C., Hughes, F. J., & Taams, L. S. (2014). The presence, function and regulation of IL‐ 17 and Th17 cells in periodontitis. Journal of clinical periodontology, 41(6), 541-549. | spa |
dc.relation.references | Chikamatsu, K., Aono, A., Hata, H., Igarashi, Y., Takaki, A., Yamada, H., . . . Mitarai, S. (2018). Evaluation of PyroMark Q24 pyrosequencing as a method for the identification of | spa |
dc.relation.references | Cholewa-Waclaw, J., Bird, A., von Schimmelmann, M., Schaefer, A., Yu, H., Song, H., . . . Tsai, L. H. (2016). The Role of Epigenetic Mechanisms in the Regulation of Gene Expression in the Nervous System. J Neurosci, 36(45), 11427-11434. https://doi.org/10.1523/jneurosci.2492-16.2016 | spa |
dc.relation.references | Chouliaras, L., Mastroeni, D., Delvaux, E., Grover, A., Kenis, G., Hof, P. R., . . . van den Hove, D. L. (2013). Consistent decrease in global DNA methylation and hydroxymethylation in the hippocampus of Alzheimer's disease patients. Neurobiol Aging, 34(9), 2091-2099. https://doi.org/10.1016/j.neurobiolaging.2013.02.021 | spa |
dc.relation.references | Chung, S. J., Lee, J. H., Kim, S. Y., You, S., Kim, M. J., Lee, J. Y., & Koh, J. (2013). Association of GWAS top hits with late-onset Alzheimer disease in Korean population. Alzheimer Dis Assoc Disord, 27(3), 250-257. https://doi.org/10.1097/WAD.0b013e31826d7281 | spa |
dc.relation.references | Ciceri, F., Rotllant, D., & Maes, T. (2017). Understanding epigenetic alterations in Alzheimer's and Parkinson's disease: Towards targeted biomarkers and therapies. Current Pharmaceutical Design, 23(5), 839-857. https://doi.org/10.2174/1381612823666170124121140 | spa |
dc.relation.references | Cichońska, D., Mazuś, M., & Kusiak, A. (2024). Recent aspects of periodontitis and Alzheimer’s disease—a narrative review. International journal of molecular sciences, 25(5), 2612. https://doi.org/10.3390/ijms25052612 | spa |
dc.relation.references | Connor, S. A., Ammendrup-Johnsen, I., Kishimoto, Y., Tari, P. K., Cvetkovska, V., Harada, T., . . . Craig, A. M. (2017). Loss of synapse repressor MDGA1 enhances perisomatic inhibition, confers resistance to network excitation, and impairs cognitive function. Cell reports, 21(13), 3637-3645. https://doi.org/10.1016/j.celrep.2017.11.109 | spa |
dc.relation.references | Conole, E. L., Stevenson, A. J., Muñoz Maniega, S., Harris, S. E., Green, C., Valdés Hernández, M. d. C., . . . Deary, I. J. (2021). DNA methylation and protein markers of chronic inflammation and their associations with brain and cognitive aging. Neurology, 97(23), e2340-e2352. https://doi.org/10.1212/WNL.00000000000129 | spa |
dc.relation.references | Consortium, G.-T. (2020). The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science, 369(6509), 1318-1330. https://doi.org/10.1126/science.aaz1776 | spa |
dc.relation.references | Coppedè, F. (2021). Epigenetic regulation in Alzheimer’s disease: is it a potential therapeutic target? Expert Opinion on Therapeutic Targets, 25(4), 283-298. https://doi.org/10.1080/14728222.2021.1916469 | spa |
dc.relation.references | Crews, L., & Masliah, E. (2010). Molecular mechanisms of neurodegeneration in Alzheimer's disease. Hum Mol Genet, 19(R1), R12-20. https://doi.org/10.1093/hmg/ddq160 | spa |
dc.relation.references | Custodio, Wheelock, A., Thumala, D., & Slachevsky, A. (2017). Dementia in Latin America: epidemiological evidence and implications for public policy. Frontiers in aging neuroscience, 9, 221. https://doi.org/10.3389/fnagi.2017.00221 | spa |
dc.relation.references | d'Abramo, C., D'Adamio, L., & Giliberto, L. (2020). Significance of Blood and Cerebrospinal Fluid Biomarkers for Alzheimer's Disease: Sensitivity, Specificity and Potential for Clinical Use. J Pers Med, 10(3). https://doi.org/10.3390/jpm10030116 | spa |
dc.relation.references | da Silva, M. K., de Carvalho, A. C. G., Alves, E. H. P., da Silva, F. R. P., Pessoa, L. d. S., & Vasconcelos, D. F. P. (2017). Genetic factors and the risk of periodontitis development: Findings from a systematic review composed of 13 studies of meta‐analysis with 71,531 participants. International journal of dentistry, 2017(1), 1914073. https://doi.org/10.1155/2017/1914073 | spa |
dc.relation.references | Dahlqvist, J., Fulco, C. P., Ray, J. P., Liechti, T., de Boer, C. G., Lieb, D. J., . . . Hacohen, N. (2022). Systematic identification of genomic elements that regulate FCGR2A expression and harbor variants linked with autoimmune disease. Human molecular genetics, 31(12), 1946-1961. https://doi.org/10.1093/hmg/ddab372 | spa |
dc.relation.references | Dantzer, R. (2018). Neuroimmune interactions: from the brain to the immune system and vice versa. Physiological Reviews, 98(1), 477-504. https://doi.org/10.1152/physrev.00039.2016 | spa |
dc.relation.references | Dato, S., De Rango, F., Crocco, P., Pallotti, S., Belloy, M. E., Le Guen, Y., . . . Napolioni, V. (2023). Sex- and APOE-specific genetic risk factors for late-onset Alzheimer's disease: Evidence from gene-gene interaction of longevity-related loci. Aging Cell, 22(9), e13938. https://doi.org/10.1111/acel.13938 | spa |
dc.relation.references | Davis, S., & Meltzer, P. S. (2007). GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics, 23(14), 1846-1847. https://doi.org/10.1093/bioinformatics/btm254 | spa |
dc.relation.references | de Camargo Pereira, G., Guimaraes, G. N., Planello, A. C., Santamaria, M. P., de Souza, A. P., Line, S. R., & Marques, M. R. (2013). Porphyromonas gingivalis LPS stimulation downregulates DNMT1, DNMT3a, and JMJD3 gene expression levels in human HaCaT keratinocytes. Clin Oral Investig, 17(4), 1279-1285. https://doi.org/10.1007/s00784-012- 0816-z | spa |
dc.relation.references | De Oliveira, N. F., Andia, D. C., Planello, A. C., Pasetto, S., Marques, M. R., Nociti, F. H., Jr., . . . De Souza, A. P. (2011). TLR2 and TLR4 gene promoter methylation status during chronic periodontitis. J Clin Periodontol, 38(11), 975-983. https://doi.org/10.1111/j.1600-051X.2011.01765.x | spa |
dc.relation.references | Delbove, T., Gueyffier, F., Juillard, L., Kalbacher, E., Maucort-Boulch, D., Nony, P., . . . Gritsch, K. (2021). Effect of periodontal treatment on the glomerular filtration rate, reduction of inflammatory markers and mortality in patients with chronic kidney disease: A systematic review. PLoS One, 16(1), e0245619. https://doi.org/10.1371/journal.pone.0245619 | spa |
dc.relation.references | Deng, K.-G., Zhao, H., & Zuo, P.-X. (2019). Association between KIAA0319 SNPs and risk of dyslexia: a meta-analysis. Journal of Genetics, 98(2), 62. https://doi.org/https://doi.org/10.1007/s12041-019-1103-4 | spa |
dc.relation.references | Desta, N. (2021). Pathophysiological association between periodontal disease and Alzheimer's disease: Importance of periodontal health in the elderly. Journal of Oral Biosciences, 63(4), 351-359. https://doi.org/10.1016/j.job.2021.08.007 | spa |
dc.relation.references | Dhar, G. A., Saha, S., Mitra, P., & Nag Chaudhuri, R. (2021). DNA methylation and regulation of gene expression: Guardian of our health. The Nucleus, 64(3), 259-270. https://doi.org/10.1007/s13237-021-00367-y | spa |
dc.relation.references | Dharshini, S. A. P., Jemimah, S., Taguchi, Y., & Gromiha, M. M. (2021). Exploring common therapeutic targets for neurodegenerative disorders using transcriptome study. Frontiers in Genetics, 12, 639160. https://doi.org/10.3389/fgene.2021.639160 | spa |
dc.relation.references | Dhingra, R., Kwee, L. C., Diaz-Sanchez, D., Devlin, R. B., Cascio, W., Hauser, E. R., . . . Olden, K. (2019). Evaluating DNA methylation age on the illumina MethylationEPIC bead chip. PLoS One, 14(4), e0207834. https://doi.org/10.1371/journal.pone.0207834 | spa |
dc.relation.references | Di Francesco, A., Arosio, B., Falconi, A., Di Bonaventura, M. V. M., Karimi, M., Mari, D., . . . D’Addario, C. (2015). Global changes in DNA methylation in Alzheimer’s disease peripheral blood mononuclear cells. Brain, behavior, and immunity, 45, 139-144. https://doi.org/10.1016/j.bbi.2014.11.002 | spa |
dc.relation.references | Dioguardi, M., Crincoli, V., Laino, L., Alovisi, M., Sovereto, D., Mastrangelo, F., . . . Muzio, L. L. (2020). The Role of Periodontitis and Periodontal Bacteria in the Onset and Progression of Alzheimer's Disease: A Systematic Review. Journal of clinical medicine, 9(2), 495. https://doi.org/10.3390/jcm9020495 | spa |
dc.relation.references | Diomede, F., Thangavelu, S. R., Merciaro, I., D’Orazio, M., Bramanti, P., Mazzon, E., & Trubiani, O. (2017). Porphyromonas gingivalis lipopolysaccharide stimulation in human periodontal ligament stem cells: role of epigenetic modifications to the inflammation. European journal of histochemistry: EJH, 61(3). https://doi.org/10.4081/ejh.2017.2826 | spa |
dc.relation.references | Diop-Bove, N. K., Wu, J., Zhao, R., Locker, J., & Goldman, I. D. (2009). Hypermethylation of the human proton-coupled folate transporter (SLC46A1) minimal trancriptional regulatory region in an antifolate-resistant HeLa cell line. Molecular cancer therapeutics, 8(8), 2424-2431. https://doi.org/10.1158/1535-7163.MCT-08-0938 | spa |
dc.relation.references | Dominy, S. S., Lynch, C., Ermini, F., Benedyk, M., Marczyk, A., Konradi, A., . . . Griffin, C. (2019). Porphyromonas gingivalis in Alzheimer’s disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Science advances, 5(1), eaau3333. https://doi.org/10.1126/sciadv.aau3333 | spa |
dc.relation.references | Dutzan, N., Konkel, J. E., Greenwell-Wild, T., & Moutsopoulos, N. M. (2016). Characterization of the human immune cell network at the gingival barrier. Mucosal Immunol, 9(5), 1163- 1172. https://doi.org/10.1038/mi.2015.136 | spa |
dc.relation.references | Ecker, S., Pancaldi, V., Valencia, A., Beck, S., & Paul, D. S. (2018). Epigenetic and Transcriptional Variability Shape Phenotypic Plasticity. BioEssays, 40(2). https://doi.org/10.1002/bies.201700148 | spa |
dc.relation.references | Eidhof, I., Baets, J., Kamsteeg, E.-J., Deconinck, T., van Ninhuijs, L., Martin, J.-J., . . . Schenck, A. (2018). GDAP2 mutations implicate susceptibility to cellular stress in a new form of cerebellar ataxia. Brain, 141(9), 2592-2604. https://doi.org/10.1093/brain/awy198 | spa |
dc.relation.references | Ek, W. E., Karlsson, T., Höglund, J., Rask-Andersen, M., & Johansson, Å. (2021). Causal effects of inflammatory protein biomarkers on inflammatory diseases. Sci Adv, 7(50), eabl4359. https://doi.org/10.1126/sciadv.abl4359 | spa |
dc.relation.references | Eke, P. I., Dye, B. A., Wei, L., Slade, G. D., Thornton‐Evans, G. O., Borgnakke, W. S., . . . Genco, R. J. (2015). Update on prevalence of periodontitis in adults in the United States: NHANES 2009 to 2012. Journal of periodontology, 86(5), 611-622. https://doi.org/10.1902/jop.2015.140520 | spa |
dc.relation.references | El Hajj, N., Dittrich, M., & Haaf, T. (2017). Epigenetic dysregulation of protocadherins in human disease. Semin Cell Dev Biol, 69, 172-182. https://doi.org/10.1016/j.semcdb.2017.07.007 | spa |
dc.relation.references | Elliott, P., Cowie, M. R., Franke, J., Ziegler, A., Antoniades, C., Bax, J., . . . Jensen, M. T. (2021). Development, validation, and implementation of biomarker testing in cardiovascular medicine state-of-the-art: proceedings of the European Society of Cardiology—Cardiovascular Round Table. Cardiovascular research, 117(5), 1248-1256. https://doi.org/10.1093/cvr/cvaa272 | spa |
dc.relation.references | Ellison, E. M., Bradley-Whitman, M. A., & Lovell, M. A. (2017). Single-Base Resolution Mapping of 5-Hydroxymethylcytosine Modifications in Hippocampus of Alzheimer's Disease Subjects. J Mol Neurosci, 63(2), 185-197. https://doi.org/10.1007/s12031-017- 0969-y | spa |
dc.relation.references | Emery, D. C., Shoemark, D. K., Batstone, T. E., Waterfall, C. M., Coghill, J. A., Cerajewska, T. L., . . . Allen, S. J. (2017). 16S rRNA Next Generation Sequencing Analysis Shows Bacteria in Alzheimer's Post-Mortem Brain. Front Aging Neurosci, 9, 195. https://doi.org/10.3389/fnagi.2017.00195 | spa |
dc.relation.references | Eskan, M. A., Hajishengallis, G., & Kinane, D. F. (2007). Differential activation of human gingival epithelial cells and monocytes by Porphyromonas gingivalis fimbriae. Infection and immunity, 75(2), 892-898. https://doi.org/10.1128/iai.01604-06 | spa |
dc.relation.references | Fabris, F., Palmer, D., de Magalhães, J. P., & Freitas, A. A. (2020). Comparing enrichment analysis and machine learning for identifying gene properties that discriminate between gene classes. Brief Bioinform, 21(3), 803-814. https://doi.org/10.1093/bib/bbz028 | spa |
dc.relation.references | Fan, R., Zhou, Y., Chen, X., Zhong, X., He, F., Peng, W., . . . Xu, Y. (2023). Porphyromonas gingivalis outer membrane vesicles promote apoptosis via msRNA-regulated DNA methylation in periodontitis. Microbiology Spectrum, 11(1), e03288-03222. https://doi.org/10.1128/spectrum.03288-22 | spa |
dc.relation.references | Fatmi, M. K., Wang, H., Slotabec, L., Wen, C., Seale, B., Zhao, B., & Li, J. (2024). Single-Cell RNA-seq reveals transcriptomic modulation of Alzheimer’s disease by activated protein C. Aging (Albany NY), 16(4), 3137. https://doi.org/10.18632/aging.205624 | spa |
dc.relation.references | Faulkner, E., Mensah, A., Rodgers, A. M., McMullan, L. R., & Courtenay, A. J. (2022). The Role of Epigenetic and Biological Biomarkers in the Diagnosis of Periodontal Disease: A Systematic Review Approach. Diagnostics (Basel), 12(4). https://doi.org/10.3390/diagnostics12040919 | spa |
dc.relation.references | Ferri, C. P., Prince, M., Brayne, C., Brodaty, H., Fratiglioni, L., Ganguli, M., . . . Huang, Y. (2005). Global prevalence of dementia: a Delphi consensus study. The lancet, 366(9503), 2112-2117. https://doi.org/10.1016/S0140-6736(05)67889-0 | spa |
dc.relation.references | Fischer, S., Schlotthauer, I., Kizner, V., Macartney, T., Dorner-Ciossek, C., & Gillardon, F. (2020). Loss-of-function mutations of CUL3, a high confidence gene for psychiatric disorders, Lead to aberrant neurodevelopment in human induced pluripotent stem cells. Neuroscience, 448, 234-254. https://doi.org/10.1016/j.neuroscience.2020.08.028 | spa |
dc.relation.references | Foster, E., Wildner, H., Tudeau, L., Haueter, S., Ralvenius, W. T., Jegen, M., . . . Ghanem, A. (2015). Targeted ablation, silencing, and activation establish glycinergic dorsal horn neurons as key components of a spinal gate for pain and itch. Neuron, 85(6), 1289-1304. https://doi.org/10.1016/j.neuron.2015.02.028 | spa |
dc.relation.references | Fransquet, P. D., & Ryan, J. (2019). The current status of blood epigenetic biomarkers for dementia. Crit Rev Clin Lab Sci, 56(7), 435-457. https://doi.org/10.1080/10408363.2019.1639129 | spa |
dc.relation.references | Fujihashi, K., Kono, Y., Beagley, K., Yamamoto, M., McGhee, J., Mestecky, J., & Kiyono, H. (1993). Cytokines and periodontal disease: immunopathological role of interleukins for B cell responses in chronic inflamed gingival tissues. Journal of periodontology, 64(5 Suppl), 400-406. | spa |
dc.relation.references | Fukuura, K., Inoue, Y., Miyajima, C., Watanabe, S., Tokugawa, M., Morishita, D., . . . Hayashi, H. (2019). The ubiquitin-specific protease USP17 prevents cellular senescence by stabilizing the methyltransferase SET8 and transcriptionally repressing p21. J Biol Chem, 294(44), 16429-16439. https://doi.org/10.1074/jbc.RA119.009006 | spa |
dc.relation.references | Garlet, G. (2010). Destructive and protective roles of cytokines in periodontitis: a re-appraisal from host defense and tissue destruction viewpoints. Journal of dental research, 89(12), 1349-1363. https://doi.org/10.1177/0022034510376 | spa |
dc.relation.references | Gasparoni, G., Bultmann, S., Lutsik, P., Kraus, T. F. J., Sordon, S., Vlcek, J., . . . Walter, J. (2018). DNA methylation analysis on purified neurons and glia dissects age and Alzheimer's disease-specific changes in the human cortex. Epigenetics Chromatin, 11(1), 41. https://doi.org/10.1186/s13072-018-0211-3 | spa |
dc.relation.references | Geng, Q.-S., Huang, T., Li, L.-F., Shen, Z.-B., Xue, W.-H., & Zhao, J. (2022). Over-expression and prognostic significance of FN1, correlating with immune infiltrates in thyroid cancer. Frontiers in Medicine, 8, 812278. https://doi.org/10.3389/fmed.2021.812278 | spa |
dc.relation.references | George, D. R., Whitehouse, P. J., & Ballenger, J. (2011). The evolving classification of dementia: placing the DSM-V in a meaningful historical and cultural context and pondering the future of "Alzheimer's". Cult Med Psychiatry, 35(3), 417-435. https://doi.org/10.1007/s11013-011-9219-x | spa |
dc.relation.references | Gerring, Z. F., Lupton, M. K., Edey, D., Gamazon, E. R., & Derks, E. M. (2020). An analysis of genetically regulated gene expression across multiple tissues implicates novel gene candidates in Alzheimer’s disease. Alzheimer's Research & Therapy, 12, 1-10. https://doi.org/10.1186/s13195-020-00611-8 | spa |
dc.relation.references | Glasner, A., Levi, A., Enk, J., Isaacson, B., Viukov, S., Orlanski, S., . . . Hanna, J. H. (2018). NKp46 receptor-mediated interferon-γ production by natural killer cells increases fibronectin 1 to alter tumor architecture and control metastasis. Immunity, 48(1), 107-119. e104. https://doi.org/10.1016/j.immuni.2017.12.007 | spa |
dc.relation.references | Glossop, J. R., Nixon, N. B., Emes, R. D., Sim, J., Packham, J. C., Mattey, D. L., . . . Fryer, A. A. (2017). DNA methylation at diagnosis is associated with response to diseasemodifying drugs in early rheumatoid arthritis. Epigenomics, 9(4), 419-428. https://doi.org/10.2217/epi-2016-0042 | spa |
dc.relation.references | Goldberg, A. D., Allis, C. D., & Bernstein, E. (2007). Epigenetics: a landscape takes shape. Cell, 128(4), 635-638. https://doi.org/10.1016/j.cell.2007.02.006 | spa |
dc.relation.references | Gong, L., Feng, X., Ye, D., Li, H., Wu, R., Tao, J., . . . Cui, P. (2020). OptMatch: Optimized Matchmaking via Modeling the High-Order Interactions on the Arena Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual Event, CA, USA. https://doi.org/10.1145/3394486.3403279 | spa |
dc.relation.references | Gonzalez-Mundo, I., Perez-Vielma, N. M., Gomez-Lopez, M., Fleury, A., Correa-Basurto, J., Rosales-Hernandez, M. C., . . . Miliar-Garcia, A. (2020). DNA methylation of the RE-1 silencing transcription factor in peripheral blood mononuclear cells and gene expression of antioxidant enzyme in patients with late-onset Alzheimer disease. Exp Gerontol, 136, 110951. https://doi.org/10.1016/j.exger.2020.110951 | spa |
dc.relation.references | Grønkjær, L., Holmstrup, P., Schou, S., Jepsen, P., & Vilstrup, H. (2018). Severe periodontitis and higher cirrhosis mortality. United European Gastroenterol J, 6(1), 73-80. https://doi.org/10.1177/2050640617715846 | spa |
dc.relation.references | Guarino, A., Favieri, F., Boncompagni, I., Agostini, F., Cantone, M., & Casagrande, M. (2019). Executive functions in Alzheimer disease: a systematic review. Frontiers in aging neuroscience, 10, 437. https://doi.org/https://doi.org/10.3389/fnagi.2018.00437 | spa |
dc.relation.references | Guo, H., Urban, A. E., & Wong, W. H. (2024). Prioritizing disease-related rare variants by integrating gene expression data. bioRxiv, 2024.2003. 2019.585836. https://doi.org/10.21203/rs.3.rs-4355589/v1 | spa |
dc.relation.references | Hajishengallis. (2015). Periodontitis: from microbial immune subversion to systemic inflammation. Nat Rev Immunol, 15(1), 30-44. https://doi.org/10.1038/nri3785 | spa |
dc.relation.references | Hajishengallis, & Chavakis. (2021). Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities. Nat Rev Immunol, 21(7), 426-440. https://doi.org/10.1038/s41577-020-00488-6 | spa |
dc.relation.references | Hajishengallis, G., & Korostoff, J. M. (2017b). Revisiting the Page & Schroeder model: the good, the bad and the unknowns in the periodontal host response 40 years later. Periodontol 2000, 75(1), 116-151. https://doi.org/10.1111/prd.12181 | spa |
dc.relation.references | Hansson, O., Blennow, K., Zetterberg, H., & Dage, J. (2023). Blood biomarkers for Alzheimer's disease in clinical practice and trials. Nat Aging, 3(5), 506-519. https://doi.org/10.1038/s43587-023-00403-3 | spa |
dc.relation.references | Hashioka, S., Wu, Z., & Klegeris, A. (2021). Glia-driven neuroinflammation and systemic inflammation in Alzheimer’s disease. Current neuropharmacology, 19(7), 908-924. https://doi.org/https://doi.org/10.2174/1570159X18666201111104509 | spa |
dc.relation.references | Hatcher, C., Relton, C. L., Gaunt, T. R., & Richardson, T. G. (2019). Leveraging brain cortexderived molecular data to elucidate epigenetic and transcriptomic drivers of complex traits and disease. Translational psychiatry, 9(1), 105. https://doi.org/10.1038/s41398- 019-0437-2 | spa |
dc.relation.references | Hernández, H. (2015). Estudio de patrones genómicos de metilación de ADN en enfermedad de Alzheimer orientado hacia neuronas piramidales corticales y su concordancia con leucocitos de sangre periférica. Instituto de Investigaciones Biomédicas | spa |
dc.relation.references | Hernández, H. G., López-Cepeda, M. L., Contreras-García, G. A., Vargas-Porras, C., & Arboleda, H. (2019). Bisulphite conversion DNA visualiser for designing DNA methylation primers. Trends in Bioinformatics, 12, 1-6. https://doi.org/10.3923/tb.2019.1.6 | spa |
dc.relation.references | Hernández, H. G., Mahecha, M. F., Mejía, A., Arboleda, H., & Forero, D. A. (2014). Global long interspersed nuclear element 1 DNA methylation in a Colombian sample of patients with late-onset Alzheimer’s disease. American Journal of Alzheimer's Disease & Other Dementias®, 29(1), 50-53. https://doi.org/10.1177/1533317513505132 | spa |
dc.relation.references | Hernandez, H. G., Sandoval-Hernandez, A. G., Garrido-Gil, P., Labandeira-Garcia, J. L., Zelaya, M. V., Bayon, G. F., . . . Arboleda, H. (2018). Alzheimer's disease DNA methylome of pyramidal layers in frontal cortex: laser-assisted microdissection study. Epigenomics, 10(11), 1365-1382. https://doi.org/10.2217/epi-2017-0160 | spa |
dc.relation.references | Hickey, N. A., Shalamanova, L., Whitehead, K. A., Dempsey-Hibbert, N., van der Gast, C., & Taylor, R. L. (2020). Exploring the putative interactions between chronic kidney disease and chronic periodontitis. Crit Rev Microbiol, 46(1), 61-77. https://doi.org/10.1080/1040841x.2020.1724872 | spa |
dc.relation.references | Hill, M. A., & Gammie, S. C. (2022). Alzheimer’s disease large-scale gene expression portrait identifies exercise as the top theoretical treatment. Scientific reports, 12(1), 17189. https://doi.org/10.1038/s41598-022-22179-z | spa |
dc.relation.references | Hoang. (2004a). The origin of hematopoietic cell type diversity. Oncogene, 23(43), 7188-7198. https://doi.org/10.1038/sj.onc.1207937 | spa |
dc.relation.references | Holtfreter, B., Albandar, J. M., Dietrich, T., Dye, B. A., Eaton, K. A., Eke, P. I., . . . Kocher, T. (2015). Standards for reporting chronic periodontitis prevalence and severity in epidemiologic studies: Proposed standards from the Joint EU/USA Periodontal Epidemiology Working Group. Journal of clinical periodontology, 42(5), 407-412. https://doi.org/10.1111/jcpe.12392 | spa |
dc.relation.references | Hu, D., Guo, Y., Wu, M., Ma, Y., & Jing, W. (2022). GDAP2 overexpression affects the development of neurons and dysregulates neuronal excitatory synaptic transmission. Neuroscience, 488, 32-43. https://doi.org/https://doi.org/10.1016/j.neuroscience.2022.02.005 | spa |
dc.relation.references | Hu, Y. W., Kang, C. M., Zhao, J. J., Nie, Y., Zheng, L., Li, H. X., . . . Qiu, Y. R. (2018). Lnc RNA PLAC 2 down‐regulates RPL 36 expression and blocks cell cycle progression in glioma through a mechanism involving STAT 1. Journal of cellular and molecular medicine, 22(1), 497-510. https://doi.org/ https://doi.org/10.1111/jcmm.13338 | spa |
dc.relation.references | Huang, S., Huang, P., Wu, H., Wang, S., & Liu, G. (2022). LINC02381 aggravates breast cancer through the miR-1271-5p/FN1 axis to activate PI3K/AKT pathway. Mol Carcinog, 61(3), 346-358. https://doi.org/10.1002/mc.23375 | spa |
dc.relation.references | Huntington, N. D., Carpentier, S., Vivier, E., & Belz, G. T. (2016). Innate lymphoid cells: parallel checkpoints and coordinate interactions with T cells. Curr Opin Immunol, 38, 86- 93. https://doi.org/10.1016/j.coi.2015.11.008 | spa |
dc.relation.references | Ide, M., Harris, M., Stevens, A., Sussams, R., Hopkins, V., Culliford, D., . . . Thomas, R. (2016). Periodontitis and cognitive decline in Alzheimer’s disease. PLoS One, 11(3), e0151081. https://doi.org/https://doi.org/10.1371/journal.pone.0151081 | spa |
dc.relation.references | Ishida, K., Kobayashi, T., Ito, S., Komatsu, Y., Yokoyama, T., Okada, M., . . . Yoshie, H. (2012). Interleukin-6 gene promoter methylation in rheumatoid arthritis and chronic periodontitis. J Periodontol, 83(7), 917-925. https://doi.org/10.1902/jop.2011.110356 | spa |
dc.relation.references | Itoh, T., Fairall, L., Muskett, F. W., Milano, C. P., Watson, P. J., Arnaudo, N., . . . Schwabe, J. W. (2015). Structural and functional characterization of a cell cycle associated HDAC1/2 complex reveals the structural basis for complex assembly and nucleosome targeting. Nucleic Acids Res, 43(4), 2033-2044. https://doi.org/10.1093/nar/gkv068 | spa |
dc.relation.references | Ivanova, D., Dirks, A., Montenegro‐Venegas, C., Schöne, C., Altrock, W. D., Marini, C., . . . Gundelfinger, E. D. (2015). Synaptic activity controls localization and function of Ct BP 1 via binding to B assoon and P iccolo. The EMBO journal, 34(8), 1056-1077. https://doi.org/https://doi.org/10.15252/embj.201488796 | spa |
dc.relation.references | Jayaswamy, P. K., Gollapalli, P., Vijaykrishnaraj, M., Alexander, L. M., Patil, P., & Shetty, P. (2023). Identification of network-based differential gene expression signatures and their transcriptional factors to develop progressive blood biomarkers for Alzheimer's disease. Human Gene, 37, 201202. https://doi.org/10.1016/j.humgen.2023.201202 | spa |
dc.relation.references | Ji, S., & Choi, Y. (2013). Innate immune response to oral bacteria and the immune evasive characteristics of periodontal pathogens. J Periodontal Implant Sci, 43(1), 3-11. https://doi.org/10.5051/jpis.2013.43.1.3 | spa |
dc.relation.references | Jiang, Z., Shi, Y., Zhao, W., Zhou, L., Zhang, B., Xie, Y., . . . Wang, Z. (2021). Association between chronic periodontitis and the risk of Alzheimer’s disease: combination of text mining and GEO dataset. BMC Oral Health, 21(1), 1-11. https://doi.org/https://doi.org/10.1186/s12903-021-01827-2 | spa |
dc.relation.references | Johanson, C. E., Stopa, E. G., & McMillan, P. N. (2011). The blood–cerebrospinal fluid barrier: structure and functional significance. The Blood-Brain and Other Neural Barriers: Reviews and Protocols, 101-131. https://doi.org/10.1007/978-1-60761-938-3_4 | spa |
dc.relation.references | Joustra, V., Hageman, I., Li Yim, A., Gecse, K., Lowenberg, M., te Velde, A., . . . D’Haens, G. (2020). P823 DNA methylation profiles accurately predict vedolizumab response and remain stable during induction and maintenance treatment in Crohn’s disease. Journal of Crohn's and Colitis, 14(Supplement_1), S639-S640. https://doi.org/10.1093/eccojcc/ jjz203.951 | spa |
dc.relation.references | Kähler, A. K., Djurovic, S., Kulle, B., Jönsson, E. G., Agartz, I., Hall, H., . . . Melle, I. (2008). Association analysis of schizophrenia on 18 genes involved in neuronal migration: MDGA1 as a new susceptibility gene. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 147(7), 1089-1100. https://doi.org/10.1002/ajmg.b.30726 | spa |
dc.relation.references | Kamer, A. R., Pirraglia, E., Tsui, W., Rusinek, H., Vallabhajosula, S., Mosconi, L., . . . de Leon, M. J. (2015). Periodontal disease associates with higher brain amyloid load in normal elderly. Neurobiol Aging, 36(2), 627-633. https://doi.org/10.1016/j.neurobiolaging.2014.10.038 | spa |
dc.relation.references | Kanagasingam, S., Chukkapalli, S. S., Welbury, R., & Singhrao, S. K. (2020). Porphyromonas gingivalis is a strong risk factor for Alzheimer’s disease. Journal of Alzheimer's Disease Reports, 4(1), 501-511. https://doi.org/10.3233/ADR-200250 | spa |
dc.relation.references | Katkoori, V., Jia, X., Callens, T., Kumar, S., Ponnazhagan, S., Messiaen, L., . . . Manne, U. (2007). Rabphillin-3A-Like gene is a candidate tumor suppressor in colorectal adenocarcinoma. Cancer Research, 67(9_Supplement), 3650-3650. | spa |
dc.relation.references | Katoh, M., & Katoh, M. (2004). Identification and characterization of human FOXK1 gene in silico. International journal of molecular medicine, 14(1), 127-132. https://doi.org/10.3892/ijmm.14.1.127 | spa |
dc.relation.references | Khouly, I., Braun, R. S., Ordway, M., Aouizerat, B. E., Ghassib, I., Larsson, L., & Asa’ad, F. (2020). The role of DNA methylation and histone modification in periodontal disease: a systematic review. International journal of molecular sciences, 21(17), 6217. https://doi.org/10.3390/ijms21176217 | spa |
dc.relation.references | Kobayashi, N., Shinagawa, S., Nagata, T., Shimada, K., Shibata, N., Ohnuma, T., . . . Kondo, K. (2016). Usefulness of DNA Methylation Levels in COASY and SPINT1 Gene Promoter Regions as Biomarkers in Diagnosis of Alzheimer's Disease and Amnestic Mild Cognitive Impairment. PLoS One, 11(12), e0168816. https://doi.org/10.1371/journal.pone.0168816 | spa |
dc.relation.references | Koestler, D. C., Jones, M. J., Usset, J., Christensen, B. C., Butler, R. A., Kobor, M. S., . . . Kelsey, K. T. (2016). Improving cell mixture deconvolution by identifying optimal DNA methylation libraries (IDOL). BMC bioinformatics, 17, 120. https://doi.org/10.1186/s12859-016-0943-7 | spa |
dc.relation.references | Kouki, M. A., Pritchard, A. B., Alder, J. E., & Crean, S. (2022). Do Periodontal Pathogens or Associated Virulence Factors Have a Deleterious Effect on the Blood-Brain Barrier, Contributing to Alzheimer’s Disease? Journal of Alzheimer's Disease, 85(3), 957-973. https://doi.org/10.3233/JAD-215103 Kubota, T., Maruyama, S., Abe, D., Tomita, T., Morozumi | spa |
dc.relation.references | Kukułowicz, J., Pietrzak-Lichwa, K., Klimończyk, K., Idlin, N., & Bajda, M. (2024). The SLC6A15–SLC6A20 Neutral Amino Acid Transporter Subfamily: Functions, Diseases, and Their Therapeutic Relevance. Pharmacological Reviews, 76(1), 142-193. https://doi.org/10.1124/pharmrev.123.000886 | spa |
dc.relation.references | Laberge, Akoum, D., Wlodarczyk, P., Massé, J. D., Fournier, D., & Semlali, A. (2023). The Potential Role of Epigenetic Modifications on Different Facets in the Periodontal Pathogenesis. Genes (Basel), 14(6). https://doi.org/10.3390/genes14061202 | spa |
dc.relation.references | Larsson, L. (2017). Current concepts of epigenetics and its role in periodontitis. Current Oral Health Reports, 4(4), 286-293. https://doi.org/10.1007/s40496-017-0156-9 | spa |
dc.relation.references | Lavu, V., Venkatesan, V., & Rao, S. R. (2015). The epigenetic paradigm in periodontitis pathogenesis. J Indian Soc Periodontol, 19(2), 142-149. https://doi.org/10.4103/0972- 124X.145784 | spa |
dc.relation.references | Lee, W., Aitken, S., Sodek, J., & McCulloch, C. (1995). Evidence of a direct relationship between neutrophil collagenase activity and periodontal tissue destruction in vivo: role of active enzyme in human periodontitis. Journal of periodontal research, 30(1), 23-33. https://doi.org/10.1111/j.1600-0765.1995.tb01249.xC | spa |
dc.relation.references | Leira, Y., Vivancos, J., Diz, P., Martín, Á., Carasol, M., & Frank, A. (2024). Asociación entre periodontitis, enfermedad cerebrovascular y demencia. Informe científico del Grupo de Trabajo de la Sociedad Española de Periodoncia y la Sociedad Española de Neurología. Neurología. https://doi.org/10.1016/j.nrl.2023.11.003 | spa |
dc.relation.references | Lesurf, R., Cotto, K. C., Wang, G., Griffith, M., Kasaian, K., Jones, S. J., . . . Open Regulatory Annotation, C. (2016). ORegAnno 3.0: a community-driven resource for curated regulatory annotation. Nucleic Acids Res, 44(D1), D126-132. https://doi.org/10.1093/nar/gkv1203 | spa |
dc.relation.references | Lewin, J., Schmitt, A. O., Adorján, P., Hildmann, T., & Piepenbrock, C. (2004). Quantitative DNA methylation analysis based on four-dye trace data from direct sequencing of PCR amplificates. Bioinformatics, 20(17), 3005-3012. https://doi.org/10.1093/bioinformatics/bth346 | spa |
dc.relation.references | Li, Kiprowska, M., Kansara, T., Kansara, P., & Li, P. (2022). Neuroinflammation: A distal consequence of periodontitis. Journal of dental research, 101(12), 1441-1449. https://doi.org/10.1177/00220345221102 | spa |
dc.relation.references | Li, J., Liu, J., Feng, G., Li, T., Zhao, Q., Li, Y., . . . He, L. (2011). The MDGA1 gene confers risk to schizophrenia and bipolar disorder. Schizophrenia research, 125(2-3), 194-200. https://doi.org/10.1186/s13148-021-01179-2 | spa |
dc.relation.references | Liccardo, D., Marzano, F., Carraturo, F., Guida, M., Femminella, G. D., Bencivenga, L., . . . Valletta, A. (2020). Potential bidirectional relationship between periodontitis and Alzheimer’s disease. Frontiers in physiology, 11, 683. https://doi.org/10.3389/fphys.2020.00683 | spa |
dc.relation.references | Lima, A., Bernardes, M., Azevedo, R., Monteiro, J., Sousa, H., Medeiros, R., & Seabra, V. (2014). SLC19A1, SLC46A1 and SLCO1B1 polymorphisms as predictors of methotrexate-related toxicity in Portuguese rheumatoid arthritis patients. Toxicological Sciences, 142(1), 196-209. https://doi.org/10.1093/toxsci/kfu162 | spa |
dc.relation.references | Liu, Y., Wu, Z., Zhang, X., Ni, J., Yu, W., Zhou, Y., & Nakanishi, H. (2013). Leptomeningeal cells transduce peripheral macrophages inflammatory signal to microglia in reponse to Porphyromonas gingivalis LPS. Mediators of inflammation, 2013. https://doi.org/10.1155/2013/407562 | spa |
dc.relation.references | Loos, B. G., & Van Dyke, T. E. (2020). The role of inflammation and genetics in periodontal disease. Periodontology 2000, 83(1), 26-39. https://doi.org/10.1111/prd.12297 | spa |
dc.relation.references | Lozupone, M., Dibello, V., Sardone, R., Castellana, F., Zupo, R., Lampignano, L., . . . Solfrizzi, V. (2023). The impact of apolipoprotein E (APOE) epigenetics on aging and sporadic Alzheimer’s disease. Biology, 12(12), 1529. https://doi.org/10.3390/biology12121529 | spa |
dc.relation.references | Lunnon, K., Smith, R., Hannon, E., De Jager, P. L., Srivastava, G., Volta, M., . . . Macdonald, R. (2014). Methylomic profiling implicates cortical deregulation of ANK1 in Alzheimer's disease. Nature neuroscience, 17(9), 1164-1170. https://doi.org/10.1038/nn.3782 | spa |
dc.relation.references | Madianos, P. N., Bobetsis, Y. A., & Kinane, D. F. (2005). Generation of inflammatory stimuli: how bacteria set up inflammatory responses in the gingiva. J Clin Periodontol, 32 Suppl 6, 57-71. https://doi.org/10.1111/j.1600-051X.2005.00821.x | spa |
dc.relation.references | Mahoney, R., Bendl, J., Kozlenkov, A., Micallef, C., Shao, Z., Edelstien, J., . . . Haroutunian, V. (2023). F93. Cell-type specific transcriptomic profiling in schizophrenia identifies changes in gabaergic neurons and oligodendrocytes at transcript level. European Neuropsychopharmacology, 75, S270. https://doi.org/10.1016/j.euroneuro.2023.08.474 | spa |
dc.relation.references | Marioni, R. E., Harris, S. E., Zhang, Q., McRae, A. F., Hagenaars, S. P., Hill, W. D., . . . Visscher, P. M. (2018). GWAS on family history of Alzheimer's disease. Transl Psychiatry, 8(1), 99. https://doi.org/10.1038/s41398-018-0150-6 | spa |
dc.relation.references | Martínez-Iglesias, O., Naidoo, V., Cacabelos, N., & Cacabelos, R. (2021). Epigenetic Biomarkers as Diagnostic Tools for Neurodegenerative Disorders. Int J Mol Sci, 23(1). https://doi.org/10.3390/ijms23010013 | spa |
dc.relation.references | Masumoto, R., Kitagaki, J., Fujihara, C., Matsumoto, M., Miyauchi, S., Asano, Y., . . . Murakami, S. (2019). Identification of genetic risk factors of aggressive periodontitis using genomewide association studies in association with those of chronic periodontitis. J Periodontal Res, 54(3), 199-206. https://doi.org/10.1111/jre.12620 | spa |
dc.relation.references | Matsushita, K., Yamada-Furukawa, M., Kurosawa, M., & Shikama, Y. (2020). Periodontal disease and periodontal disease-related bacteria involved in the pathogenesis of Alzheimer’s disease. Journal of inflammation research, 13, 275. https://doi.org/10.2147/JIR.S255309 | spa |
dc.relation.references | Mayadas, T. N., Cullere, X., & Lowell, C. A. (2014). The multifaceted functions of neutrophils. Annu Rev Pathol, 9, 181-218. https://doi.org/10.1146/annurev-pathol-020712-164023 | spa |
dc.relation.references | Mendonça, C. F., Kuras, M., Nogueira, F. C. S., Plá, I., Hortobágyi, T., Csiba, L., . . . Marko- Varga, G. (2019). Proteomic signatures of brain regions affected by tau pathology in early and late stages of Alzheimer's disease. Neurobiology of disease, 130, 104509. https://doi.org/https://doi.org/10.1016/j.nbd.2019.104509 | spa |
dc.relation.references | Mendonca, V., Soares-Lima, S. C., & Moreira, M. A. M. (2024). Exploring cross-tissue DNA methylation patterns: blood-brain CpGs as potential neurodegenerative disease biomarkers. Commun Biol, 7(1), 904. https://doi.org/10.1038/s42003-024-06591-x | spa |
dc.relation.references | Milano, W., Ambrosio, P., Carizzone, F., De Biasio, V., Di Munzio, W., Foia, M. G., & Capasso, A. (2020). Depression and Obesity: Analysis of Common Biomarkers. Diseases, 8(2). https://doi.org/10.3390/diseases8020023 | spa |
dc.relation.references | Mishra, V. C., Deshpande, T., Gupta, N., Dorwal, P., Chandra, D., Raina, V., & Sharma, G. (2021). Frequency analysis of HLA-B allele in leukemia patients from a North Indian population: a case-control study. Meta Gene, 27, 100842. https://doi.org/10.1016/j.mgene.2020.100842 | spa |
dc.relation.references | Morgan, A. R., Touchard, S., Leckey, C., O'Hagan, C., Nevado‐Holgado, A. J., Consortium, N., . . . Bos, I. (2019). Inflammatory biomarkers in Alzheimer's disease plasma. Alzheimer's & Dementia, 15(6), 776-787. | spa |
dc.relation.references | Murray, P. J., Allen, J. E., Biswas, S. K., Fisher, E. A., Gilroy, D. W., Goerdt, S., . . . Wynn, T. A. (2014). Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity, 41(1), 14-20. https://doi.org/10.1016/j.immuni.2014.06.008 | spa |
dc.relation.references | Nibali, L., Di Iorio, A., Tu, Y. K., & Vieira, A. R. (2017). Host genetics role in the pathogenesis of periodontal disease and caries. J Clin Periodontol, 44 Suppl 18, S52-S78. https://doi.org/10.1111/jcpe.12639 | spa |
dc.relation.references | Offenbacher, S., Jiao, Y., Kim, S. J., Marchesan, J., Moss, K. L., Jing, L., . . . North, K. E. (2018). GWAS for Interleukin-1β levels in gingival crevicular fluid identifies IL37 variants in periodontal inflammation. Nat Commun, 9(1), 3686. https://doi.org/10.1038/s41467-018-05940-9 | spa |
dc.relation.references | Olsen, I., & Singhrao, S. K. (2019). Poor Oral Health and Its Neurological Consequences: Mechanisms of Porphyromonas gingivalis Involvement in Cognitive Dysfunction. Current Oral Health Reports, 6(2), 120-129. https://doi.org/10.1007/s40496-019-0212-8 | spa |
dc.relation.references | Palomba, N. P., Fortunato, G., Pepe, G., Modugno, N., Pietracupa, S., Damiano, I., . . . Ianiro, L. (2023). Common and rare variants in TMEM175 gene concur to the pathogenesis of Parkinson’s disease in Italian patients. Molecular neurobiology, 60(4), 2150-2173. https://doi.org/10.1007/s12035-022-03203-9 | spa |
dc.relation.references | Papadopoulos, Weinberg, E. O., Massari, P., Gibson, F. C., 3rd, Wetzler, L. M., Morgan, E. F., & Genco, C. A. (2013). Macrophage-specific TLR2 signaling mediates pathogen-induced TNF-dependent inflammatory oral bone loss. J Immunol, 190(3), 1148-1157. https://doi.org/10.4049/jimmunol.1202511 | spa |
dc.relation.references | Papapanou, P. N., Sedaghatfar, M. H., Demmer, R. T., Wolf, D. L., Yang, J., Roth, G. A., . . . Pavlidis, P. (2007). Periodontal therapy alters gene expression of peripheral blood monocytes. Journal of clinical periodontology, 34(9), 736-747. https://doi.org/10.1111/j.1600-051X.2007.01113.x | spa |
dc.relation.references | Pazos, Leira, Y., Domínguez, C., Pías-Peleteiro, J. M., Blanco, J., & Aldrey, J. M. (2018). Association between periodontal disease and dementia: A literature review. Neurologia | spa |
dc.relation.references | Pillai, J. A., Bena, J., Bebek, G., Bekris, L. M., Bonner‐Jackson, A., Kou, L., . . . Rao, S. M. (2020). Inflammatory pathway analytes predicting rapid cognitive decline in MCI stage of Alzheimer’s disease. Annals of Clinical and Translational Neurology, 7(7), 1225- 1239. https://doi.org/10.1002/acn3.51109 | spa |
dc.relation.references | Polepalle, T., Moogala, S., Boggarapu, S., Pesala, D. S., & Palagi, F. B. (2015). Acute phase proteins and their role in periodontitis: a review. Journal of clinical and diagnostic research: JCDR, 9(11), ZE01. https://doi.org/10.7860/JCDR/2015/15692.6728 | spa |
dc.relation.references | Potashkin, J., Santiago, J., & Quinn, J. (2022). Co-expression network analysis identifies molecular determinants of loneliness associated with neuropsychiatric and neurodegenerative diseases. https://doi.org/10.21203/rs.3.rs-2203829/v1 | spa |
dc.relation.references | Prasad, G. R., & Jho, E.-h. (2019). A concise review of human brain methylome during aging and neurodegenerative diseases. BMB reports, 52(10), 577. https://doi.org/10.5483/BMBRep.2019.52.10.215 | spa |
dc.relation.references | Qu, L., Lin, B., Zeng, W., Fan, C., Wu, H., Ge, Y., . . . Xin, J. (2022). Lysosomal K+ channel TMEM175 promotes apoptosis and aggravates symptoms of Parkinson's disease. EMBO reports, 23(9), e53234. https://doi.org/10.15252/embr.202153234 | spa |
dc.relation.references | Rapanelli, M., Tan, T., Wang, W., Wang, X., Wang, Z.-J., Zhong, P., . . . Qu, J. (2021). Behavioral, circuitry, and molecular aberrations by region-specific deficiency of the highrisk autism gene Cul3. Molecular Psychiatry, 26(5), 1491-1504. https://doi.org/10.1038/s41380-019-0498-x | spa |
dc.relation.references | Reitz, C., Pericak-Vance, M. A., Foroud, T., & Mayeux, R. (2023). A global view of the genetic basis of Alzheimer disease. Nat Rev Neurol, 19(5), 261-277. https://doi.org/10.1038/s41582-023-00789-z | spa |
dc.relation.references | Ribeiro, M. S., Pacheco, R. B., Fischer, R. G., & Macedo, J. M. (2016). Interaction of IL1B and IL1RN polymorphisms, smoking habit, gender, and ethnicity with aggressive and chronic periodontitis susceptibility. Contemp Clin Dent, 7(3), 349-356. | spa |
dc.relation.references | Riviere, G. R., Riviere, K., & Smith, K. (2002). Molecular and immunological evidence of oral Treponema in the human brain and their association with Alzheimer's disease. Oral microbiology and immunology, 17(2), 113-118. https://doi.org/10.1046/j.0902- 0055.2001.00100.x | spa |
dc.relation.references | Rocha, J. J., Jayaram, S. A., Stevens, T. J., Muschalik, N., Shah, R. D., Emran, S., . . . Munro, S. (2023). Functional unknomics: Systematic screening of conserved genes of unknown function. PLoS biology, 21(8), e3002222. https://doi.org/10.1371/journal.pbio.3002222 | spa |
dc.relation.references | Salcedo-Tacuma, D., Melgarejo, J. D., Mahecha, M. F., Ortega-Rojas, J., Arboleda-Bustos, C. E., Pardo-Turriago, R., & Arboleda, H. (2019). Differential Methylation Levels in CpGs of the BIN1 Gene in Individuals With Alzheimer Disease. Alzheimer Dis Assoc Disord, 33(4), 321-326. https://doi.org/10.1097/WAD.0000000000000329 | spa |
dc.relation.references | Sánchez, C. Z., Sanabria, M. O. C., Sánchez, M. Z., López, P. A. C., Sanabria, M. S., Hernández, S. H., . . . Valera, A. U. (2019). Prevalencia de demencia en adultos mayores de América Latina: revisión sistemática. Revista Española de Geriatría y Gerontología, 54(6), 346- 355. https://doi.org/10.1016/j.regg.2018.12.007 | spa |
dc.relation.references | Sasaki, M., Anast, J., Bassett, W., Kawakami, T., Sakuragi, N., & Dahiya, R. (2003). Bisulfite conversion-specific and methylation-specific PCR: a sensitive technique for accurate evaluation of CpG methylation. Biochemical and biophysical research communications, 309(2), 305-309. https://doi.org/10.1016/j.bbrc.2003.08.005 | spa |
dc.relation.references | Scelsi, M. A., Khan, R. R., Lorenzi, M., Christopher, L., Greicius, M. D., Schott, J. M., . . . Altmann, A. (2018). Genetic study of multimodal imaging Alzheimer’s disease progression score implicates novel loci. Brain, 141(7), 2167-2180. https://doi.org/10.1093/brain/awy141 | spa |
dc.relation.references | Semick, S. A., Bharadwaj, R. A., Collado-Torres, L., Tao, R., Shin, J. H., Deep-Soboslay, A., . . . Mattay, V. S. (2019). Integrated DNA methylation and gene expression profiling across multiple brain regions implicate novel genes in Alzheimer’s disease. Acta Neuropathologica, 137(4), 557-569. https://doi.org/10.1007/s00401-019-01966-5 | spa |
dc.relation.references | Sepulveda-Falla, D., Barrera-Ocampo, A., Hagel, C., Korwitz, A., Vinueza-Veloz, M. F., Zhou, K., . . . Glatzel, M. (2014). Familial Alzheimer's disease-associated presenilin-1 alters cerebellar activity and calcium homeostasis. J Clin Invest, 124(4), 1552-1567. https://doi.org/10.1172/JCI66407 | spa |
dc.relation.references | Shaddox, L. M., Mullersman, A. F., Huang, H., Wallet, S. M., Langaee, T., & Aukhil, I. (2017). Epigenetic regulation of inflammation in localized aggressive periodontitis. Clin Epigenetics, 9, 94. https://doi.org/10.1186/s13148-017-0385-8 | spa |
dc.relation.references | Shinagawa, S., Kobayashi, N., Nagata, T., Kusaka, A., Yamada, H., Kondo, K., & Nakayama, K. (2016). DNA methylation in the NCAPH2/LMF2 promoter region is associated with hippocampal atrophy in Alzheimer's disease and amnesic mild cognitive impairment patients. Neurosci Lett, 629, 33-37. https://doi.org/10.1016/j.neulet.2016.06.055 | spa |
dc.relation.references | Singhrao, S. K., Neal, J. W., Rushmere, N. K., Morgan, B. P., & Gasque, P. (2000). Spontaneous classical pathway activation and deficiency of membrane regulators render human neurons susceptible to complement lysis. Am J Pathol, 157(3), 905-918. https://doi.org/10.1016/S0002-9440(10)64604-4 | spa |
dc.relation.references | Smith, A. R., Smith, R. G., Pishva, E., Hannon, E., Roubroeks, J. A., Burrage, J., . . . Mill, J. (2019). Parallel profiling of DNA methylation and hydroxymethylation highlights neuropathology-associated epigenetic variation in Alzheimer’s disease. Clinical Epigenetics, 11, 1-13. https://doi.org/10.1186/s13148-019-0636-y | spa |
dc.relation.references | Sperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A., Craft, S., Fagan, A. M., . . . Phelps, C. H. (2011). Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement, 7(3), 280-292. https://doi.org/10.1016/j.jalz.2011.03.003 | spa |
dc.relation.references | Statello, L., Guo, C. J., Chen, L. L., & Huarte, M. (2021). Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol, 22(2), 96-118. https://doi.org/10.1038/s41580-020-00315-9 | spa |
dc.relation.references | Tabas, I., & Glass, C. K. (2013). Anti-inflammatory therapy in chronic disease: challenges and opportunities. Science, 339(6116), 166-172. https://doi.org/10.1126/science.1230720 | spa |
dc.relation.references | Tammen, S. A., Friso, S., & Choi, S. W. (2013). Epigenetics: the link between nature and nurture. Mol Aspects Med, 34(4), 753-764. https://doi.org/10.1016/j.mam.2012.07.018 | spa |
dc.relation.references | Taryma-Leśniak, O., Sokolowska, K. E., & Wojdacz, T. K. (2020). Current status of development of methylation biomarkers for in vitro diagnostic IVD applications. Clinical Epigenetics, 12(1), 100. https://doi.org/10.1186/s13148-020-00886-6 | spa |
dc.relation.references | Therriault, J., Schindler, S. E., Salvadó, G., Pascoal, T. A., Benedet, A. L., Ashton, N. J., . . . Rosa-Neto, P. (2024). Biomarker-based staging of Alzheimer disease: rationale and clinical applications. Nat Rev Neurol, 20(4), 232-244. https://doi.org/10.1038/s41582- 024-00942-2 | spa |
dc.relation.references | Toader, C., Dobrin, N., Brehar, F.-M., Popa, C., Covache-Busuioc, R.-A., Glavan, L. A., . . . Popa, A. A. (2023). From recognition to remedy: The significance of biomarkers in neurodegenerative disease pathology. International journal of molecular sciences, 24(22), 16119. https://doi.org/10.3390/ijms242216119 | spa |
dc.relation.references | Tranchevent, L.-C., Ardeshirdavani, A., ElShal, S., Alcaide, D., Aerts, J., Auboeuf, D., & Moreau, Y. (2016). Candidate gene prioritization with Endeavour. Nucleic acids research, 44(W1), W117-W121. https://doi.org/10.1093/nar/gkw365 | spa |
dc.relation.references | Tse, M. Y., Ashbury, J. E., Zwingerman, N., King, W. D., Taylor, S. A., & Pang, S. C. (2011). A refined, rapid and reproducible high resolution melt (HRM)-based method suitable for quantification of global LINE-1 repetitive element methylation. BMC research notes, 4(1), 565. https://doi.org/10.1186/1756-0500-4-565 | spa |
dc.relation.references | UNESCO, U. (1997). Declaración universal sobre el genoma humano y los derechos humanos. Boletín del Consejo Académico de Ética en Medicina, 4(1). | spa |
dc.relation.references | UniProt, C. (2015). UniProt: a hub for protein information. Nucleic Acids Res, 43(Database issue), D204-212. https://doi.org/10.1093/nar/gku989 | spa |
dc.relation.references | Vasanthakumar, A., Davis, J. W., Idler, K., Waring, J. F., Asque, E., Riley-Gillis, B., . . . Nho, K. (2020). Harnessing peripheral DNA methylation differences in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) to reveal novel biomarkers of disease. Clinical Epigenetics, 12(1), 1-11. | spa |
dc.relation.references | Viglianisi, G., Santonocito, S., Polizzi, A., Troiano, G., Amato, M., Zhurakivska, K., . . . Isola, G. (2023). Impact of Circulating Cell-Free DNA (cfDNA) as a Biomarker of the Development and Evolution of Periodontitis. Int J Mol Sci, 24(12). https://doi.org/10.3390/ijms24129981 | spa |
dc.relation.references | Villa, M., Wu, J., Hansen, S., & Pahnke, J. (2024). Emerging role of ABC transporters in glia cells in health and diseases of the central nervous system. Cells, 13(9), 740. https://doi.org/10.3390/cells13090740 | spa |
dc.relation.references | Wainberg, M., Andrews, S. J., & Tripathy, S. J. (2023). Shared genetic risk loci between Alzheimer’s disease and related dementias, Parkinson’s disease, and amyotrophic lateral sclerosis. Alzheimer's Research & Therapy, 15(1), 113. https://doi.org/10.1186/s13195- 023-01244-3 | spa |
dc.relation.references | Walker, K. A., Ficek, B. N., & Westbrook, R. (2019). Understanding the Role of Systemic Inflammation in Alzheimer's Disease. ACS Chem Neurosci, 10(8), 3340-3342. https://doi.org/10.1021/acschemneuro.9b00333 | spa |
dc.relation.references | Wang, Ho, Leung, Goto, T., & Chang, R. C.-C. (2019). Systemic inflammation linking chronic periodontitis to cognitive decline. Brain, behavior, and immunity, 81, 63-73. https://doi.org/10.1016/j.bbi.2019.07.002 | spa |
dc.relation.references | Wang, Wang, Y., Ma, X., Zhou, S., Xu, J., Guo, Y., . . . Yuan, L. (2023). Gender-specific association of SLC19A1 and MTHFR genetic polymorphism with oxidative stress biomarkers and plasma folate levels in older adults. Experimental Gerontology, 178, 112208. https://doi.org/10.1016/j.exger.2023.112208 | spa |
dc.relation.references | Wang, P., Wang, B., Zhang, Z., & Wang, Z. (2021). Identification of inflammation-related DNA methylation biomarkers in periodontitis patients based on weighted co-expression analysis. Aging (Albany NY), 13(15), 19678. https://doi.org/10.18632/aging.203378 | spa |
dc.relation.references | Watson, C. T., Roussos, P., Garg, P., Ho, D. J., Azam, N., Katsel, P. L., . . . Sharp, A. J. (2016). Genome-wide DNA methylation profiling in the superior temporal gyrus reveals epigenetic signatures associated with Alzheimer's disease. Genome Med, 8(1), 5. https://doi.org/10.1186/s13073-015-0258-8 | spa |
dc.relation.references | Weinberg, D. N., Papillon-Cavanagh, S., Chen, H., Yue, Y., Chen, X., Rajagopalan, K. N., . . . Nikbakht, H. (2019). The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape. Nature, 573(7773), 281-286. https://doi.org/10.1038/s41586-019-1534-3 | spa |
dc.relation.references | Wilhelm-Benartzi, C. S., Koestler, D. C., Karagas, M. R., Flanagan, J. M., Christensen, B. C., Kelsey, K. T., . . . Brown, R. (2013). Review of processing and analysis methods for DNA methylation array data. Br J Cancer, 109(6), 1394-1402. https://doi.org/10.1038/bjc.2013.496 | spa |
dc.relation.references | Wu, Song, J., Yin, X., Ma, H., & Zhang, J. (2024). An Integrated Proteome and Transcriptome Analysis Identifies Novel Causal Genes in Periodontal Disease. Available at SSRN 4329969. https://doi.org/10.2139/ssrn.4329969 | spa |
dc.relation.references | Xiao, X., Liu, X., & Jiao, B. (2020). Epigenetics: Recent Advances and Its Role in the Treatment of Alzheimer's Disease. Front Neurol, 11, 538301. https://doi.org/10.3389/fneur.2020.538301 | spa |
dc.relation.references | Xing, X., Que, X., Zheng, S., Wang, S., Song, Q., Yao, Y., & Zhang, P. (2024). Emerging roles of FOXK2 in cancers and metabolic disorders. Front Oncol, 14, 1376496. https://doi.org/10.3389/fonc.2024.1376496 | spa |
dc.relation.references | Yang, X., Han, H., De Carvalho, D. D., Lay, F. D., Jones, P. A., & Liang, G. (2014). Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer cell, 26(4), 577-590. https://doi.org/10.1016/j.ccr.2014.07.028 | spa |
dc.relation.references | Yao, Q., Wang, C., Wang, Y., Zhang, X., Jiang, H., & Chen, D. (2022). The integrated comprehension of lncRNA HOXA-AS3 implication on human diseases. Clin Transl Oncol, 24(12), 2342-2350. https://doi.org/10.1007/s12094-022-02920-w | spa |
dc.relation.references | Yong, W.-S., Hsu, F.-M., & Chen, P.-Y. (2016). Profiling genome-wide DNA methylation. Epigenetics & chromatin, 9(1), 26. https://doi.org/DOI 10.1186/s13072-016-0075-3 | spa |
dc.relation.references | Yoshioka, M., Matsutani, T., Hara, A., Hirono, S., Hiwasa, T., Takiguchi, M., & Iwadate, Y. (2018). Real-time methylation-specific PCR for the evaluation of methylation status of MGMT gene in glioblastoma. Oncotarget, 9(45), 27728-27735. https://doi.org/10.18632/oncotarget.25543 | spa |
dc.relation.references | Zhang, J., Hou, S., You, Z., Li, G., Xu, S., Li, X., . . . Pang, D. (2021). Expression and prognostic values of ARID family members in breast cancer. Aging (Albany NY), 13(4), 5621. | spa |
dc.relation.references | Zhang, S., Barros, S. P., Moretti, A. J., Yu, N., Zhou, J., Preisser, J. S., . . . Offenbacher, S. (2013). Epigenetic regulation of TNFA expression in periodontal disease. J Periodontol, 84(11), 1606-1616. https://doi.org/10.1902/jop.2013.120294 | spa |
dc.relation.references | Zhang, S., Crivello, A., Offenbacher, S., Moretti, A., Paquette, D. W., & Barros, S. P. (2010). Interferon-gamma promoter hypomethylation and increased expression in chronic periodontitis. J Clin Periodontol, 37(11), 953-961. https://doi.org/10.1111/j.1600- 051X.2010.01616.x | spa |
dc.relation.references | Zhao, N., Teles, F., Lu, J., Koestler, D. C., Beck, J., Boerwinkle, E., . . . Michaud, D. S. (2023). Epigenome-wide association study using peripheral blood leukocytes identifies genomic regions associated with periodontal disease and edentulism in the Atherosclerosis Risk in Communities study. J Clin Periodontol, 50(9), 1140-1153. https://doi.org/10.1111/jcpe.13852 | spa |
dc.relation.references | Zhou, K., Wang, L., Wu, L., Wu, Q., Zhu, L., & Yang, X. (2022). Key genes associated with Alzheimer's disease and periodontitis. https://doi.org/10.21203/rs.3.rs-2230514/v1 | spa |
dc.relation.references | Zhuang, J., Widschwendter, M., & Teschendorff, A. E. (2012). A comparison of feature selection and classification methods in DNA methylation studies using the Illumina Infinium platform. BMC bioinformatics, 13, 59. https://doi.org/10.1186/1471-2105-13-59 | spa |
dc.relation.references | Zilka, N., Ferencik, M., & Hulin, I. (2006). Neuroinflammation in Alzheimer's disease: protector or promoter? Bratisl Lek Listy, 107(9-10), 374-383. http://www.ncbi.nlm.nih.gov/pubmed/17262990 | spa |
dc.relation.references | Zou, L., Chen, W., Shao, S., Sun, Z., Zhong, R., Shi, J., . . . Song, R. (2012). Genetic variant in KIAA0319, but not in DYX1C1, is associated with risk of dyslexia: an integrated metaanalysis. Am J Med Genet B Neuropsychiatr Genet, 159b(8), 970-976. https://doi.org/10.1002/ajmg.b.32102 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_14cb | spa |
dc.rights.local | Abierto (Texto Completo) | spa |
dc.subject.keyword | DNA methylation | spa |
dc.subject.keyword | Epigenomics | spa |
dc.subject.keyword | Periodontitis | spa |
dc.subject.keyword | Alzheimer's disease | spa |
dc.subject.keyword | Biomarkers | spa |
dc.subject.lemb | Patrones de metilación de ADN | spa |
dc.subject.lemb | Pacientes con enfermedad de Alzheimer | spa |
dc.subject.lemb | Enfermedades de los dientes | spa |
dc.subject.lemb | Patogénesis | spa |
dc.subject.lemb | Análisis de información | spa |
dc.subject.proposal | Metilación de ADN | spa |
dc.subject.proposal | Epigenómica | spa |
dc.subject.proposal | Periodontitis | spa |
dc.subject.proposal | enfermedad de Alzheimer | spa |
dc.subject.proposal | Biomarcadores | spa |
dc.title | Patrones de metilación de ADN en sangre periférica en periodontitis y enfermedad de Alzheimer: análisis diferencial, de intersección y validación | spa |
dc.type.category | Formación de Recurso Humano para la Ctel: Tesis de Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.drive | info:eu-repo/semantics/doctoralThesis | |
dc.type.local | Tesis doctoral | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
Archivos
Bloque original
1 - 3 de 3

- Nombre:
- 2024ChacónPaula.pdf
- Tamaño:
- 2.55 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Trabajo de grado

- Nombre:
- 2024ChacónPaula1.pdf
- Tamaño:
- 62.87 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Carta de facultad

- Nombre:
- 2024ChacónPaula2.pdf
- Tamaño:
- 283.03 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Acuerdo de publicación
Bloque de licencias
1 - 1 de 1

- Nombre:
- license.txt
- Tamaño:
- 807 B
- Formato:
- Item-specific license agreed upon to submission
- Descripción: